
 

Modular specification and design exploration for flexible
manufacturing systems
Citation for published version (APA):
Nogueira Bastos, J. P. (2018). Modular specification and design exploration for flexible manufacturing systems
Eindhoven: Technische Universiteit Eindhoven

Document status and date:
Published: 03/12/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 16. Feb. 2019

https://research.tue.nl/en/publications/modular-specification-and-design-exploration-for-flexible-manufacturing-systems(0b8d195b-746b-49a1-abb0-ee5e3cf55dd3).html


Modular Speci�cation and Design

Exploration for Flexible Manufacturing

Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen op maandag

03 december 2018 om 13:30 uur

door

João Pedro Nogueira Bastos

geboren te Porto, Portugal.



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van

de promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.B. Smolders

1
e
promotor: prof.dr.ir. J.P.M. Voeten

2
e
promotor: prof.dr. H. Corporaal

copromotor(en): dr.ir. S. Stuijk

leden: prof.dr. J.J.M. Hooman (Radboud Universiteit Nijmegen)

dr.ir. M.A. Reniers

prof.dr.sc. S. Chakraborty (Technische Universität München)

adviseur(s): dr.ir. R.R.H. Schi�elers

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd

in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.



Modular Speci�cation and
Design Exploration for

Flexible Manufacturing Systems

Joªo Bastos



Doctoral committee:

prof.dr.ir. A.B. Smolders Eindhoven University of Technology, chairman

prof.dr.ir. J.P.M. Voeten Eindhoven University of Technology, 1
st
promotor

prof.dr. H. Corporaal Eindhoven University of Technology, 2
nd

promotor

dr.ir. S. Stuijk Eindhoven University of Technology, copromotor

prof.dr. J.J.M. Hooman Radboud University Nijmegen, ESI (TNO)

dr.ir. M.A. Reniers Eindhoven University of Technology

prof.dr.sc. S. Chakraborty Technical University of Munich

dr.ir. R.R.H. Schi�elers Eindhoven University of Technology, ASML

This work is part of the research program high-performance control for nano-precision

systems with project number 12964, which is (partly) funded by NWO (Netherlands

Organization for Scienti�c Research).

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.

ASCI dissertation series number is 400.

' Copyright 2018 by João Bastos. All rights reserved. Reproduction in the whole or in

part is prohibited without the written consent of the copyright owner.

Cover design: Immy Stege

Printed by: ProefschriftMaken | www.proefschriftmaken.nl

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-94-6380-091-4



Summary

Manufacturing systems are cyber-physical systems which perform operations

on batches of products. Production and transport resources (the physical part)

carry out operations while a logistics controller (the cyber part) assigns these

operations to resources and determines their order. These systems are �exible

when they allow for the manufacturing of custom and multiple product types.

This is achieved by adding system functionality in the form of multiple product

routes within the system. Industrial roadmaps demand a continuous improve-

ment in both system performance and production �exibility. In order to meet

this demand with minimum impact in cost, system resources are shared among

di�erent manufacturing operations. The increase in �exibility leads to involved

functional system speci�cations which do not suit monolithic approaches (i.e.

not modular). Moreover, multiple product routing options and also resource

sharing increase the complexity of �nding performance optimal operation as-

signments and orderings. As a consequence, the design of functionally correct

and makespan optimal logistics becomes a di�cult problem for which new

design approaches are needed. This thesis incorporates several contributions in

the form of a novel design framework to address these challenges. The frame-

work relies on a formal modelling approach which is expressive enough to deal

with the dynamism arising from system �exibility combined with analytical

computation of makespan-optimal logistical decisions. To tackle functional

complexity, system requirements are modularly speci�ed and functionally

correct logistics are obtained through automated synthesis techniques.

The thesis introduces a formal modeling approach for the speci�cation of both

functional and temporal aspects of �exible manufacturing systems. The chosen

abstractions and modeling expressivity are inspired by observations of the

current state-of-practice. Its novelty lies in the separation of concerns between

functional and temporal aspects of the system, together with its compositional

support for requirements speci�cation. The physical system is abstracted



into sets of resources, peripherals and actions. Di�erent pieces of end-to-end

deterministic functional behavior are captured as activities which are directed

acyclic graphs composed of multiple peripheral actions and dependencies

among them. The temporal behavior of each activity is characterized using

(max,+) algebra. Functional requirements on the valid choices and orderings

of activities are captured as a set of modular �nite state automata. From

these automata a functionally correct logistics state-space is synthesized. Any

activity sequence in the logistics state-space corresponds to a correct and

complete manufacturing of a batch of products. For performance analysis, a

timed state-space is obtained by means of a (max,+) expansion of the logistics

state-space. The timed state-space is explored with existing analysis techniques

to obtain makespan-optimal logistical decisions in the form of an activity

sequence.

The problem of �nding an optimal logistics activity sequence is NP-Hard, which

is proven in this thesis. To address scalability this thesis proposes a novel

algebra to systematically relate state-space sizes, timed state-space sizes and

makespan-optimal solutions. This algebra allows non-essential requirements

to be exploited to prune the state-spaces. The approach is inspired from the

common practice of over-speci�cation in the design of industrial manufacturing

systems. In this context, over-speci�cation is used as a natural and implicit

way to deal with complexity. Examples involve: disallowing multiple mapping

possibilities for an operation and the static ordering of system operations. In

this thesis over-speci�cation is formalized in terms of constraints and explicit

conditions established that are proven to result in a reduced state-space.

Once a makespan-optimal activity sequence is obtained further analysis is

supported in the form of bottleneck identi�cation to determine possible can-

didates for improvement. These include changes in the numbers or types of

resources or even in the geometrical layout of the system. The exploration

relies on critical path analysis methods to identify bottlenecks in chosen ac-

tivity sequences. Since the operational processes involved in manufacturing

can be stochastic in nature this thesis proposes a stochastic analysis method to

identify the criticality of the di�erent actions of an activity sequence under

the assumption of stochastic action execution times. The results are returned

to the designer in the form of a probability of criticality, providing a more

informative view of system bottlenecks compared to the views produced by

traditional methods.



The previous elements are joined in a design framework from which optimal lo-

gistical decisions for a batch of products of a �exible manufacturing system are

computed from a modular speci�cation. The logistics can be further improved

by identifying and solving performance bottlenecks. The design framework is

illustrated step-by-step using an academic case study, the Twilight system, and

an industrial case study of a real ASML lithography scanner. The results show

that the design �ow �ts the domain of �exible manufacturing systems and

that optimal logistics decisions for good-weather behavior can be computed

analytically. In cases where the timed state-space is not e�ectively computed

it is shown that the use of over-speci�cation can e�ciently prune the timed

state-space towards a computable size. In the industrial case-study the pruning

reaches a 60% timed state-space reduction without loss of optimality. The work

developed in this thesis marks a step forward in the model-based design of

�exible manufacturing systems.





Contents

1 Introduction 1
1.1 Manufacturing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Flexible Manufacturing Systems . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Specification and Design Exploration of FMSs . . . . . . . . . . . . 6
1.4 Problem Statement and Contributions . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Modular Specification of FMSs 15
2.1 The Twilight System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 System Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Resources and Peripherals . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Product Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Locations and Collision Area . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Application to the Twilight . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 On Designing Activities . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Timed Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Application to the Twilight . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Activity Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Logistics Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Modular Logistics Specification . . . . . . . . . . . . . . . . . . . . 35
2.4.4 Constraint Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.5 Application to the Twilight . . . . . . . . . . . . . . . . . . . . . . . 43



2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Optimization of FMSs 49
3.1 Batch Makespan Optimization . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Activities as (max,+) Matrices . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 (max,+) Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 (max,+) Activity Semantics . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Sequencing Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 (max,+) Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Solving the BMO Problem . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Optimizing the Twilight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Exploiting Constraints to Reduce the Optimization-space 71
4.1 Growth of the Optimization-space . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Bu�ered Twilight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Equivalence and Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Worst-case Optimization-space . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Composition and Constraining Operators . . . . . . . . . . . . . . . 85
4.5 Optimization-space Reduction . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 np-repulsing and p-a�racting Automata . . . . . . . . . . . . . . 94

4.6 Exploiting the Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 Optimizing the Bu�ered Twilight . . . . . . . . . . . . . . . . . . . . 108

4.7.1 Regular and Double-pass Product flows . . . . . . . . . . . . . 108
4.7.2 System Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Bo�leneck Identification using SCA 119
5.1 Stochastically Timed Actions and Activities . . . . . . . . . . . . . 121
5.2 Critical Path and Critical Node . . . . . . . . . . . . . . . . . . . . . . 122



5.3 Stochastic Criticality Analysis . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.1 Criticality Index Estimation . . . . . . . . . . . . . . . . . . . . . . 126
5.3.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Interpretation of the Criticality Index . . . . . . . . . . . . . . . . . 128
5.5 Application to the Twilight System . . . . . . . . . . . . . . . . . . . 130

5.5.1 Stochastic Time Modeling . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.2 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Case Study: Wafer Handling 137
6.1 Photo-lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 The Wafer Handling Controller . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Resources and Peripherals . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.2 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.3 Wafer Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.4 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Wafer Logistics Optimization . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Identifying Performance Bo�lenecks . . . . . . . . . . . . . . . . . . 153
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusions and Future Work 159
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1.1 Modular and Compositional Specification of FMSs . . . . . . 160
7.1.2 Design Exploration of FMSs . . . . . . . . . . . . . . . . . . . . . . 161
7.1.3 An Algebra to Reason About State-space Sizes . . . . . . . . . 162
7.1.4 Industrial Application . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A Twilight Specification 167

B Bu�ered Twilight Specification 171

Bibliography 173

Publication List 183

Acknowledgements 185

Curriculum Vitae 189





1 | Introduction

During the �rst and second industrial revolution, the manufacturing industry

focused on developing systematic and e�cient processes, using amix of manual

and automated labor, to achieve large-scale production of consumer goods.

The coming of the digital revolution and the globalization e�ect drastically

changed our society and the way we interact with the world. Products and

technologies are being introduced and adopted at an ever-growing pace. This

trend is observed in Figure 1.1 which depicts the penetration of di�erent

technologies and products in the United States of America from 1900 to 2005.

In the �gure we observe that newer technologies and devices are being adopted

at faster rates throughout the decades and reaching very short adoption times

for recent technologies. For instance, it took the smartphone ten years to reach

market saturation (70% of the market share) [34], compared to twenty years for

the mobile phone and around sixty years for land-line telephony. This trend

led to an even more competitive market for manufacturing systems, where

products require shorter time-to-market while also having shorter life-spans

[53]. Modern manufacturers are further required to focus on customization

and variety of products, besides performance and product quality [87].

By becoming more �exible and allowing custom and multiple product types to

be manufactured within the same system, manufacturing systems are able to

meet these market demands with a minimum impact on cost. This is achieved

by adding system functionality, for example, in the form of multiple product

routes within the system or by developing production units able to perform

di�erent operations on products [33]. These added functionalities make the

systems more �exible to adapt to product changes. However, the incorporation

of this �exibility leads to more involved system speci�cations. These speci�ca-

tions need to consider that system functions can be executed using multiple

production units (resource sharing), possible product routes and production



2 Chapter 1. Introduction

Percent of 
U.S. Households

Figure 1.1: Penetration of di�erent technologies and products in the U.S. Market from
1900 to 2005, Source: Michael Felton, The New York Times [27].

units assignments. Furthermore, these aspects also lead to a larger number

of possible operation orderings and resource assignment choices. As a con-

sequence, the optimization of operation orderings to manufacture a batch of

products becomes more complicated. This thesis incorporates several contri-

butions in the form of a design framework to address the challenges in the

speci�cation and design exploration of �exible manufacturing systems.

The remainder of this chapter is organized as follows. Section 1.1 introduces

modern manufacturing systems. Section 1.2 discusses the added challenges of

introducing �exibility in the speci�cation and optimization of manufacturing

systems. Section 1.3 discusses the design of manufacturing systems in its

current state-of-practice and how a Model-based System Engineering approach

could improve the speed at which design exploration converges towards a

solution. Section 1.4 introduces the problem statement and enumerates the

contributions of this work and Section 1.5 sketches the outline of the thesis.

1.1 Manufacturing Systems
A manufacturing system is an arrangement of machine and manual resources

which transform materials, by the means of one or more physical processes, to

manufacture a value-added product. This results in a �nal product (e.g. a car

or a cellphone) or an intermediary part of another product (e.g. an integrated

circuit of an electronic device or a door of a car). Modern manufacturing

systems are driven by the economy of scale where the cost of the �nal product



1.1 Manufacturing Systems 3

is lowered due to mass production. These systems are designed and tuned to

optimize the production of a single product type in a way that the cost of the

system is amortized by each manufactured product. To ensure mass production,

these systems rely on the use of machines and automation instead of on human

and animal labor resources. The automation allows higher productivity and

lower downtimes of production since machines can continuously operate for

longer periods of time.

Manufacturing systems are usually composed of several production and trans-
portation resources. Production resources perform operations on products, i.e.

they realize the necessary physical processes to manufacture a product. For ex-

ample, these operations could represent the printing of an integrated circuit on

a silicon wafer or the assembly of di�erent components of an integrated circuit.

Transportation resources ensure the transfer of products between di�erent

production resources. This is commonly done with the use of conveyor belts

and robot arms, and in some cases also using manual labor. Each product to be

manufactured follows a speci�c recipe of operations. The necessary operations

and the order in which they should be performed de�ne the product �ow of a

product. For example, in semiconductor manufacturing a silicon wafer is �rst

coated with a photoresistive material. The circuit pattern is then projected

onto the coated wafer using a light source and lastly all non-exposed material

is etched away to form the integrated circuit. Further, the product �ow also

dictates the possible routes that a product can have in the system as well as

the resources that should perform the necessary operations.

The goal of modern manufacturing systems is to maximize productivity, ensure

product quality and enable more product customization. These systems need

to satisfy many temporal and functional requirements for quality and safety

purposes. These requirements can emerge from the nature of physical pro-

cesses. For example, making sure that the temperature of a product does not

go below a certain bound or that a product is accurately oriented before an

assembly operation. Requirements can also come from the system itself. For

instance, ensuring that resources or product collisions do not occur or that

resource capacities are respected.

Today’s manufacturing systems can be viewed as a cyber-physical system

which perform operations on batches of products. Production and transporta-

tion resources (the physical part) carry out operations while a logistics con-



4 Chapter 1. Introduction

Figure 1.2: xCPS manufacturing system and top and bottoms products [2].

troller (the cyber part) assigns operations to resources and determines their

order. The logistics controller of such a system instructs in which order opera-

tions are executed such that the makespan of a given batch is minimized and

all requirements are satis�ed. In a way, the physical part of the system can be

seen as an orchestra, where each resource represents an instrument playing a

speci�c role. In this context, the logistics controller acts as the conductor of

the orchestra. Its mission is to coordinate the resources by indicating which

resource needs to execute which operation and in what order it should happen.

In a similar way, the conductor coordinates the instruments and musicians to

play a complex piece of music in perfect harmony. This mission becomes more

complicated when manufacturing systems are �exible, which is discussed in

the following section.

1.2 Flexible Manufacturing Systems
With the coming of the digital revolution the global market demanded faster

delivery times and more customization of products. Further, it needed greater



1.2 Flexible Manufacturing Systems 5

responsiveness to changes in products (such as corrections, improvements,

maintenance) and production technologies (such as materials and physical

processes). To adapt to the new era of manufacturing the concept of �exible
manufacturing systems was introduced.

An example of a �exible manufacturing systems is the xCPS system (eXplore

CPS) depicted in Figure 1.2. The xCPS is an assembly line emulator that is

used for research and education in cyber-physical system domains [2], [4].

The system processes two types of cylindrical pieces, tops and bottoms, of

di�erent colors; the main use case of xCPS is to compose tops and bottoms into

composite products, like the ones shown in the bottom left of Figure 1.2. The

xCPS consists of one storage area, six conveyor belts, two indexing tables, two

gantry arms, and several actuators and sensors. In its nominal production mode

the system receives several individual bottom and top pieces and assembles

them into a composite piece as a �nal product. Pieces are introduced in the

system via the gantry arms which manage the storage area where bottoms

and tops are stored as well as the �nished composite pieces. Input pieces can

have di�erent orientations which need to be corrected during run-time. There

are many possible other use cases of the xCPS platform due to its �exibility.

Di�erent conveyor belts can transport pieces through di�erent paths including

a re-entrance scenario where a piece can stay in the system without the use of

the gantry arms. Di�erent actuators are able to perform operations on pieces

such as assembly, orientation correction, route changes and heating.

Flexible manufacturing systems, like the xCPS, gained much attention from

researchers at the end of the 20th century. As a result, many di�erent de�ni-

tions emerged in literature. In [33] a literature review of di�erent de�nitions of

�exibility in manufacturing systems is done. Below we enumerate a selection

of the notions of �exibility from [33] that we view as the most important

features of the type of Flexible Manufacturing Systems (FMS) in this thesis:

1. Machine �exibility: the variety of operations o�ered by the system re-

sources.

2. Routing �exibility: number of used routes / total number of possible

routes across all resources.

3. Process �exibility: set of product types that can be produced without

major set-up changes, i.e. product-mix �exibility.



6 Chapter 1. Introduction

Machine �exibility and Routing �exibility focus on the choice of resources and

system layout. Machine �exibility considers the ability of system resources

to perform di�erent operations on products. For instance the gantry arm

resources of the xCPS system are able to input and output pieces as well as

organize them in the storage unit. Routing �exibility considers the number

of possible routes across the resources in the system. For instance, in the

xCPS case these would re�ect the di�erent routing possibilities enabled by the

conveyor belts and route changing actuators. Process �exibility focuses on the

�exibility of the product �ow of the system. It considers the di�erent number

of product types that can be manufactured without major system changes

(i.e. changing resources or the layout of the system). In the xCPS system this

would correspond to the di�erent types of recipes for the assembly of top

and bottom pieces of di�erent colors or di�erent product �ows. For example,

composite pieces with a red top must pass by a heating station before output

while composite pieces with a black top do not.

The di�erent aspects of �exibility, in the layout, resources and in the product

�ow, have an impact on the design and optimization of the logistics controller

of �exible manufacturing systems. The increase in �exibility leads to additional

system functionalities that need to be taken into account in the functional

system speci�cation. These complex and large system speci�cations are di�-

cult to write using classical monolithic speci�cation approaches. Besides the

functional aspects, �exible manufacturing systems also need to achieve de-

manding performance requirements. These are usually in terms of throughput

(average product output per time unit) and makespan (the completion time of

the manufacturing of a batch). The existence of multiple routes for products

and resource assignments makes the problem of �nding productivity optimal

operation orderings for a batch of products more complicated. In this thesis

we focus on the design of correct and makespan optimal logistic controllers. In

the next section we discuss the speci�cation and design exploration of �exible

manufacturing systems and their logistics.

1.3 Specification and Design Exploration of
Flexible Manufacturing Systems
During the early design stages of a manufacturing system di�erent design

alternatives are explored until all functional requirements are satis�ed and the



1.3 Specification and Design Exploration of FMSs 7

expected performance is met (i.e. a minimal makespan or maximum through-

put). The approach taken for this design exploration depends on the adopted

design methodology. Traditional methodologies for system speci�cation and

design often rely on document-based approaches. When dealing with com-

plex system speci�cations, the system is typically decomposed into multiple

components (e.g. software components or mechanical components). For each

component, multiple aspects must be considered such as behavior, timing,

performance and accuracy aspects. In a document-based approach these com-

ponents are often informally described without proper abstractions and lack

separation of concerns (i.e. timing aspects and behavior aspects are coupled in

the same speci�cation). Further, the speci�cation of the di�erent aspects of a

component are spread across multiple documents. These type of approaches

often lead to ine�ciencies in the design process. In this thesis we focus on ad-

dressing the ine�ciencies with respect to speci�cation and design exploration:

� Speci�cation: typically documentation used for speci�cation is in the

form of text and diagrams, which do not describe the design intent

in a formal, complete and consistent manner. Because of the lack of

formality completeness and consistency checking cannot be properly

supported, neither within the speci�cation itself nor between the speci�-

cation and the implementation of the system. As a consequence, in time

speci�cation and implementation typically start to run out sync until

the speci�cation has basically become useless. This severally hampers

system evolvability.

� Design Exploration: The lack of formality of documentation makes

it challenging to verify system requirements and predict performance

properties and to assess the qualitative and quantitative impact of design

decisions. As a consequence, the impact of incorrect speci�cations and

non-optimal design decisions become apparent only during late stages

of the design process, during which repair is time consuming and costly.

These disadvantages can be addressed by replacing documentation by models

as the primary-citizens in the development process. This is the purpose of

Model-based System Engineering (MBSE) approaches. System components,

requirements and use-cases can all be speci�ed as models depicting di�erent

aspects of the same system.



8 Chapter 1. Introduction

� Speci�cation: MBSE models are formal. This implies that they are

processable by computer algorithms and allow automated checks for

consistency and completeness. In addition, they allow the automatic

generation of artifacts such as implementation artifacts including code.

In this way the consistency between speci�cation and implementation

is enforced by construction.

� Design exploration: MBSE models can also be the pivot from which

mathematical models can be generated. These can be used to predict

quantitative and qualitative properties of the system. In addition, such

techniques allow the systematic exploration of design alternatives by

either manually changing system speci�cation or by automatically opti-

mizing speci�cation parameters.

There are many scienti�c results that studied di�erent ingredients of MBSE

approaches and their advantages. Without being exhaustive we enumerate

some of these contributions. These include formalisms and techniques [3], [8],

[28], [66], tools [18], [57], [64], [76], [78], methods and applications [9], [13],

[44], [71], [73], [79], [81] and overviews [35], [43], [58], [67].

1.4 Problem Statement and Contributions
In the previous sections we set the stage by identifying the di�culties in the

speci�cation and design exploration of �exible manufacturing systems, as well

as the shortcomings of traditional design approaches. The main problem state-

ment driving the research and contributions of this thesis can be summarized

as follows:

Developing a systematic approach for the speci�cation and design exploration
of complex Flexible Manufacturing Systems (FMSs) that is compatible with the
industrial way of working.

In order to converge on a design speci�cation for an FMS, it is important to

be able to analyze and optimize its productivity. The productivity is highly

dependent on aspects such as the geometrical layout, the routes of products

between di�erent resources, the performance of system operations and the

mix of product types manufactured. Depending on the distances of resources

and viability of routes between them, traveling times of products change and



1.4 Problem Statement and Contributions 9

possibly safety requirements are necessary to ensure that no collisions occur.

Di�erent product types being manufactured on the same system could imply

the need to account for setup-times (i.e. amount of time required for a resource

to adapt and perform a di�erent operation). All these aspects play a role in the

�nal performance of the system. Therefore any design exploration approach

for FMSs should consider both the formal speci�cation of these aspects, as well

as allow for systematic design-space exploration and productivity optimization.

This thesis presents several contributions in the form of a design framework for

the speci�cation and design exploration of FMSs. The framework is developed

with a MBSE methodology in mind to address the shortcomings of traditional

design methodologies. The framework features a modular and compositional

speci�cation approach. Modularity enables the speci�cation and analysis of

the di�erent modules in isolation, while compositionality permits us to reason

about the properties of the whole system from the properties of its constituent

modules. The speci�cation approach uses formal models that are expressive

enough to capture the characteristics of FMSs, such as the manufacturing

of multiple product types, multiple routing options, and resource sharing.

Further, it provides formal techniques to enforce functional requirements

through synthesis and analyze the productivity of a given design speci�cation.

This enabling the early-stage design exploration of FMSs, by exploring and

validating di�erent system layouts and speci�cations.

The framework is developed such that it is consistent with the industrial way-

of-working to facilitate its adoption by industrial practitioners. To this end,

many concepts of the contributions of this thesis are inspired on the state-of-

practice at industry. In particular, we rely onmany concepts found in the design

approaches, documentation and implementations of several wafer handling

controllers of ASML. We either �nd solutions by developing new concepts or

by combining and adapting existing state-of-the-art techniques in an e�ort to

facilitate their integration in the current way-of-working found in industry.

Due to this, many of the building blocks and architectural concepts of this

thesis are inspired in the architecture and decomposition patterns used by the

design approaches at ASML. This e�ort led to many of the results in this thesis

to be integrated in a proprietary tool, developed by ESI (TNO) in collaboration

with ASML, which is already in active use by ASML architects to design the

latest lithography scanners. In the remainder of this section we introduce the

di�erent contributions and their relations in more detail.



10 Chapter 1. Introduction

Optimization

(max,+) 
expansion

SpeciÞcation

Activities

Plant

Timed actions

Peripherals

Resources

Logistics

Activity sequence

(max,+) matrices

(max,+)  automaton

Timed activities

Minimal makespan 
computation

Modular automata

Logistics automata

Constraint automata

Bottleneck IdentiÞcation

Stochastic criticality 
analysis

Design candidates

Stochastic timed activities

Chapter 2 Chapter 3 Chapter 5

Chapter 4

Chapter 6

Figure 1.3: Overview of the framework and thesis organization.

Modular Specification of Flexible Manufacturing Systems (Ch. 2)
The �rst contribution of this thesis is a modular and compositional speci�cation

approach for FMSs and their logistics requirements. On the left of Figure 1.3,

a box labeled Speci�cation represents the abstraction and concepts for the

speci�cation of FMSs. The concepts are ordered hierarchically. The plant
captures the decomposition of the system into a set of resources, peripherals,

their actions and execution times. Resources represent transport or production

units in an FMS, such as a robot arm. The peripherals represent the di�erent

physical components that compose the resource, such as motors and clamp

peripherals. Finally, actions represent the interactions of di�erent peripherals

with the physical system, such as translations of motors and the clamping of

products. On top of the plant a set of activities capture larger pieces of functional
behavior of the system such as operations on products and transportation

of products across the system. An activity is captured by a combination of

peripheral actions and dependencies among those actions as a Directed Acyclic

Graph (DAG). The complete manufacturing of a batch of products can then

be captured by a speci�c ordering of these activities as an activity sequence,
where each activity represents one operation of the FMS.



1.4 Problem Statement and Contributions 11

Logistics requirements concerning product �ow are captured by �nite state

automata which we call a logistics automata. The language encoded by a lo-

gistics automaton represents the set of allowed activity sequences of the FMS

for which a batch of products is correctly and safely manufactured. System

requirements such as capacity constraints and safety constraints are capture

by constraint automata. To cope with large and complex system speci�cations

we allow for the modular speci�cation of logistics and constraint automata

by de�ning two operators: the composition operator and the constraining

operator. The details of this modular speci�cation of FMSs and their logistics

requirements are explained in detail in Chapter 2. The abstractions and con-

cepts chosen are inspired by the speci�cation architecture and decomposition

found in the state-of-practice at ASML. These speci�cation concepts have been

incorporated in a proprietary tool based on Domain Speci�c Languages (DSLs).

This tool is already used by ASML architects in their development process.

This contribution is based on the work published in [14], [15], [70] and [12].

Optimization of Flexible Manufacturing Systems (Ch. 3)

Given the speci�cation of an FMS and its logistics requirements the next step is

its productivity analysis and optimization. Therefore the second contribution

of this thesis is an optimization approach to �nd the optimal makespan for a

batch of products manufactured by a given FMS speci�cation. In the middle

of Figure 1.3 a box labeled Optimization depicts the concepts and methods

used for the optimization domain of our framework such that di�erent design

speci�cations can be evaluated in terms of their expected makespan. We

focus on �exible manufacturing systems which typically work with relatively

small product batches and a mix of di�erent product types. We introduce and

de�ne the Batch Makespan Optimization (BMO) problem and show it to fall

within the class of NP-Hard problems. A solution to the BMO problem can be

obtained by �nding the activity sequence with the lowest makespan within the

language of activity sequences of the speci�ed logistics automaton. In order to

e�ciently compute the makespan of an activity sequence, we introduce (max,+)

semantics for activities. The temporal behavior of each activity is captured

by a single (max,+) matrix and an initial resource time-stamp vector. The

makespan of an activity sequence is then e�ciently computed by a series of

(max,+) matrix multiplications. By the means of a (max,+) expansion algorithm

we annotate the logistics automaton with the temporal characterization of

activities to construct a (max,+) automaton for which each activity sequence

represents the correct manufacturing of a batch of products. A solution for



12 Chapter 1. Introduction

the BMO problem can be obtained by �nding an activity sequence in the state-

space of the (max,+) automaton terminating in a �nal state with the lowest

resource time-stamp vector norm. The details of this approach are given in

Chapter 3. This approach has been used to validate the speci�cation of an

industrial wafer handling controller and is also integrated in the previously

mentioned proprietary tool. This chapter is inspired by the throughput analysis

approaches for Scenario-Aware Data�ow (SADF) models [39] and contributes

with the adaptation of these analysis techniques to the domain of �exible

manufacturing systems and with the complexity analysis of the BMO problem.

These contributions are based on the work published in [70] and [14].

Exploiting Constraints to Reduce the Optimization-space (Ch. 4)

The framework is able to determine the optimal makespan activity sequence

for a batch of products of a given system speci�cation. The modularity of

the framework allows for the speci�cation of complex manufacturing systems

and their requirements. However, the Batch Makespan Optimization (BMO)

problem falls under the class of NP-Hard problems. As a consequence, �nding

optimal solutions might take prohibitively long depending on the size of the

state-space of the corresponding (max,+) automaton. To cope with this com-

plexity, our third and main scienti�c contribution of this thesis is an algebra of

logistics automata to reason in a modular (algebraic) way about (behavioural

and structural) equivalence and inclusion relations between logistics automata.

This algebra of logistics automata allow us to systematically relate their lan-

guages, their state-space and (max,+) state-space sizes and their solutions to

the BMO problem. Further, we introduce a systematic approach where we ex-

ploit the modularity of the framework by introducing additional requirements

encoded as constraint automata in an e�ort to further reduce the state-space

of (max,+) automata. This heuristic approach allows us to i) compute optimal

solutions of the BMO problem when the (additional) constraints are taken into

account and ii) compute bounds for the (original) BMO problem (without using

the additional constraints). The approach is inspired by common practices in

an industrial setting, where manufacturing systems are typically over-speci�ed

[74] and in which over-speci�cation is used implicitly and unconsciously to

deal with complexity. Examples of over-speci�cation that we have encountered

in industrial cases are for instance: disallowing multiple mapping possibilities

for an operation or enforcing the static ordering of system operations. These

contributions are introduced in detail in in Chapter 4 and are based on the

work publish in [14] and [17].



1.4 Problem Statement and Contributions 13

Bo�leneck Identification using SCA (Ch. 5)
The goal of the framework presented in this thesis is the design exploration of

�exible manufacturing systems. This includes exploring di�erent types of re-

sources and peripherals and di�erent system layouts. This includes geometrical

locations of resources, the number of resources, and the routing options con-

cerning the product �ow. The fourth contribution of this thesis is an approach

to identify performance bottlenecks in the logistics of a �exible manufacturing

systems, even when peripheral actions may exhibit stochastic execution times.

On the right of Figure 1.3 a box labeled Bottleneck identi�cation depicts the

concepts and methods used for the proposed bottleneck identi�cation analysis.

We start by extending our framework with stochastically timed actions and

activities. Further, we introduce Stochastic Criticality Analysis to estimate

the criticality of the actions of an activity by identifying how often certain

actions appear on the critical path. The likelihood of an action appearing on the

critical path is directly related to how likely this action is to be a performance

bottleneck of the system. This approach takes inspiration from the concept

of Criticality Index introduced in the �eld of project and planning [33]. The

contribution of this chapter is the formalization of the Stochastic Criticality

Analysis (SCA) approach with formal mathematical support together with con-

�dence intervals to obtain results with known accuracy and its application to

the domain of FMSs. This approach has also been integrated in the previously

mentioned proprietary tool. The details of these contributions are discussed in

depth in Chapter 5 and are based on the work published in [16].

Industrial Case Study (Ch. 6)
The �nal contribution of this thesis is an application of this framework that

demonstrates its scalability to an industrial logistics controller. We will apply

our framework to specify the system, optimize its makespan and identify

performance bottlenecks. For this purpose, we start by a speci�cation of the

plant, activities and logistic requirements of the system using the concepts

introduced in Chapter 2. We then �nd the optimal makespan activity sequence

for a batch of wafers using the technique of Chapter 3 and further reduce

the optimization-space by more than 60% by exploiting over-speci�cation and

following the method introduced in Chapter 4. Finally we select candidates for

design improvement by identifying performance bottlenecks in the makespan

optimal activity sequence using the Stochastic Criticality Analysis of Chapter

5. The details of this case-study are presented in Chapter 6. Similar case studies

are being performed ‘as we speak’ by ASML architects to design and optimize



14 Chapter 1. Introduction

the logistics of ASML lithography scanners using the previously mentioned

proprietary tool integrating many of the results of this thesis.

1.5 Thesis Overview
The remainder of this thesis is organized as follows. Chapter 2 introduces

the modular speci�cation approach for FMSs and their logistics. Chapter 3

discusses the optimization of a given speci�cation by introducing the Batch

Makespan Optimization (BMO) problem and an approach to solve it. Chapter

4 discuses the growth of the optimization-space of a given BMO and de�nes

an algebra of logistics automata to reason about the behavior and state-space

sizes of logistics automata and a systematic approach for the speci�cation

of logistics that ensures the reduction of the optimization-space. Chapter 5

introduces stochastic criticality analysis as a means to identify performance

bottlenecks in FMSs assuming that actions may exhibit stochastic execution

times. Chapter 6 uses the concepts of Chapter 2, 3, 4 and 5 to specify, optimize

and identify bottlenecks in an industrial case study. Finally Chapter 7 discusses

the main conclusion and future work.



2 | Modular Specification of Flexible
Manufacturing Systems

In the previous chapter we sketched the overall design �ow and domains of the

contributions of this thesis. In this chapter we dive into the speci�cation domain

and show how our framework captures the components and functionalities of

modern �exible manufacturing systems. Figure 2.1 depicts the concepts used in

the speci�cation domain. These are organized in three groups, plant, activities
and logistics. The plant abstracts the physical components of the system in

terms of resources, peripherals and actions. On top of the plant, activities can
be constructed to de�ne certain functional behaviors of the system, such as

transport or manufacturing operations. An activity sequence describes more

elaborate functional behaviors by considering multiple activities, such as the

complete manufacturing of a product where each operation is captured by a

single activity. An activity captures how an operation is executed and which

resources are used while an activity sequence captures in which order the

activities are executed, i.e. the product �ow. The set of all possible activity

sequences is captured as the language accepted by a �nite state automaton,

which we call a logistics automaton. Logistics automata are used to capture

desired requirements on the ordering and choice of activities, concerning

for example product �ow and assignment to resources. Logistics automata

can be de�ned modularly for each product in a batch. The resulting logistics

automaton of a batch can be obtained via the composition of the individual

logistics requirements for each product using a composition operator on logistics
automata. Besides logistics requirements a system also exhibits constraints

on di�erent product �ows, such as resource capacity and safety constraints.

These are modularly captured in our framework as constraint automata and a

constraint operator is provided to compose them with logistics automata. This

modularity enables our framework to tackle the complex description of modern



16 Chapter 2. Modular Specification of FMSs

Optimization

(max,+) 
expansion

SpeciÞcation

Activities

Plant

Timed actions

Peripherals

Resources

(max,+) matrices

(max,+)  automaton

Minimal makespan 
computation

Logistics

Activity sequence

Logistics automata

Constraint automata

Timed activities

Figure 2.1: Overview of the framework concepts for the Speci�cation domain.

manufacturing systems. Finally, the speci�cation concepts introduced here are

also used as the foundation for the optimization steps discussed in Chapters

3 and 4, as well as the design-exploration technique presented in Chapter 5.

This chapter is organized as follows. In Section 2.1 we introduce the Twilight

system as a running example to showcase the application of the speci�cation

concepts. Then we will address the di�erent speci�cation concepts following

their hierarchy as depicted in Figure 2.1, the plant model in Section 2.2, the

activities in Section 2.3 and the logistics in Section 2.4. Section 2.5 discusses

the relevant related work and �nally Section 2.6 concludes.

2.1 The Twilight System
Examples of a complex modern manufacturing system are the lithography

systems built by ASML
1
. The Twilight system is a simpli�cation of a wafer

handling sub-system used at ASML which we discuss in detail in Chapter 6.

The constructed Twilight system re�ects most of the challenges of the design

exercise but removes unnecessary domain-speci�c content and implementation

details. It uses similar kinds of peripherals and resources and a similar product

�ow but on a smaller scale. Therefore, it is suitable to use as running example

1

Supplier of photo-lithography systems, www.asml.com



2.1 The Twilight System 17

CD

D

Figure 2.2: Twilight manufacturing system and its resources and peripherals [70].

to illustrate the concepts and techniques used throughout this thesis.

R The name Twilight System originates from the family name of the student who
created it. This name, ‘Duisters’ roughly translates from Dutch to English as
‘Twilight’ [31].

2.1.1 System Purpose
The Twilight system is depicted in Figure 2.2. The products in the system

are balls, shown as red circles in the �gure. The manufacturing purpose is to

engrave a certain pro�le on each of the balls of a batch using a drill device.
This pro�le can vary in terms of depth or pattern and these are de�ned by a

given user recipe. Complex engraving pro�les might require multiple drilling

operations. Therefore, a batch could possibly re-enter the system multiple

times. For this purpose, before the drilling operation, each ball is subjected

to certain conditioning operations. These align the balls for correct overlay of

multiple pro�les and set the temperature of the balls for ideal drilling conditions.

Besides ensuring that products are manufactured correctly, the system also

needs to meet performance goals. For the twilight this is to achieve the lowest

possible makespan for any given batch of products.

2.1.2 Resources and Peripherals
The system contains seven resources depicted in Figure 2.2 as IN, OUT, LR, UR,

CA DRILL and COND. There are two bu�er resources for input (IN) and output



18 Chapter 2. Modular Specification of FMSs

(OUT) of products. There are two robots which are used to transport the ball

products between the di�erent processing units and input/output bu�ers, the

Load Robot (LR) and the Unload Robot (UR). Since the LR and UR share some

common areas (above the COND and DRILL resources) we consider this shared

area as a resource which we call Collision Area (CA). The remaining resources

are two processing units, the Conditioner (COND) and the Drill (DRILL). The

Conditioner ensures that each ball is conditioned to a prede�ned temperature

and is correctly aligned for the drilling operation. The Drill unit is responsible

for the engraving of the pro�les on a ball.

The peripherals of each resource are depicted as orange symbols drawn in the

�gure. Both robots are composed of three peripherals; a clamp (CL) to pick up

and hold a ball, an R-motor (R) to move along the rail, and a Z-motor (Z) to

move the clamp up and down. The conditioner is composed by a clamp (CL)

and a conditioner (CD) peripheral, to respectively heat and align the ball. The

drill is composed by a drill bit (D) that performs the drill action, a clamp (CL)

and a Z-motor (Z) to move the drill bit up and down.

2.1.3 Product Flow
Each batch follows the same product �ow for every ball in the batch. First,

a ball is picked up at the input bu�er. Then it is brought to the conditioner

and processed. Next, the item is transported to the drill, where the pro�le is

engraved. Finally, the drilled ball is transported to the output bu�er. Once

the last ball has been processed the batch is either �nalized or it re-enters the

system in case it requires additional engraving.

Every operation of the product �ow is assigned to a speci�c resource. Some

operations have a unique assignment. The conditioning and drilling opera-

tions can only be performed on the COND and DRILL resources respectively.

Moreover, due to the range of the robots, both the input and output operations

are assigned respectively to the LR and UR resources. However, the transport

of products between the COND and DRILL resources can be executed by either

the LR or the UR.

2.1.4 Locations and Collision Area
The transportation of products among the di�erent processing units is done

by the LR and UR resources. For this purpose, certain locations are prede�ned

to describe the positions and movement paths of the two robots. All reachable



2.1 The Twilight System 19

UR Range

LR Range

AT_IN AT_DRILL

ABOVE_DRILL

AT_COND

ABOVE_COND

AT_OUT

ABOVE_OUTABOVE_IN

Figure 2.3: Locations and robot movement ranges in the Twilight system (in accordance
with the resource layout of Figure 2.2).

locations and paths of each robot are shown in Figure 2.3. Note that for

resources IN, COND, DRILL and OUT, there are two vertical positions, ABOVE

and AT. The attribute AT refers to locations where a robot picks/places a

product on a processing unit. Once the robot is done with the product exchange

it retracts to the corresponding ABOVE location. Both robots are able to reach

resources COND and DRILL. Therefore, the overlapping reachable locations

of both robots could lead to collisions. In order to avoid this, we consider this

shared area as a resource (CA) which robots must claim and release before

accessing it. This area is depicted between the LR and UR in Figure 2.2. Finally,

each robot has a prede�ned homing position: LR on the left corner (ABOVE_IN)

andUR on the right corner (ABOVE_OUT). By default, robotmovements always

start and end at the homing position.

2.1.5 Requirements
On top of the product �ow there are certain functional requirements on the

batch manufacturing of the Twilight system due to resource and safety con-

straints. These are enumerated bellow:

� Products shall enter and leave the system in a First-In-First-Out (FIFO)

order.

� There shall only be one product at a time in resources LR, UR, COND

and DRILL (unary capacity).

� Products shall not collide (i.e. products shall not be be placed on a

occupied resource).



20 Chapter 2. Modular Specification of FMSs

� Resources shall not collide (i.e. the LR and UR shall never share the same

location).

In the remainder of this chapter, we introduce the speci�cation concepts of

Figure 2.1 and show how we can model these manufacturing characteristics

using the Twilight system as an application example.

2.2 Plant
In our framework (see Figure 2.1) we start the system speci�cation by de�ning

the plant. The plant de�nes the basic structure and elementary actions of the

system. It serves as the lowest abstraction layer of our framework and de�nes

the o�ered actions of the system. Activities are then built based on the plant

elements.

A plant consists of several resources, such as a robot arm or a processing unit. A

resource is composed of zero or more peripherals. Each peripheral can execute

actions where an action describes an atomic behavior of the system, e.g. the

movement of a motor or the activation or deactivation of a clamp. Each action

is associated with an execution time. The complete set of actions captures all

behavior that the system can exhibit. The basic elements of our plant speci�-

cation are formally de�ned by the following sets:

� set A of actions, with typical elements x; y; z 2 A;
� set P of peripherals, with typical elements p 2 P ;
� setR of resources, with typical elements r 2 R.

We further assume a function R : P ! R, to re�ect that R(p) is the resource
that contains peripheral p, and a function T : A ! R�0 that maps each action

to its �xed execution time.

Example 2.1 Consider the Load Robot (LR) resource of the Twilight

system shown in Figure 2.2 which can move products within the system.

This robot is composed from three peripherals. These are identi�ed by the

orange symbols drawn over and around the resource: the R and Z motors

and the CL clamp. The R and Z motor allow the LR to move within the

de�ned locations. The �rst accounts for horizontal movements and the later



2.2 Plant 21

for vertical movements. The CL clamp represents an on/o� actuator that

is able to grasp/release a ball product. Actions of these peripherals can be

a single motor translation to a location, or the on/o� actions of the clamp

peripheral.

2.2.1 Application to the Twilight

Let us illustrate the plant speci�cation using the Twilight system. Table 2.1

lists all the actions provided by the system. To facilitate their referencing each

action is given a short alias shown within parentheses before each action name

in Table 2.1. Some of the provided actions can only be associated with speci�c

peripherals (e.g. condition action with peripheral CD of the COND resource)

while other actions can be associated with multiple peripherals (e.g. clamp_on
action with peripherals CL of resources LR, UR, DRILL and COND). Actions

associated with the movement of robots (e.g. LR_mv_COND_to_DRILL and

UR_mv_DRILL_to_COND) are duplicated in this speci�cation for common

locations of the LR and UR resources because we assume that peripherals of

these robots can have di�erent movement speeds and thus di�erent execu-

tion times. Note that these actions are de�ned by a single movement from

one symbolic location to another adjacent location (adjacent locations are

connected by direct arrows between locations in Figure 2.3). This decision is

made based on the geometrical layout of Figure 2.3 where reachable locations

are prede�ned. A di�erent geometrical layout would imply a rede�nition of

the a�ected system actions. For example, moving from location AT_COND

to location ABOVE_COND implies the execution of action l5 if using the LR

(or u5 in case of using the UR). A more elaborate movement such as moving

from location ABOVE_COND to AT_DRILL implies the sequential execution

of actions l3 and l6 if using the LR (or u1 and u6 in case of using the UR).

Table 2.2 depicts the decomposition of the Twilight system into resources

and peripherals. The seven resources are listed along with the associated

peripherals as depicted in Figure 2.2 by the orange labels on and around each

resource. For instance, the COND resource is composed of two peripherals: a

conditioner peripheral COND.CD and a clamp peripheral COND.CL. Notice

that the CA, IN and OUT resources do not have any peripherals and thus are

not able to perform any actions.



22 Chapter 2. Modular Specification of FMSs

Table 2.1: Twilight system actions.

(l1) LR_mv_COND_to_IN (u1) UR_mv_COND_to_DRILL

(l2) LR_mv_IN_to_COND (u2) UR_mv_DRILL_to_COND

(l3) LR_mv_COND_to_DRILL (u3) UR_mv_OUT_to_DRILL

(l4) LR_mv_DRILL_to_COND (u4) UR_mv_DRILL_to_OUT

(l5) LR_mv_AT_to_ABOVE (u5) UR_mv_AT_to_ABOVE

(l6) LR_mv_ABOVE_to_AT (u6) UR_mv_ABOVE_to_AT

(d1) move_UP (d2) move_DOWN

(d3) drill_on (c1) condition

(cl1) clamp_on (cl2) clamp_o�

Table 2.2: Twilight resources and peripherals.

Resource Peripherals

(LR) Load Robot LR.Z, LR.R and LR.CL

(UR) Unload Robot UR.Z, UR.R and UR.CL

(DRILL) Drill DRILL.Z, DRILL.D and DRILL.CL

(COND) Conditioner COND.CD and COND.CL

(CA) Collision Area -

(IN) Input bu�er -

(OUT) Output bu�er -



2.3 Activities 23

LR_PickFromCond

0.5

1 2 0.5 2 1

(LR,cl) (l2,LR.R) (l6,LR.Z) (cl1,LR.CL) (l5,LR.Z) (l1,LR.R) (LR,rl)

(COND,cl) (cl2,COND.CL) (COND,rl)

(CA,cl)
(CA,rl)

Figure 2.4: Activity LR_PickFromCond: Resource COND and LR are used to place a
product from the LR to the COND unit.

2.3 Activities
On top of the plant speci�cation we can describe more elaborate functional

behaviors of the system by combining multiple actions and de�ning dependen-

cies among those actions. For instance, to describe a movement from AT_IN to

ABOVE_DRILL by the Load Robot resource, we de�ne a sequential execution

of actions l5, l2, l3 and l6. In our framework, such a combination of actions is

called an activity.

Definition 2.1� (Activity). An activity is a directed acyclic graph (N;!),
consisting of a set N of nodes and a set!� N �N of dependencies. We

write a dependency (n1; n2) 2 ! as n1 ! n2. We assume a mapping

function M : N ! A � P [ R � frl; clg, which associates a node to

either a pair (x; p) referring to an action x executed on a peripheral p; or
to a pair (r; v) with v 2 frl; clg, referring to a claim (cl) or release (rl) of
resource r. Nodes mapped to a pair (x; p) are called action nodes, and nodes
mapped to a claim or release of a resource are called claim and release nodes
respectively.

For every action in an activity the resource on which its execution takes place

must be claimed before the action is executed and released once the activity is

�nalized. This ensures that while an activity is executing the resources cannot

be claimed by another activity. The set of resources used by an activity is

de�ned as follows:

Definition 2.2 � (Resources of Activity). Given activity a = (N;!), we
de�ne the set R(a) = fr 2 R j (9n 2 N jM(n) = (r; cl))g.



24 Chapter 2. Modular Specification of FMSs

Example 2.2 Consider the activity LR_PickFromCond depicted in Fig-

ure 2.4. Nodes are represented with circles and release and claim nodes

are colored in light green. Dependencies are depicted as directed edges

between nodes. The activity requires resources LR, COND and CA. Every

action node is labeled with a tuple indicating the action and peripheral. For

example, label (l2,LR.R) indicates that this node refers to action l2 which

is executed on peripheral LR.R. Finally, the execution time of each action

is shown within the corresponding node (with the exception of the claim

and release nodes for which we assume an execution time of 0 time units).

The function of activity LR_PickFromCond is that the LR picks a product

from the COND processing unit. Since this operation requires access to the

shared area the CA resource is claimed before the �rst robot movement and

released after the last movement. The activity starts by claiming the LR

resource and the CA resource. Using peripheral LR.R, the activity movies

the LR resource from its home position ABOVE_IN to the ABOVE_COND

position (action node (l2,LR.R)) and then immediately to location AT_COND

(action node (l6,LR.Z)). Then the product handover takes place. After claim-

ing resource COND the clamp of the receiving resource LR clamps the

product and after the clamp of the delivering resource COND unclamps

it (action nodes (cl1,LR.CL) and (cl2,COND.CL) respectively). Finally the

LR returns to its homing location using peripherals LR.R and LR.Z (action

nodes (l5,LR.Z) and (l1,LR.R) respectively).

We de�ne several conditions that activities must satisfy to statically check for

proper resource claiming and releasing within an activity as well as proper

ordering of actions executed on the same peripheral. Let (N;!) be an activity

and let!+
be the transitive closure of!, then:

1. All nodes mapped to the same peripheral are sequentially ordered:

8n1; n2 2 N; x1; x2 2 A; p 2 P : n1 6= n2 =)
(m(n1) = (x1; p) ^m(n2) = (x2; p)) =) (n1 !+ n2 _ n2 !+

n1)
2. Each resource is claimed no more than once:

8n1; n2 2 Nr 2 R : (m(n1) = (r; cl) ^m(n2) = (r; cl)) =) n1 =
n2

3. Each resource is released no more than once:

8n1; n2 2 N; r 2 R : (m(n1) = (r; rl) ^m(n2) = (r; rl)) =) n1 =
n2



2.3 Activities 25

LR_PickFromCond_1

1 2

(LR,cl) (l2,LR.R) (l6,LR.Z) (LR,rl)

LR_PickFromCond_2

0.5

0.5

(cl1,LR.CL)

(COND,cl) (cl2,COND.CL) (COND,rl)

(LR,rl)(LR,rl)

LR_PickFromCond_3

2 1

(l5,LR.Z) (l1,LR.R) (LR,rl)(LR,rl)

(CA,cl) (CA,rl) (CA,cl)

(CA,rl)

(CA,cl) (CA,rl)

Figure 2.5: Set of three activities which executed sequentially have equivalent behavior
as activity LR_PickFromCond depicted in Figure 2.4.

4. Every action node is preceded by a claim node on the corresponding

resource:

8n1 2 N; x 2 A; p 2 P; r 2 R : (m(n1) = (x; p) ^ R(p) = r) =)
(9n2 2 N : m(n2) = (r; cl) ^ n2 !+ n1)

5. Every action node is succeeded by a release node on the corresponding

resource:

8n1 2 N; x 2 A; p 2 P; r 2 R : (m(n1) = (x; p) ^ R(p) = r) =)
(9n2 2 N : m(n2) = (r; rl) ^ n1 !+ n2)

6. Every release node is preceded by a claim node on the corresponding

resource:

8n2 2 N; x 2 A; r 2 R : m(n2) = (r; rl) =)
(9n1 2 N : m(n1) = (r; cl) ^ n1 !+ n2)

7. Every claim node is succeeded by a release node on the corresponding

resource:

8n1 2 N; x 2 A; r 2 R : m(n1) = (r; cl) =)
(9n2 2 N : m(n2) = (r; rl) ^ n1 !+ n2)

2.3.1 On Designing Activities
Even though an activity represents a piece of deterministic functional behavior,

the amount of behavior to be included in this activity can be determined in

di�erent ways. As an extreme case, an activity could be de�ned as a single

action (together with the corresponding resource claim and release). On the

other hand, a single activity could encompass all system behavior needed to

produce a batch of products. Determining the granularity of activities de-

pends on system layout, resource sharing and also on the level of performance

optimization desired.



26 Chapter 2. Modular Specification of FMSs

Example 2.3 Recall the activity de�ned for the Twilight system depicted

in Figure 2.4. The behavior of this activity can be capture as a set of multiple

smaller activities as exempli�ed by the set of three activities depicted in

Figure 2.5. LR_PickFromCond_1 describes the movement from the homing

location ABOVE_IN to ABOVE_COND, LR_PickFromCond_2 the handover

of the product and a LR_PickFromCond_3 describes the return of LR to

its homing location ABOVE_IN. If executed in sequence, these activities

exhibit the same behavior as activity LR_PickFromCond of Figure 2.4. The

semantics of executing a sequence of such activities is formalized in Section

2.4.1.

2.3.2 Timed Activities

Besides capturing pieces of end-to-end deterministic functional behavior of

the system, activities also encode execution timing information. This is done

assuming an As-Soon-As-Possible (ASAP) execution of actions, respecting

dependencies and the claiming and releasing of resources. To achieve this, we

rely on the notions of synchronization (an action can only start once all its

dependencies are satis�ed) and delay (the execution of an action takes a �xed

amount of time). In order to de�ne the temporal execution of activities we

start with the notion of the execution time of an action and a node, which we

use to formalize the notion of delay.

Definition 2.3� (Execution time of a node). Given an Activity a = (N;!)
we de�ne a function T : N ! R�0 that maps each node to a �xed execution

time. Given a node n 2 N :

T (n) =

8
>><

>>:

T (x) ifM(n) = (x; p)
for some x 2 A; p 2 P

0 otherwise:

We further de�ne the notion of predecessor nodes, which we use to formalize

the notion of synchronization.

Definition 2.4 � (Predecessor nodes). Given activity (N;!) and node

n 2 N , we de�ne the set of predecessor nodes of n as:

Pred(n) = fnin 2 N j nin ! ng:



2.3 Activities 27

Since actions are executed on peripherals belonging to a speci�c resource,

we assume a resource time-stamp function R : R ! R�1
, where R�1 =

R [ f�1g. The function represents the system con�guration in terms of

resource availability, mapping to each resource r 2 R an entry R(r) 2 R�1

corresponding to the availability time of resource r. These entries are used
to determine when resources are available, and hence can be claimed. All

entries in the initial con�guration of the system are assumed to be zero, to

indicate that all resources are available upon system start. We denote the initial

con�guration as 0R, implying that 8r 2 R : 0R(r) = 0. We now de�ne the

start and end time of a node, given an initial resource time-stamp function.

Definition 2.5� (Start and end time of a node). Given activity a = (N;!)
and resource time-stamp function R, we de�ne the start time start(n) and
end time end(n) for each node n 2 N :

start(n) =

8
<

:

R(r) if M(n) = (r; cl)
max

nin2Pred(n)
end(nin) otherwise

end(n) = start(n) + T (n):

A node n starts as soon as all predecessor nodes have completed execution.

Note that the start and end times for each node are uniquely de�ned, due to

the structural condition of activities de�ned in Section 2.3. This also means

that the execution semantics of an activity a = (N;!) are uniquely de�ned

by N ,!, timing function T , and resource time-stamp function R.

This unique temporal execution of an activity can be represented as a sched-

ule using a Gantt chart, for which the horizontal axis represents the actions

executed in time and the vertical axis shows the horizontal lanes for each

peripheral. Each box labeled x in an horizontal lane p represents the execution
of a node n mapped to peripheral p and action x (i.e. m(n) = (x; p)). The
length of the box is equivalent to T (n) starting at time start(n) and �nishing

at time end(n).

Now, consider a resource time-stamp function R as the starting con�guration

of the availability of system resources. The execution of activity a = (N;!),
assuming the starting con�guration R, will lead to a new con�guration of



28 Chapter 2. Modular Specification of FMSs

the availability of system resources. We de�ne the update of the resource

time-stamp function due to the execution of an activity a as follows:

Definition 2.6 Given activity a = (N;!) and resource time-stamp

function R we de�ne the update update(R; a) of the resource time-stamp

function due to the execution of activity a as:

update(R; a)(r) =

8
>><

>>:

R(r) if r 62 R(a)
end(n) if r 2 R(a) ^M(n) = (r; rl)

for some n 2 N:

The updated resource time-stamp function represents the availability times of

all system resources after the execution of the activity.

l2LR.R

COND.CL cl2

l6

cl1

l5

l1

peripheral

tt

(a) (b)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8

LR.Z

LR.CL

l2LR.R

COND.CL cl2

l6

cl1

l5

l1

peripheral

LR.Z

LR.CL

Figure 2.6: Gantt chart of the temporal execution of activity LR_PickFromCond depicted
in Figure 2.4 for two di�erent resource time-stamps (a) 0R and (b) R(LR) = 0 and
R(COND) = 4:5.

Example 2.4 Consider the activity LR_PickFromCond depicted in Figure

2.4. Two di�erent temporal executions are shown in the Gantt charts of

Figure 2.6 (a) and (b). We assume an initial con�guration 0R for Figure 2.6 (a)

and con�guration R with R(LR) = 0, R(COND) = 4:5 and R(UR) =
0R(IN) = R(OUT) = R(DRILL) = R(CA) = 0 for Figure 2.6 (b). The
result of update(0R; a) gives us a new function 0R for which 0R(LR) = 7
and 0R(COND) = 4. In the case of (b) the di�erent con�guration leads to

a delay of action node (cl2,COND.CL). This delay induces a delayed activity

completion time since action node (l5,LR.Z) needs to synchronize and thus

is also delayed. In this case update(R; a) gives us a new function 0R for

which 0R(LR) = 8 and 0R(COND) = 5. In both cases the availability times



2.3 Activities 29

of the unclaimed resources of the activity after execution remain the same,

i.e. 0R(UR) = 0R(IN) = 0R(OUT) = 0R(DRILL) = 0R(CA) = 0.

The makespan of an activity is captured by the total time elapsed since the start

time of the �rst action to the end time of the last action. This is determined by

the largest value in the updated resource time-stamp function after executing

the activity with initial con�guration 0R. We de�ne themakespan of an activity
as follows:

Definition 2.7� (Makespan of an activity). Given an Activity a and initial

resource time-stamp function 0R we de�ne the makespan of a as:

mks(a) =
update(0R; a)



where for any resource time-stamp function R,kRk is the norm of

R de�ned bykRk = max
r2R

R(r).

Example 2.5 Consider again activity LR_PickFromCond depicted in

Figure 2.4 for which its temporal execution assuming 0R is shown in

Figure 2.6 (a). The makespan of activity LR_PickFromCond is equal to

mks(LR_PickFromCond) = 7 since the largest value of the resource time-

stamp function after the update function is 7. This is also visible in the Gantt

chart since the the last action node to complete its execution is (l1,LR.R).

2.3.3 Application to the Twilight

Table 2.3 lists all the activities we de�ned for the Twilight System (including

activities LR_PickFromCond and UR_PutOnCond depicted in Figures 2.4 and

2.7). Each activity is associated with a numerical alias shown in bold before

the activity name to facilitate their referencing. The functional granularity of

Table 2.3: Set of activities of the Twilight System.

(1) LR_PickFromInput (5) LR_PutOnDrill (9) UR_PutOnCond
(2) LR_PutOnCond (6) UR_PickFromDrill (10) UR_PutOnOutput
(3) LR_PickFromCond (7) UR_PickFromCond (11) Condition
(4) LR_PickFromDrill (8) UR_PutOnDrill (12) Drill



30 Chapter 2. Modular Specification of FMSs

UR_PutOnCond

0.5

1 1 0.5 1 1

(UR,cl)

(u3,UR.R)

(u2,UR.R) (cl2,UR.CL) (u5,UR.Z) (u4,UR.r) (UR,rl)

(COND,cl) (cl1,COND.CL) (COND,rl)

(CA,cl)
(CA,rl)

1

(u6,UR.Z)

1

(u1,UR.R)

Figure 2.7: Twilight activity UR_PutOnCond.

the activities de�ned is based on the actions to be performed on the product

and desired product �ow (Section 2.1.3). For the robots (LR and UR) activities

are based on the placing and picking of products from the di�erent resources

and input and output bu�ers (Activities 1 to 10). Additionally two activities

are de�ned for the two operations of the COND and DRILL processing units

(Activities 11 and 12). Given the set of activities one can specify the complete

manufacturing of a product as a sequence of activities, for example sequence

1 2 11 3 5 12 6 10. In the next section we introduce and further explain the no-

tions of activity sequence and sequencing operator. The complete speci�cation

of the activities of the Twilight system can be found in Appendix A.

2.4 Logistics

An activity sequence can model the complete manufacturing logistics of a
batch of products. Multiple sequences of activities can encode the correct

and complete manufacturing of a batch of products. Hence the logistics is

de�ned as a collection of allowed activity sequences. This collection can be

encoded as the language accepted by a �nite state automaton, which we call

logistics automaton. In order to capture constraints across di�erent product

�ows, such as resource capacity and input order constraints, we introduce

constraint automata. Logistics automata and constraint automata are composed

using speci�c operators permitting a modular speci�cation of manufacturing

logistics of batch-oriented manufacturing systems. In this section we introduce

the concepts of activity sequence, logistic automata, constraint automata and the
corresponding composition and constraining operators, and show how these

concepts are used to modularly specify the manufacturing logistics of �exible

manufacturing systems.



2.4 Logistics 31

LR_PickFromCond;UR_PutOnCond

0.5

1 2 0.5 2 1

(LR,cl) (l2,LR.R) (LR,rl)

(COND,cl)

0.5

1 1 0.5 1 1

(UR,cl) (UR,rl)

(COND,rl)

(CA,cl)

(CA,cl)

(l6,LR.Z) (cl1,LR.CL) (l5,LR.Z) (l1,LR.R)

(cl2,COND.CL)

(cl1,COND.CL)

1 1

(u3,UR.R) (u2,UR.R) (u5,UR.Z) (u4,UR.r)(u6,UR.Z) (u1,UR.R)(cl2,UR.CL)

Figure 2.8: Resulting activity LR_PickFromCond;UR_PutOnCond from the sequencing
of LR_PickFromCond and UR_PutOnCond.

2.4.1 Activity Sequences

By sequencing multiple activities to form an activity sequence we capture

more elaborate operational behavior, such as the complete manufacturing

of a product. We denote an activity sequence as a = a1 a2 � � � an where

a1; a2; � � � ; an denote activities. The temporal behavior of an activity sequence

can be determined by de�ning a sequencing operator that the combines two

activities in a new activity.

Definition 2.8� (SequencingOperator). Given two activities a1 = (N1;!1
) and a2 = (N2;!2) with N1 \ N2 = ;, we de�ne a1; a2 as activity

a1;2 = (N1;2;!1;2). Before we de�ne N1;2 and!1;2, we de�ne R1\2 =
R(a1) \ R(a2) as the set of resources used in both activities. Further

we de�ne the set of corresponding release nodes in N1, and claim nodes

in N2 as: rl1\2 = fn1 2 N1 j 9r 2 R1\2 j M(n1) = (r; rl)g, and
cl1\2 = fn2 2 N2 j 9r 2 R1\2 jM(n2) = (r; cl)g respectively.

Activity a1;2 = (N1;2;!1;2) is then de�ned as follows:

N1;2 = (N1 [N2)n(cl1\2 [ rl1\2)
!1;2 = f(ni; nj) j ni !1 nj ^ nj 62 rl1\2g [

f(ni; nj) j ni !2 nj ^ ni 62 cl1\2g [
f(n1; n2) j (9nrl 2 rl1\2 j n1 !1 nrl) ^

(9ncl 2 cl1\2 j ncl !2 n2)g:



32 Chapter 2. Modular Specification of FMSs

l2

cl2

l5

cl1

l5

l1

t
0 1 2 3 4 5 6 7

u3

cl2

u6

u1

u5

8 9 10 11

UR.R

COND.CL

peripheral

UR.Z

UR.CL

LR.R

LR.Z

LR.CL

u2

cl1

u4

12 13

Figure 2.9: Gantt chart of the execution of activity LR_PickFromCond;UR_PutOnCond
depicted in Figure 2.8.

This form of sequencing is similar to the notion of weak sequential composi-

tion [68], which is also de�ned relative to a dependency relation over a set of

actions. Intuitively, given the set of shared resources, this operator removes

intermediate release and claim nodes on these resources, and properly links the

remaining dependencies. Notice that the result is again an activity satisfying

De�nition 2.1 and the corresponding consistency conditions.

Example 2.6 Consider activities LR_PickFromCond and UR_PutOnCond

depicted in Figures 2.4 and 2.7 respectively. The result of their sequencing is

shown in Figure 2.8. Notice that the result is again an activity satisfying the

correct claiming and releasing of resources. This is achieved by replacing the

release of the COND and CA resources of activity LR_PickFromCond and

the respective claims in activity UR_PutOnCond with direct dependencies

from (cl2,COND.CL) to (cl1,COND.CL) and from (l5,LR.Z) to (u3,UR.R). Its

temporal execution is shown in Figure 2.9 and the makespan of the resulting

activity is determined by mks(LR_PickFromCond;UR_PutOnCond) which
yields the total of 13 time units.

2.4.2 Logistics Automata

An activity sequence can model the complete manufacturing of a product or

batch of products, where a single activity models one manufacturing operation.

In general, more than one activity sequence will satisfy the requirements

imposed on the system. The set of all activity sequence that satisfy these

requirements is encoded by a logistics automaton.



2.4 Logistics 33

Definition 2.9 � (Logistics automaton). A logistics automaton is a tuple

hS;Act; :�!;S0i, where S is a �nite (possibly empty) set of states, Act is a
�nite (possibly empty) set of activities,

:�!� S � Act � S is a transition

relation, and S0 � S is a set of initial states, where S0 = ; if S = ; and
S0 = fs0g otherwise. Let s

a�! s0 be a shorthand for (s; a; s0) 2 :�!. The

following additional properties must hold:

� Acyclicity: there exists no s 2 S such that s :�!+ s, where :�!+
is

the transitive closure of
:�!, and where s :�! t denotes that s a�! t for

some a 2 Act.
� Reachability: if S 6= ; then for all s 2 S; s0

:�!� s, where :�!�
is the

re�exive transitive closure of
:�!.

a b

c

b a
a

b

c

a
s0

s1

s2

s3
s4

s0

s1

s2 s3

s4

L a

L b

a

b

c

s0
s1 s2

L c

Figure 2.10: Examples of valid logistics automata

Example 2.7 Figure 2.10 depicts three examples, La; Lb and Lc, of valid

logistics automata. Nodes represent states and edges represent transitions.

Activities are annotated on edges and the initial state s0 is distinguished
by an extra circumference. Note that all automata satisfy the reachability

and acyclicity properties as required. In contrast, Figure 2.11 depicts two

examples, Ld and Le, of invalid logistics automata. Example Ld does not

satisfy acyclicity, since s0
b�! s1

a�! s0 is a cycle; and Le does not satisfy

reachability, since s4 is not reachable from s0. States s2 and s4 of La have

no outgoing edges; These states will be called �nal states.



34 Chapter 2. Modular Specification of FMSs

a

b

c

a b

b a

c

s0

s1

s2

s3

s4

s0 s1 s2

L d L e

Figure 2.11: Examples of invalid logistics automata

A logistics automaton encodes a collection of activity sequences. This collection

is called the language of the automaton.

Definition 2.10 � (Language of a logistics automaton). Let L = hS;Act;
:�!;S0i be a logistics automaton. The language L(L) of L is de�ned by

L(L) =

(
;; if S0 = ;
fa 2 Act� j s0

a
�! s for some s 2 S and s 6 :�!g; if S0 = fs0g

Here Act� denotes the collection of all sequences of activities in Act. Each
a 2 Act� is of the form a1 ::: an, where ai 2 Act (1 � i � n). For n = 0,
a is the empty activity sequence denoted by �. For states s; s0 2 S and

a = a1 ::: an 2 Act� we let s
a
�! s0 denote the existence of s1; � � � ; sn 2 S

such that s a1�! s1
a2�! � � � an�! sn = s0. Further s

a
�! denotes that s

a
�! s0

for some s0 2 S , s :�! denotes that s a�! s0 for some a 2 Act and s0 2 S
and s 6 :�! denotes that s :�! does not hold. Note that L(L) = ; if S = ; and
L(L) = f�g if S = fs0g. Notice also that any sequence in the language

should ‘run to completion’. This means it should �nish in a �nal state, i.e. a
state with no outgoing transitions. As a consequence languages of logistics

automata are not pre�x closed in general.

Example 2.8 Consider the logistic automata La; Lb and Lc depicted in

Figure 2.10. Their respective languages are L(La) = fa b; a cg, L(Lb) =
fabc; bacg and L(Lc) = fa c; b cg. Note that these languages are not pre�x
closed.



2.4 Logistics 35

s  04

s  03

a a b

s0 s0
s1 s1 s2

s2

b

e

s3

c

d
s3

s4

a b

c

d

s  00
s  11 s   22

e

s  31

L n L o L n ! L o

Act n = { a, b, e} Act o = { a, b, c, d}

Figure 2.12: Example of the composition operation with logistics automata Ln and Lo
and the resulting composed automaton Ln � Lo. The dashed lines and circles show the
pruned transitions and states after composition.

2.4.3 Modular Logistics Specification
Even though a logistics automaton is able to encode the complete manufac-

turing of a batch of products, for large batch sizes or complex manufacturing

jobs a monolithic automaton is not desired. In this work we take inspiration

from the constraint-oriented speci�cation style of the LOTOS framework [24]

and the compositional speci�cation of requirements in CIF [18] by de�ning a

composition operator on logistics automata. The operator allows batches to be

speci�ed individually (i.e. each product �ow can be speci�ed by an individual

automaton) and then composed to obtain an automata that encodes all the

logistics requirements for the full batch of products.

Definition 2.11 � (Composition of Logistics Automata). Let L1 = hS1;
Act1;

:�!1; S01i andL2 = hS2;Act2;
:�!2; S02i be logistics automata. Before

we de�ne the composition automaton L1 � L2, we �rst de�ne relation

:�!� (S1�S2)� (Act1[Act2)� (S1�S2) as the smallest set V satisfying

the following inference rules:

s a�!1 s0 a 2 Act1nAct2
(s; t) a�! (s0; t)

(1)

s a�!1 s0 t a�!2 t0 a 2 Act1 \Act2
(s; t) a�! (s0; t0)

(2)



36 Chapter 2. Modular Specification of FMSs

t a�!2 t0 a 2 Act2nAct1
(s; t) a�! (s; t0)

(3)

where s; s0 2 S1 and t; t0 2 S2. Now de�ne the set of states S of the

composition automaton as

S =

8
>>>>>>><

>>>>>>>:

;; if S1 = ; or S2 = ;
f(s; t) 2 S1 � S2 j (s01 ; s02)

:�!� (s; t)
and for some (s0; t0) 2 S1 � S2 with
s0 6 :�!1 and t0 6 :�!2; (s; t)

:�!� (s0; t0)g if S01 = fs01g and
S02 = fs02g

Further de�ne
:�!0= f((s; t); a; (s0; t0)) 2 :�!j (s; t); (s0; t0) 2 Sg and

S0 =

(
;; if S = ;
f(s01 ; s02)g otherwise

Finally, the composition automaton L1 � L2 is de�ned as:

hS;Act1 [Act2;
:�!0;S0i

Example 2.9 Consider logistics automata Ln and Lo and the resulting

compositionLn�Lo depicted in Figure 2.12. The picture shows all reachable

states in the product automaton, where the dashed circles and arrows with

grayed labels are pruned. These pruned states and transitions do not lead to

a state that corresponds both to a �nal state in Ln and to a �nal state in Lo.

Example 2.10 Consider logistics automata Ln and Lp and the resulting

composition Ln � Lp depicted in Figure 2.13. In this case all reachable

states and transitions are pruned, resulting in an empty automaton.

The language of a composite logistics automaton can be computed from the lan-

guages of its constituent automata, basically by merging together the sequences

of the languages of these constituents:



2.4 Logistics 37

a

s0
s1

s2

b

e

s3

a b

s0 s1 s2
s3

e a b

s  00
s  11

s   22

L n

Act n = { a, b, e}

L p

Act p = { a, b, e}

L n ! L p

Figure 2.13: Example of an empty automaton as a result of the composition of logistics
automata Ln and Lp.

Lemma 2.1 LetL1 = hS1;Act1;
:�!1; S01i andL2 = hS2;Act2;

:�!2; S02i
be logistics automata. ThenL(L1�L2) = fa 2 (Act1[Act2)� j anAct1 2
L(L1) and anAct2 2 L(L2)g where anAct1 and anAct2 denote the pro-
jections of activity sequence a onto alphabets Act1 and Act2 respectively.

Proof. Let (s1; s2); (s01; s02) 2 S1 � S2 and a 2 (Act1 [ Act2)�. Then by

induction on the structure of a and by distinguishing the di�erent inference

rules of De�nition 2.11 it is not hard to show that (s1; s2)
a
�!

0
L1�L2 (s01; s02)

i� s1
anAct1����!1 s01 and s2

anAct2����!2 s02, where
:�!0
L1�L2 refers to the transition

relation on the product state-space before pruning (see De�nition 2.11).

Now let a 2 L(L1�L2). Then (s01 ; s02)
a
�!L1�L2 (s1; s2) for some (s1; s2) 2

SL1�L2 such that (s1; s2) 6
:�!. But then s1 6

:�!1 and s2 6
:�!2. Further (s01 ; s02)

a
�!

0
L1�L2 (s1; s2) so s01

anAct1����!1 s1 and s02

anAct2����!2 s2. Hence anAct1 2
L(L1) and anAct2 2 L(L2). Hence a 2 fa 2 (Act1 [ Act2)� j anAct1 2
L(L1) and anAct2 2 L(L2)g.

Vice versa, let a 2 fa 2 (Act1 [ Act2)� j anAct1 2 L(L1) and anAct2 2

L(L2)g. Then s01

anAct1����!1 s1 and s02

anAct2����!2 s2 for some s1 2 S1 and

s2 2 S2 for which s1 6
:�!1 and s2 6

:�!2 (where s01 2 S01 and s02 2 S02 ). We

then have (s01 ; s02)
a
�!

0
L1�L2 (s1; s2). By De�nition 2.11, (s01 ; s02) 2 S0L1�L2

and (s1; s2) 2 SL1�L2 and thus (s01 ; s02)
a
�!L1�L2 (s1; s2). Therefore a 2

L(L1 � L2). �



38 Chapter 2. Modular Specification of FMSs

Example 2.11 Consider logistics automata Ln, Lo and Ln�Lo of Figure

2.12. Notice that the languages of Ln and Lo are L(Ln) = fa b; a eg and
L(Lo) = fa b; c dg. Notice that only sequence ab satis�es abnActn 2
L(Ln) and abnActo 2 L(Lo), and therefore by Lemma 2.1, L(Ln � Lo) =
fa bg which is consistent with Figure 2.12.

2.4.4 Constraint Automata

We have previously introduced the concept of logistics automaton. With such

automata we capture the product �ow of a product and ensure the completion

of its manufacturing. In addition we express constraints within the same

product, concerning for instance a safe handover between resources. To specify

the behavior of a batch of products in a modular way we introduced the

composition operator. This operator respects the requirements speci�ed for

the individual products and ensures the completion of each of them. For a

complete speci�cation of the manufacturing of a batch of products, we also

need to specify constraints across di�erent product �ows such as ordering

constraints (e.g. FIFO ordering for a batch), safety constraints (e.g. access to

exclusive safety areas), resource capacity constraints (e.g. a resource must be

empty before receiving a product) or other constraints that are expressed as

dependencies across di�erent product �ows. We express such constraints in

terms of constraint automata and introduce a constraint operator to compose

them with logistics automata.

Definition 2.12 � (Constraint automaton). A constraint automaton is a

tuple hS;Act, :�!;S0i, where S is a �nite (possibly empty) set of states, Act
is a �nite (possibly empty) set of activities,

:�!� S �Act�S is a transition

relation, and S0 � S is a set of initial states, where S0 = ; if S = ; and
S0 = fs0g otherwise. The following additional property must hold:

� Reachability: if S 6= ; then for all s 2 S; s0
:�!� s.

A constraint automaton encodes a language, just as a logistics automaton does.

Definition 2.13� (Language of a constraint automaton). Let C = hS;Act;
:�!;S0i be a constraint automaton. The language L(C) of C is de�ned by

L(C) =

(
;; if S0 = ;
fa 2 Act� j s0

a
�! s for some s 2 Sg; if S0 = fs0g



2.4 Logistics 39

a b
c

d

e f g

a e

a

b

c d
e

f

L 1 L 2 L 1 ! L 2

C1 C2
C3

Act L 1 = { a,b,c,d} Act L 2 = { e,f,g}

Act C1 = { c,d} Act C2 = { a,e}
Act C3 = { a,e,b,f}

Act L 1 ! L 2 = { a,b,c,d,e,f,g}

a

b

c

e

f

g

a

a

a

b

b

b

c

c

c

e

e

e

f

f

f

g

g

g

d

d

d

d

Figure 2.14: Example of di�erent constraint automata C1, C2 and C3 referring to
di�erent ordering requirements on logistics automata L1 and L2 and logistics automaton
L1 � L2.

Notice that constraint automata are distinct from logistics automata in the

sense that they can be recursive and are therefore able to encode in�nite

languages.

Example 2.12 Consider logistics automata L1, L2 and L1 � L2 and con-

straint automataC1,C2 andC3 depicted in Figure 2.14. L1 andL2 represent

two distinct product �ows andL1�L2 represents their combined execution

�ow in a two-product batch. Constraint C1 represents a requirement on

the order of activities c and d on the product modeled by L1. Constraints

C2 and C3 express requirements concerning the product �ows of L1 � L2.

C2 imposes an input order constraint, i.e. activity a must always precede

activity e. C3 imposes an alternating execution of activities b or f with

activities a or e. For example, for every instance of activities a or e an

instance of activities b or f must follow before another instance of a or e is
executed. For this reason C3 is a recursive constraint automaton encoding

an in�nite language.

Constraints can be applied to logistics automata through the constraint oper-

ator. A constraint automaton C = hS2;Act2;
:�!2;S02i is called a constraint

on logistics automaton L = hS1;Act1
:�!1;S01i if Act2 � Act1. Applying

constraintC to automatonL yields a new logistics automaton which is denoted

by L � C .



40 Chapter 2. Modular Specification of FMSs

Definition 2.14 � (Constraint Operator). Let L = hS1;Act1;
:�!1;S01i

be a logistics automaton and C = hS2;Act2;
:�!2;S02i be a constraint on

L (so that Act2 � Act1). Before we de�ne L � C we �rst de�ne relation

:�!� (S1 � S2) � Actl � (S1 � S2) as the smallest set V satisfying the

following inference rules:

s a�!1 s0 a 2 Act1nAct2
(s; t) a�! (s0; t)

(1)

s a�!1 s0 t a�!2 t0 a 2 Act1 \Act2
(s; t) a�! (s0; t0)

(2)

where s; s0 2 S1 and t; t0 2 S2. Now de�ne the set of states S of the

constrained automaton as

S =

8
>>>>>>><

>>>>>>>:

;; if S1 = ; or S2 = ;
f(s; t) 2 S1 � S2 j (s01 ; s02)

:�!� (s; t)
and for some (s0; t0) 2 S1 � S2 with
s0 6 :�!1; (s; t)

:�!� (s0; t0)g if S01 = fs01g and
S02 = fs02g

Further de�ne
:�!0= f((s; t); a; (s0; t0)) � :�!j (s; t); (s0; t0) 2 Sg and

S0 =

(
;; if S = ;
f(s01 ; s02)g otherwise

Finally, the constrained automaton L � C is de�ned as:

hS;Act1;
:�!0;S0i

Both the constraint and composition operators assume multi-way synchroniza-

tion for transitions. However, note that the constraint operator requires the

logistics automaton to run to completion (i.e. reaches a �nal state), while this

is not true for the constraint automaton. In other words constraint automata

capture only safety requirements (expressing that nothing bad should hap-

pen) while logistics automata capture both safety requirements and liveness

requirements (expressing that something good happens eventually, namely the



2.4 Logistics 41

a

b

c

e

f

g

a

a

a

b

b

b

c

c

c

e

e

e

f

f

f

g

g

g
a

b

c

b

b

b

c

c

c

e

e

e

f

f

f

g

g

g
a

b

c

e

f

g

a

A1

b

B1

c

c

c

e

e

f

f

g

g

g

(L 1 ! L 2) ! C1 ((L 1 ! L 2) ! C1) ! C2 ((L 1 ! L 2) ! C1) ! C3

Figure 2.15: Example showing the constraining of automatonL1�L2 using the di�erent
constraint automata C1, C2 and C3 depicted in Figure 2.14.

completion of the di�erent products in a batch). On the contrary, the composi-

tion operator requires that both logistics automata run to completion. It was not

strictly necessary to add the concepts of constraint automaton and constraint

operator since constraints can in principle be encoded as logistics automata

(by unfolding recursive loops su�ciently often). However, the automaton

obtained by composition would in many cases have a larger state-space than

the constrained automaton, which is something we try to prevent. In addition,

logistics automata encoding constraints would be incomprehensible because

of their size and would also be less reusable. For these reasons we decided to

introduce constraint automata and the constraint operator.

Example 2.13 Figure 2.15 shows the application of constraints C1, C2
and C3 to automaton L1 � L2 (of Figure 2.14). Since C1 requires activity d
to be preceded by c, (L1 �L2) � C1 does not contain d transition anymore.

The application of constraint C2 to (L1 � L2) � C1 further removes all

behavior in which activity e is not preceded by a. When C3 is applied to

(L1 � L2) all behavior in which activities b or f and a or e do not occur in

alternating order is removed (for instance sequence a e b c f g is removed).

Notice that state-space has reduced in each of the three cases. This does

not hold in general however. In Chapter 4 we will establish the conditions

which guarantee that constraining does not increase the state-space.

The language of a constrained logistics automaton can be computed from

the languages of its constituent automata, basically by �ltering out activity

sequences that are not consistent with the constraint:



42 Chapter 2. Modular Specification of FMSs

Lemma 2.2 Let L = hS1;Act1;
:�!1; S01i be a logistics automaton and

let C = hS2;Act2;
:�!2; S02i be a constraint on L. Then

L(L � C) = fa 2 L(L) j anAct2 2 L(C)g

Proof. Let (s1; s2); (s01; s02) 2 S1 � S2 and a 2 Act�1. By induction on the

structure of a and by distinguishing the di�erent inference rules of De�nition

2.14 it can be shown that (s1; s2)
a
�!

0
L�C (s01; s02) i� s1

a
�!1 s01 and s2

anAct2����!2

s02, where
:�!0
L�C refers to the transition relation on the product state-space

before pruning (see De�nition 2.14).

Now let b 2 L(L � C). Then (s01 ; s02)
b
�!L�C (s1; s2) for some (s1; s2) 2

SL�C such that (s1; s2) 6
:�!L�C . But then also (s01 ; s02)

b
�!

0

L�C (s1; s2) and thus

s01

b
�!1 s1 and s02

bnAct2����!2 s2 and s1 6
:�!0
1. Hence b 2 L(L) and bnAct2 2

L(C) and therefore b 2 fa 2 L(L) j anAct2 2 L(C)g.

Vice versa, let b 2 fa 2 L(L) j anAct2 2 L(C)g. Then s01

a
�! s1 and

s02

anAct2����!2 s2 for some s1 2 S1 and s2 2 S2 for which s1 6
:�!1. But

then (s01 ; s02)
b
�!

0

L�C (s1; s2) and since s1 6
:�!1 we further know from De�-

nition 2.14 that (s01 ; s02); (s1; s2) 2 SL�C . Hence (s01 ; s02)
b
�!L�C (s1; s2),

(s1; s2) 6
:�!L�C and therefore b 2 L(L � C). �

The application of a constraint to a logistics automaton, results in a subset of

the original language. This follows immediately from Lemma 2.2:

Lemma 2.3 � (Language constraining). Let L be a logistics automaton and

let C be a constraint on L. Then L(L � C) � L(L).

Example 2.14 Consider Figure 2.15. It is easy to see that L(((L1�L2) �
C1) � C2) � L((L1 � L2) � C1) (consistent with Lemma 2.3). Consider

further activity sequence a b c e f g. Clearly this sequence is part of

L((L1�L2) � C1). Further a b c e f gnfa; eg = a e and a e 2 L(C2). Thus
from Lemma 2.2 it follows that also a b c e f g 2 L(((L1�L2) � C1) � C2).



2.4 Logistics 43

1.1 1.2
É

1.n

10.1 10.2
É

10.n

2.*

9.*

7.*

3.*

5.*

8.*

6.*

4.*

1.*

3.*

5.*

2.*

4.*

6.*

7.*

9.*

8.*

10.*

1.i 2.i 11.i
3.i 5.i

7.i 8.i 12.i 4.i 10.i

Fin

Fout

CCOND CDRILL CLR CUR

12.i 4.i 10.i

L i

Figure 2.16: Requirements and constraints of the batch logistics speci�cation of the
Twilight System.

2.4.5 Application to the Twilight

To specify the logistics of the Twilight systemwe need to consider both logistics

requirements and system constraints. Figure 2.16 depicts several automata that

describe these requirements and constraints for the Twilight system for a batch

of n products. We assume that each product in the batch is associated with a

copy of the Twilight activities listed in Table 2.3. This is indicated by an alias

activity:product in the automata of Figure 2.16. For example 2:i refers to the

copy of activity 2 of Table 2.3 associated with product i. We will start by �rst

introducing the logistics requirements and then adding the necessary system

constraints to ensure that the �nal logistics automaton encodes only activity

sequences that capture the complete manufacturing of a batch of products

which satis�es all system constraints.

Figure 2.16 (a) shows the logistics requirements for an individual product i of
a batch of n products (where 1 � i � n) modeled as logistics automaton Li,

where i indicates the product number. The product �ow follows the explanation

described in Section 2.1.3. Note that the product �ow accounts for the choice

of the LR or UR as the resource responsible for moving a product from the

COND to the DRILL. The remaining automata re�ect the system requirements

described in Section 2.1.5. Constraint automata Fin and Fout of Figure 2.16

(b) describe the First-In and First-Out (FIFO) requirements, where we enforce



44 Chapter 2. Modular Specification of FMSs

that products must be outputted in the same order as they where inputted.

Finally, constraint automata CCOND,CDRILL, CLR and CUR depicted in Figure

2.16 (c),(d),(e) and (f) represent the capacity constraints of the corresponding

resources. To avoid cluttering the automata �gures we write a:� to represent

n di�erent transitions with labels a:1; � � � ; a:n (where a denotes the name of

an activity). This implies that if this transition is enabled any activity a on

behalf of any wafer i in the batch is enabled. The capacity of a resource is

modeled by a two state constraint automaton. We assume the resource of the

twilight to start empty and to be of unary capacity. Therefore the initial state

of a capacity constraint allows a transition for every activity that occupies the
resource. Once a resource is occupied, only transitions that empty the resource

are allowed. Sincewewant the behavior to be continuously alternating between

empty and occupied we capture these requirements using recursive constraint

automata. Consider the case of the LR (Figure 2.16 (e)). The resource starts

empty so activities which pick a product from other resources such as 1.i
(LR_PickFromInput), 3.i (LR_PickFromCond) and 4.i (LR_PickFromDrill) are

enabled. Once any of these activities is executed the automaton transits to a

state for which only activities which place a product on a di�erent resource

are enabled, such as 2.i (LR_PutOnCond) and 5.i (LR_PutOnDrill).

To derive the logistics automaton of a batch of products we can use the com-

position operator. Consider we have a batch of two products (n = 2) where
the individual requirements of each product by two copies of automata Li
(Figure 2.16), L1 and L2. Figure 2.17 depicts logistics automaton L1 � L2
capturing the logistics requirements of the batch of two products. Any activ-

ity sequence of L1 � L2 captures the manufacturing of two products in the

Twilight system. For readability, activities performed by product 1 and 2 are

colored in orange and blue respectively. Notice that we sequenced activities

7.i;8.i (UR_PickFromCond and UR_PutOnDrill) and 3.i;5.i (LR_PickFromCond

and LR_PutOnDrill), which re�ect the choice between the LR or the UR moving

a product from the COND to the DRILL. We have done so for readability since

distinguishing all the interleaving possibilities would have made the �gure

too complicated to be visualized. In the next chapter when we optimize the

Twilight system we take the full speci�cation into account.

Even though any sequence in L1 � L2 captures the logistics requirements for

two products in the Twilight system, certain sequences might not satisfy all

system constraints as listed in Section 2.1.5. Therefore we need to constrain



2.5 Related Work 45

L1 � L2 with the Twilight constraints depicted in Figure 2.16. To ensure FIFO

ordering we constrain with Fin and Fout to obtain (L1 � L2) � Fin � Fout.

Then adding the capacity constraints we obtain

�
(L1 � L2) � Fin � Fout

�
�

CCOND � CDRILL � CLR � CUR. Doing so results in the automaton depicted in

Figure 2.18. In this case any sequence of activities implies the manufacturing

of two products while satisfying all system constraints.

Notice that many activity sequences of L1 � L2 are no longer possible. For

instance, any activity sequence that starts with activity 1.2 (LR_PickFromInput)

is disallowed since it violates FIFO ordering. Another example is the removal of

activity sequences where activities 5.i (LR_PutOnDrill) or 2.i (LR_PutOnCond)
happen without activities 4.i (LR_PickFromDrill), 3.i (LR_ PickFromCond) or

1.i (LR_PickFromInput) occurring in between. These are removed to satisfy the

capacity constraint of the LR resource encoded by CLR. Intuitively, L1 � L2
(Figure 2.17) represents all ‘possible’ activities sequences of a two product

batch while

�
(L1 � L2) � Fin � Fout

�
� CCOND � CDRILL � CLR � CUR (Figure

2.18) represents all ‘allowed’ activity sequences.

2.5 Related Work
The speci�cation approach presented in this chapter is an e�ort of combining

di�erent modeling solutions in a way that �ts the manufacturing systems

domain and provides a solid foundation for their design exploration and op-

timization. The goal is to achieve a clear separation of concerns between

functional and temporal aspects of a system. Furthermore, we have aimed for

a speci�cation framework that is modular and compositional in the sense that

di�erent system components and requirements are described in modules which

can later be composed to describe the full system facilitating complex system

speci�cation. Each module can be individually validated against functional re-

quirements and it is guaranteed that these requirements are still satis�ed after

the composition. This speci�cation approach combines ingredients form the

domains of of Scenario-Aware Data Flow (SADF) [39] and Supervisory Control

Theory (SCT) [66]. The scenario-based modeling approach of SADF provides

the motivation for the de�nition of activities as end-to-end deterministic pieces

of functional system behavior. On top of the scenario de�nitions, a Finite-State

Machine can be speci�ed to dictate the allowed ordering of scenario sequences

much like our concept of a logistics automaton. An SADF scenario is more

general, since it can also contain cycles. In one of our earliest works [15] we



46 Chapter 2. Modular Specification of FMSs

1.1

2.1

11.1

3.1;5.1

12.1

6.1

10.1

1.2

2.2

11.2

3.2; 5.2

12.2

6.2

10.2

1.1

2.1

11.1

12.1

6.1

10.1

1.1

2.1

11.1

12.1

6.1

10.1

1.1

2.1

11.1

12.1

6.1

10.1

1.1

2.1

11.1

12.1

6.1

10.1

1.1

2.1

11.1

12.1

6.1

10.1

1.1

2.1

11.1

12.1

6.1

10.1

1.1

2.1

11.1

12.1

6.1

10.1

1.2

2.2

11.2

12.2

6.2

10.2

1.2

2.2

11.2

12.2

6.2

10.2

1.2

2.2

11.2

12.2

6.2

10.2

1.2

2.2

11.2

12.2

6.2

10.2

1.2

2.2

11.2

12.2

6.2

10.2

1.2

2.2

11.2

12.2

6.2

10.2

1.2

2.2

11.2

12.2

6.2

10.2

7.1;8.1

3.1;5.1
7.1;8.1

3.1;5.1
7.1;8.1

3.1;5.1
7.1;8.1

3.1;5.1
7.1;8.1

3.1;5.1
7.1;8.13.1;5.1

7.1;8.1

3.1;5.1
7.1;8.1

7.2; 8.2

3.2; 5.2

7.2; 8.2

3.2; 5.2

7.2; 8.2

3.2; 5.2

7.2; 8.2

3.2; 5.2

7.2; 8.2

3.2; 5.2

7.2; 8.2

3.2; 5.2

7.2; 8.2

3.2; 5.2

7.2; 8.2

Figure 2.17: Logistics automaton of a batch of two products of the Twilight System. The
automaton is obtained by the composition of two individual product logistics requirements
L1 � L2.

1.1

2.1

11.1

3.1;5.1

12.1

6.1

10.1

11.1

12.1

6.1

10.1

12.1

6.1

10.1

12.1

6.1

10.1

10.1

10.1

10.1

1.2

1.2

1.2

2.2

11.2

1.2

2.2

11.2

1.2

2.2

11.2

12.2

6.2

1.2

2.2

11.2

12.2

6.2

10.2

7.1;8.1

7.1;8.1

3.2; 5.2

3.2; 5.2

7.2; 8.2

Figure 2.18: Logistics automaton of batch of two products after the composition with
FIFO constraints and constraining with Capacity constraint (

�
(L1�L2) � Fin � Fout

�
�

CCOND � CDRILL � CLR � CUR).



2.6 Conclusions 47

explore FSM-SADF models in an attempt to model di�erent operational scenar-

ios of a manufacturing system by deriving an FSM that is able to capture the

resource sharing and resource assignment dynamics of manufacturing systems.

This work led to many of the concepts and methods presented in this chapter

and in [70]. It is possible to convert a speci�cation model in our framework to

an FSM-SADF model. Each activity can be mapped onto an SADF scenario and

the logistics automaton of the system corresponds to a �nite-state machine in

FSM-SADF.

On the modular speci�cation of logistics, a similar approach and source of

inspiration is the one of Supervisory Control Theory (SCT) which is applied

in [71] for the modular speci�cation and synthesis of manufacturing systems

controllers. Further applications of SCT can be found in [19], [36], [80]. Our

composition and constraining operator are inspired by the synchronous prod-

uct and synthesis steps in SCT theory. Compared to SCT, our approach restricts

the speci�cation expressiveness to better suit the manufacturing domain and

focuses on makespan analysis. We implement our logistics speci�cation ap-

proach and methods using the CIF3 tooling [18], which we discuss further in

Chapter 3. However, in our models we focus on good-weather behavior and

thus do not include uncontrollable events as is the case of SCT. Furthermore,

we only focus on the reachability of �nal states in logistics automata as a

liveness properties. In comparison, SCT provides the concept of marked states

and marked languages which we do not use in our automata de�nitions. A

further comparison of the methodologies including the temporal optimization

is found in Chapter 3.

2.6 Conclusions
This chapter has introduced the approach and concepts for the speci�cation

of manufacturing systems. We showed how to decompose a manufacturing

system into a plant by de�ning resources, peripherals and peripheral actions.

Moreover, we showed how to capture deterministic pieces of functional be-

havior as activities by using the building blocks of the plant speci�cation.

Di�erent levels of granularity of the behavior captured by an activity might be

chosen for di�erent purposes (e.g. functional veri�cation of requirements or

optimization). To aid this, the sequencing operator is provided such that larger

activities can be created by the sequencing of smaller ones, to the point that an

activity captures the complete behavior necessary to manufacture a product.



48 Chapter 2. Modular Specification of FMSs

On top of the set of activities of a system this chapter also discussed the speci-

�cation of activity sequences within a manufacturing system. This is captured

as a logistics automaton which language encodes the set of possible activity

sequences. We showed how the logistics automaton of a batch of products

can be modularly speci�ed by describing individual logistics requirements as

individual automata and by using the composition operator. Furthermore, we

introduced the concept of constraint automata to capture system constraints

(i.e. input/output ordering constraints, capacity constraints and safety con-

straints). These can also be speci�ed in a modular way and composed with

logistics automata using the constraint operator. The concepts of logistics and

constraint automata together with the composition and constraint operator

de�nes our modular speci�cation of the logistics of �exible manufacturing

systems. Such a modular approach allows us to deal with the speci�cation

and validation of complex �exible manufacturing systems. This will be further

illustrated in Chapter 6. Furthermore this modularity is further explored in

Chapter 4 to bound and prune the optimization-space of �exible manufacturing

systems.



3 | Optimization of Flexible
Manufacturing Systems

In the previous chapter we discussed the speci�cation of �exible manufacturing

systems. We showed how to decompose a system plant into sets of resources,

peripherals and actions, and capture the functional behavior of the system in

terms of activities and a language of activity sequences encoded by a logistics
automaton. The overall goal of the framework is to explore the performance of

di�erent designs of �exible manufacturing systems, for instance by considering

di�erent layouts and system resources. A fundamental step in that process

is the productivity analysis of the system design in study. Therefore in this

chapter we discuss the optimization of a such a speci�cation in order to �nd

the optimal makespan for a given batch of products.

We start by de�ning the Batch Makespan Optimization (BMO) problem to �nd

the activity sequence with the lowest makespan within the language of ac-

tivity sequences of a logistics automaton. This activity sequence minimizes

the completion time of a batch of products. Figure 3.1 depicts the di�erent

concepts as well as the necessary analysis techniques to �nd a solution to the

BMO problem. We start by translating the structural and timing information of

activities to (max,+) matrices. By the means of a (max,+) expansion algorithm

we annotate the logistics automaton with the temporal characterization of

activities to construct a (max,+) automaton. When constructing the (max,+)

automaton the di�erent temporal behavior of activities might lead to multi-

plication of states of the logistics automaton. This multiplication occurs due

to the addition of a resource time-stamp vector to each state in the (max,+)

automaton. This time-stamp vector contains the availability times of all system

resources after the execution of the activity sequence leading to that state.



50 Chapter 3. Optimization of FMSs

Optimization

(max,+) 
expansion

SpeciÞcation

Activities

Plant

Timed actions

Peripherals

Resources

(max,+) matrices

(max,+)  automaton

Minimal makespan 
computation

Logistics

Activity sequence

Logistics automata

Constraint automata

Timed activities

Figure 3.1: Overview of the framework concepts for the Speci�cation and Optimization

domains.

Each activity sequence in the language of the (max,+) automaton captures

the manufacturing of a batch of products for which the completion time can

be obtained by computing the the resource time-stamp vector of the �nal

states (states with no outgoing transitions). Therefore the solution to the BMO

problem can be obtained by exploring the state-space of the (max,+) automaton,

which we will therefore also denote as optimization-space. In this chapter we

show all the necessary steps to compute and explore this optimization-space to

�nd a solution to the BMO problem. The Twilight system is used to illustrate

these steps.

The chapter is organized as follows. Section 3.1 introduces the BMO problem.

Section 3.2 discusses the (max,+) characterization of activities and activity

sequences. Section 3.3 introduces the concept of (max,+) automaton and ex-

plains the exploration of the optimization-space to �nd a solution to the BMO

problem. Section 3.4 uses the introduced concepts to optimize the Twilight

system speci�cation. Section 3.5 discusses the related work and �nally Section

3.6 concludes the chapter.



3.1 Batch Makespan Optimization 51

3.1 Batch Makespan Optimization
Two common metrics to express the productivity of manufacturing system

designs are throughput (number of products produced per time unit) and

makespan (the completion time of a batch of products) [51], [61], [82]. Through-

put analysis focuses on the analysis of the steady-state output of a system,

while makespan analysis considers the total elapsed time from start to �nish of

a particular batch of products. Flexible manufacturing systems often work with

small batches of products and with mixed product �ows (manufacturing of

di�erent product types) for which steady-state behaviors are not so interesting

to study [48], [61]. It is therefore valuable to look at batch-oriented aspects

and study the makespan of the system to evaluate the productivity impact of

di�erent logistical choices. In this thesis we focus on the makespan optimiza-

tion of a manufacturing system and de�ne the Batch Makespan Optimization

(BMO) problem.

The goal is to determine an activity sequence that leads to the lowest makespan

for a speci�c batch of products. In our framework we specify a language of
activity sequences where each activity sequence in the language of a logistics

automaton captures the complete and correct manufacturing of a batch of

products. Therefore we de�ne our BMO problem in terms of the language of

activities sequences of a logistics automaton, as follows:

Problem 3.1 � (Batch Makespan Optimization). Given a Logistics automa-

ton L determine an a 2 L(L) such that

mks(a) � mks(a0)

for all a0 2 L(L). Here we let mks(a) denote mks(a1; :::; an), when a =
a1 a2 � � � an.
By language inclusion we can establish sub-optimal solutions to the BMO

problem and �nd bounds on the optimal makespan. This is posed in the

following Lemma.

Lemma 3.1 Let L1 and L2 be logistics automata for which L(L1) �
L(L2) and assume a to be a BMO solution to L1 and a0 to be a BMO

solution to L2. Thenmks(a) � mks(a0).

In the remainder of this chapter we discuss the individual steps taken to �nd a

solution to the BMO problem.



52 Chapter 3. Optimization of FMSs

3.2 Activities as (max,+) Matrices
In the previous chapter we showed that we can capture the temporal behavior

of an activity a by computing the ASAP start and end times of all its actions as-

suming a given initial resource time-stamp vector R. Furthermore, we showed

that using this timing information we can compute the updated resource time-

stamp vector after executing activity a as update(R; a) (De�nition 2.6). In

this section we show that we can capture the timing behavior of an activity

and compute update(R; a) using (max,+) algebra [10], [41]. We use these

conclusions later in this chapter in our approach to solve the BMO problem.

3.2.1 (max,+) Algebra
This section introduces (max,+) algebra based on the summary of [70]. Recall

that the two essential characteristics of the temporal execution of an activity

are synchronization (a node waits for all its incoming dependencies to �nish)

and delay (a node takes a �xed amount of time to execute). These can be

matched to the (max;+) operators max and addition, de�ned over the set

R�1 = R [ f�1g. The max and + operators are de�ned as in a usual

algebra, with the additional convention that �1 is the unit element of max:
max(�1; x) = max(x;�1) = x, and the zero-element of addition: �1+
x = x + �1 = �1. Addition distributes over the max operator, i.e. x +
max(y; z) = max(x+ y; x+ z).

Since (max;+) algebra is a linear algebra, it can be easily extended to matrices

and vectors. Given matrix A and vector x, we use A 
 x to denote the

(max;+) matrix multiplication. Givenm� p matrix A and p� n matrix B,

the elements of the resulting matrix A
B are determined by: [A
B]ij =
p

max
k=1

([A]ik+[B]kj). For any vector x, kxk = maxi xi denotes the vector norm
of x. We use 0 to denote a vector with all zero-valued entries.

3.2.2 (max,+) Activity Semantics
The temporal behavior of an activity can be captured by a single (max,+)

matrix which encodes the critical timing dependencies between the di�erent

resource claims and releases of an activity. We can then compute the updated

resource time-stamp vector after the execution of an activity by multiplying

the corresponding (max,+) matrix with the initial resource time-stamp vector.

This is illustrated in the following example:



3.2 Activities as (max,+) Matrices 53

(r2,cl) (r2,rl)

(r1,cl) (r1,rl)

2

3 1

(r2,cl) (x2,p2) (x3,p2) (r2,rl)

(r1,cl) (x1,p1) (r1,rl)
2

3

4

(a) (b)

Figure 3.2: (a) example activity a and (b) longest paths for every pair of resource of
activity a.

Example 3.1 Consider activity a depicted in Figure 3.2 (a). Assume

R = fr1; r2g. Note that the activity uses both resources r1 and r2 and that

R(p1) = r1 and R(p2) = r2 and further employs three actions x1; x2 and
x3 for which T (x1) = 2, T (x2) = 3 and T (x3) = 1. Consider symbolic

resource time function R. We will represent it as a resource-time stamp

vector R = [R(r1); R(r2)]| (by assuming that the �rst entry in the vector

represents r1 and the second entry in the vector represents r2). Following
De�nition 2.5 the end times of all nodes are computed as follows:

end((r1; cl)) = R(r1)
end((r2; cl)) = R(r2)
end((x1; p1)) = max(end((r1; cl))) + T ((x1; p1)) = R(r1) + 2
end((x2; p2)) = max(end((r2; cl))) + T ((x2; p2)) = R(r2) + 3
end((x3; p2)) = max(end((x1; p1)); end((x2; p2)) + T ((x3; p2))

= max(R(r1) + 2; R(r2) + 3) + 1
= max(R(r1) + 3; R(r2) + 4)

end((r1; cl)) = end((x1; p1)) = R(r1) + 2
end((r2; cl)) = end((x3; p2)) = max(R(r1) + 3; R(r2) + 4):

We can now write the (max,+) characterization of end((r1; cl)) and
end((r2; cl)) to obtain:

end((r1; rl)) = max(R(r1) + 2; R(r2) +�1)
end((r2; rl)) = max(R(r1) + 3; R(r2) + 4):



54 Chapter 3. Optimization of FMSs

So by De�nition 2.6 we have update(R; a) = [max(R(r1) + 2; R(r2) +
�1); max(R(r1) + 3; R(r2) + 4)]|. This updated vector can however

also be obtained by characterizing activity a by (max,+) matrix Ma

Ma =

"
2 �1
3 4

#

and computing Ma 
 R as

update(R; a) = Ma 
 R

=

"
2 �1
3 4

#




"
R(r1)
R(r2)

#

=

"
max(2 + R(r1);�1+ R(r2))
max(3 + R(r1); 4 + R(r2))

#

We thus have that update(R; a) = Ma 
 R. If we assume the initial

resource time-stamp vector to be 0R then:

update(0R; a) = Ma 
 0R

=

"
2 �1
3 4

#




"
0
0

#

=

"
max(2 + R(r1);�1+ R(r2))
max(3 + R(r1); 4 + R(r2))

#

=

"
max(2 + 0;�1+ 0)
max(3 + 0; 4 + 0)

#

=

"
2
4

#

Now, if we assume a di�erent initial resource time-stamp we may obtain a

di�erent resource time-stamp vector. For instance if R = [2; 0]T then:

Ma 
 R =

"
2 �1
3 4

#




"
2
0

#

=

"
4
5

#

Figure 3.3 depicts the Gantt chart execution of activity a with respect

to these di�erent initial vectors. Note that the di�erent initial resource



3.2 Activities as (max,+) Matrices 55

x1r1

r2

t
0 1 2 3 4 5

x2 x3

x1r1

r2

t
0 1 2 3 4 5

x2 x3

(a) (b)

11

2 2

1 1

2 2

Figure 3.3: Gantt charts of the temporal execution of activity a of Figure 3.2 assuming
(a) 0R and (b) R = [2; 0]T .

time-stamp vectors indeed lead to di�erent temporal executions of a and
furthermore that the di�erent temporal aspects of a are all captured by

the same (max,+) matrix characterization. The (max,+) characterization

abstracts from the individual start times and execution times of actions.

In fact the only observable temporal behavior are the entries of the initial

and updated resource time-stamp vectors, shown in Figure 3.3 by the small

circles with the resource number written within. The gap of 1 time unit

between actions b and c is not observable. For such details we would still

need to rely on the computation of all start and end times of actions as

explained in Section 2.3.2.

It is a well-know that (max,+) algebra can be used to mathematically describe

timed synchronous systems [10], [40], [41]. This observation also applies

to activities, as illustrated in Example 3.1. Therefore we pose without proof

the following lemma generalizing the computation of the updated resource

time-stamp vector.

Lemma 3.2 � ((max,+) based update computation). Given an activity a and

an initial resource time-stamp vector R then:

update(R; a) = Ma 
 R

In the sequel, for readability reasons, we will not explicitly distinguish

resource time-stamp function from resource time-stamp vectors anymore.

Hence we will write update(R; a) = Ma 
 R from now on.

Computing the (max,+) matrix of an activity
Algorithm 1 describes the computation of (max,+) matrices from activities.

Algorithm 1 runs in polynomial time. It assumes as input an activity a, the set



56 Chapter 3. Optimization of FMSs

Algorithm 1 Compute the Max-Plus matrix of an activity

1: procedure ComputeMaxPlusMatrix(a;R(a);R)
2: Assume resource time stamp vector 0R
3: i = 1
4: for ri 2 R do
5: j = 1
6: for rj 2 R do
7: if ri 2 R(a) and rj 2 R(a) then
8: M(i; j) = longestPath(a; rj ; ri)
9: else
10: if i = j then
11: M(i; j) = 0
12: else
13: M(i; j) = �1
14: j++

15: i++

16: return M

of resources used by the activityR(a) and the set of resourcesR. The output
is a matrix of size n� n where n corresponds to the total number of elements

in R of the speci�ed system plant, even if the activity only uses a subset of

the plant resources. Further, it assumes that the resource elements inR have a

�xed order. An entry (i; j) in the resulting matrix represents the longest path

between the claim of resource rj and the release of resource ri (where rj and
ri refer to the j-th and i-th element ofR respectively). In the case a path does

not exist the entry is set to �1. For the resources that are not used by the

activity, all related entries to those resources are set to �1 with the exception

of the entries (i; i) which are set to 0. This exception is necessary since even

though the resource is not used, its availability time needs to be carried on to

the updated resource time-stamp vector.

Example 3.2 Consider again activity a depicted in Figure 3.2 (a) and its

(max,+) characterization:



3.2 Activities as (max,+) Matrices 57

Ma =

"
2 �1
3 4

#

Note that each index (i; j) of the matrix corresponds to the longest path

from the claim of resource rj to the release of resource ri. Figure 3.2 (b)
depicts the longest paths for each pair of resources. For instance the longest

path from (r1; cl) to (r1; rl) is equal to 2 time units thus Ma(1; 1) = 2. No
path exist between (r2; cl) and (r1; rl) and thus Ma(1; 2) = �1.

Example 3.3 Consider the same activity as in Example 3.2, but now in a

system with one additional resource r3. In this case our system is composed

from three resources, but our activity only requires two of them. The (max,+)

matrix characterization of activity a must account for all the resources, not

just the ones claimed by a. Since there are no paths from (and to) the

non-utilized resources in activity a one could simply �ll the corresponding

entries with�1. However, doing so would imply the initial entry R(r3) to
be lost in the updated resource time-stamp vector Ma
R. For this reason
we keep the entry value corresponding to (r3; cl) and (r3; rl) as a �ctitious
dependency between (r3; cl) and (r3; rl) and hence set Ma(3; 3) = 0. The
corresponding (max,+) matrix of activity a therefore is:

Ma =

2

64
2 �1 �1
3 4 �1
�1 �1 0

3

75

3.2.3 Sequencing Activities using their (max,+) Characterization
Assuming an initial R, the resource time-stamp vector after executing activity

a can be computed as update(R; a) = Ma 
 R. If the execution of a is

followed by an activity b, we can compute the new resource time-stamp vector

as update(update(R; a); b) = update(Ma 
 R; b) = Mb 
Ma 
 R. In
this fashion, the sequencing of activities a;b can be captured by repeated matrix

multiplications, where each (max,+) matrix represents the temporal behavior

of the corresponding activity. This is generalized in the following lemma:



58 Chapter 3. Optimization of FMSs

Lemma 3.3 � ((max;+) sequencing characterization). Let a = a1 a2 ::: an
be an activity sequence and let R be a resource time-stamp function. Then

the updated resource time-stamp vector after the execution of a is given by:

update(R; a1; :::; an) = Man 
Ma2 � � �Ma1 
 R

Example 3.4 As an example consider the activities of Figures 3.2 (a) and

3.4 (a) which we will respectively refer to as a and b. The Gantt chart

of the execution of the sequenced activity a;b assuming starting resource

time-stamp vector R = [2; 0]T is depicted in Figure 3.4 (b). The updated

resource time-stamp vector 0R after executing a;b equals update(R; a; b)
with 0R = [10; 9]T and is depicted in Figure 3.2 (b) by the small red circles

with the resource number written within.

Now, consider the (max,+) matrices Ma and Mb:

Ma =

"
2 �1
3 4

#

Mb =

"
6 5
�1 4

#

We can compute the updated vector after the execution a; b following

Lemma 3.3 where update(R; a; b) is equal to:

= Mb 
Ma 
 R

=

"
max(6 + 2; 5 + 3) max(6 +�1; 5 + 4)

max(�1+ 2; 4 + 3) max(�1+�1; 4 + 4)

#




"
2
0

#

=

"
8 9
7 8

#




"
2
0

#

=

"
10
9

#

Note that indeed we obtain the same updated resource time-stamp vector

[10; 9]T .



3.3 (max,+) Automaton 59

2

1 3

(r2,cl) (y2,p2) (y3,p2) (r2,rl)

(r1,cl) (y1,p1) (r1,rl)

4

(y4,p1)

y1r1

r2

t
0 1 2 3 4 5

y2 y3

y4

6 7 8 9 10

x1

x2 x3

1

2

1

2

1

2

(b)(a)

Figure 3.4: (a) example activity b; (b) Gantt chart execution of activity b preceded by
activity a (Figure 3.3) and (c) execution of activities a and b assuming the initial resource
time-stamp vector R = [2; 0]T .

3.3 (max,+) Automaton
In a logistics automaton each activity sequence represents a possible manu-

facturing of a batch of products where each activity represents a single manu-

facturing operation. The manufacturing behavior is captured by a language

of activity sequences encoded by a logistics automaton. In the previous sec-

tions we have shown how the temporal behavior of a single activity and of

the updated resource time-stamp vector due to its execution are described in

(max,+) algebra. In this section we show howwe capture the complete temporal

behavior by a (max,+) expansion of the logistics automaton considering the

(max,+) characterization of all speci�ed activities. The result of this expansion

is a new logistics automaton where each state includes a resource time-stamp

vector capturing the resource availability after executing the activities in the

path leading to that state. Given a logistics automaton L we call its timed

expansion a (max,+) automaton and denote it by MaxPlus(L).

Definition 3.1 � ((max,+) automaton). Let L = hS;Act; :�!;S0i be a

logistics automaton. First de�ne MaxPlusStates(L) as the smallest set V
satisfying inference rules (1) and (2):

S0 = fs0g
(s0;0R) 2 V

(1)
(s; R) 2 V s a�! s0

(s0;Ma 
 R) 2 V
(2)

Here R denotes a resource time-stamp vector and 0R denotes the re-

source time-stamp vector containing only 0 valued entries. Ma denotes the

(max;+) matrix corresponding to activity a 2 Act and s; s0 2 S . Then we



60 Chapter 3. Optimization of FMSs

de�ne MaxPlus(L) as

(MaxPlusStates(L);Act; :�!0;S 00)

where S 00 = ; if S0 = ; and S 00 = f(s0;0R)g otherwise, and �!0=�
(s; R); a; (s0; 0R) 2 MaxPlusStates(L)�Act�MaxPlusStates(L) j s a�!

s00R = R 
Ma
	
.

Note that a (max,+) automaton is a logistic automaton. Each state of the logistics

automaton can occur multiple times in the (max,+) automaton, depending on

the cumulative products of (max,+) activity matrices along the paths from the

initial state leading to this particular state. Therefore the number of states

of the (max,+) automaton is at least as large as the number of states of the

corresponding logistics automaton. Nonetheless, the language of the (max,+)

automaton is still equivalent to that of the initial logistics automaton.

Lemma3.4 Given an logistics automatonL thenL(L) = L(MaxPlus(L)).

a

bs0
s1

c

d
s2

a

b

c

d
m0 m1

m2

m3

L m
Act m = { a, b, c, d}

MaxPlus(L m )

Ma = Mb =

"
2 �1
�1 2

#

Mc =

"
3 �1
4 3

#

Md =

"
3 5
�1 3

#

Figure 3.5: Example of the (max,+) expansion for logistics automaton Lm. Ma;Mb;Mc
and MD refer to the (max,+) matrices of activities a; b; c and d.

Example 3.5 Consider the logistics automaton Lm and the (max,+) ma-

trices of activities a; b; c and d depicted in Figure 3.5. The corresponding

MaxPlus(Lm) ofLm is also depicted in Figure 3.5. Given thatm0 = (s0; 0R)
we have by De�nition 3.1 that m1 = (s1; [2; 2]T ); m2 = (s2; [5; 6]T ) and



3.3 (max,+) Automaton 61

m3 = (s2; [7; 5]T ). Note that due to the di�erent (max;+) matrices of ac-

tivities c and d, state s2 is duplicated in statesm2 andm3 of MaxPlus(Lm).
Vice-versa, since activities a and b have equal (max;+)matrices, s1 occurs
only once in the states of MaxPlus(Lm). Finally notice that indeed the

language of the (max,+) automata L(MaxPlus(Lm)) = L(Lm), consistent
with Lemma 3.4.

(max,+) Expansion of a Logistics Automaton

A (max,+) automaton can be constructed by transversing the original logistics

automaton and computing for each visited state the resulting resource time-

stamp vectors due to the execution of activities leading to that state (similarly

to the approach used for computing worst-case throughput in SADF models

[38]). The new state in the (max,+) automaton is a tuple composed by the

original state in the logistics automaton and a resource time-stamp vector

R. Recall that for the initial states of the logistics automaton (states with no

incoming edges) R = 0R. For instance, assume that two states s1 and s2 in
the logistics automaton are such that s1

a�! s2. These would then correspond

to statesm1 = (s1; R) andm2 = (s2;Ma 
 R), for some vector R. Notice
that whenever two sequences lead to the same state in a (max,+) automaton,

the corresponding execution of the activities in the sequence leading to that

state result in the same resource time-stamp vector. Algorithm 2 de�nes the

necessary computation steps to obtain a (max,+) automaton from a logistics

automaton. We use a depth-�rst search for this purpose. The while loop pops

a (max,+) state from the stack to be the current state and marks it visited.

For each possible transition from the current state, a new (max,+) state is

created with a matching logistics automaton state and a resource time-stamp

vector computed using the (max,+) matrix of the activity associated with that

transition. If the new (max,+) state does not yet exist in the set of states of the

(max,+) automaton then the new state and a transition from the current state

to the new state are added to the (max,+) automaton. If the new state already

exists, then only the transition is added. This while loop is repeated until the

stack is empty.

3.3.1 Solving the BMO Problem

The state-space encoded by a (max,+) automaton includes all the necessary

functional and temporal information of the system in terms of allowed activity

sequences as well as their respective completion times. For this reason, we de-

note the state-space of a (max,+) automaton the optimization-space. A solution



62 Chapter 3. Optimization of FMSs

Algorithm 2 Algorithm for constructing the (max,+) automaton

1: procedure createMaxPlusAutomaton(Act, L = hS;Act; :�!;S0i)
2: stackDSF = new empty stack;

3: MaxPlus(L) = hS 0;Act; :�!0;S 00i;
4: S 00 = {(s0;0R)};
5: add (s0;0R) to S 0;
6: push (s0;0R) into stackDSF;

7: while stackDSF not empty do
8: (s; ) pop from stackDSF;

9: nextTrans = {(s; a; s0) 2 :�!j a 2 Act and s0 2 S};
10: for each transition s a�! s0 in nextTrans do
11: 0  Ma 
 ;
12: if (s0; 0) =2 S 0 then
13: add (s0; 0) to S 0;
14: push (s0; 0) to stackDSF;

15: add (s; ) a�! (s0; 0) to :�!0
;

16: return MaxPlus(L)

to the BMO problem can be obtained by exploring all the �nal states (states

with no outgoing transitions) of the optimization-space and comparing the

norms of the corresponding resource-time stamp vectors. Any sequence in the

optimization-space leading to a �nal state with the lowest occurring norm is a

solution to the BMO problem. This proven in the following theorem.

Theorem 3.5 Let L be a logistics automaton and MaxPlus(L) = fS; :�!
;Act;S0g its corresponding (max,+) automaton. Let (s; ) 2 S be such that

(s; ) 6 :�! and that for all (s0; 0) 2 S with (s0; 0) 6 :�!,kk �
0


. Further

let a 2 L(L) be such that (s0; 0R)
a
�! (s; ). Then for all a0 2 L(L):

mks(a) � mks(a0)

Proof. Assume (s; ) 2 S is such that (s; ) 6 :�! and that for all (s0; 0) 2 S
with (s0; 0) 6 :�!,kk �

0

. Let a 2 L(L) be such that (s0; 0R)

a
�! (s; ). By

De�nition 2.7, mks(a) =
update(0R; a1; :::; an)


and by Lemma 3.3 we thus

havemks(a) =
Man 
 � � � 
Ma1 
 0R


. Since (s0; 0R)

a
�! (s; ) it follows



3.3 (max,+) Automaton 63

from De�nition 3.1 that  = Man 
 � � � 
Ma1 
 0R. Thusmks(a) =kk.

Now let a0 2 L(L). Then by Lemma 3.4 we have a0 2 L(MaxPlus(L)). There-

fore there exists a state (s0; 0) such that (s0; 0) 6 :�! and (s0; 0R)
a0
�! (s0; 0).

Thereforemks(a0) =
0


andkk �

0

. But thenmks(a) � mks(a0). �

Example 3.6 Consider the optimization-space encoded by MaxPlus(Lm)
depicted in Figure 3.5. Following De�nition 3.1 we have m0 = (s0; 0R),
m1 = (s1; [2; 2]T ); m2 = (s2; [5; 6]T ) and m3 = (s2; [7; 5]T ). Note that
m2 andm3 are �nal states withmakespans

[5; 6]T
 = 6 and

[7; 5]T
 = 7,

respectively. Thus the minimal makespan is 6 time units. Since activity

sequences a c and b c both terminate in �nal statem3 they are both solutions

to the BMO problem induced by Lm.

a1size(a1)

S/2

AÕ A-AÕ

a2

a3size(a3)

size(a2)

Figure 3.6: Example to the solution of the WSPP given the set of of elements e1; e2 and
e3 of set A. Equal total sizes for each subset is obtained by placing element e1 in subset
A0 and elements e2 and e3 in subset A0nA.

3.3.2 Complexity Analysis

The computational complexity of the BMO problem is shown to be NP-Hard in

two steps. First we show that the decision version of the BMO problem, which

we call the Batch Makespan Satisfaction (BMS) problem is NP-Complete. The
BMS problem is concerned with the decision whether an activity sequence

exists with a makespan lower than a given bound B. This is shown by reduc-

ing the Weighted Set Partitioning (WSP) problem [37], which is known to be

NP-Complete [46], to BMS. Next we show the BMO problem to be NP-Hard by

reducing BMS to BMO. Let us start by formally introducing the Weighted Set

Partitioning (WSP) problem [37].



64 Chapter 3. Optimization of FMSs

Problem 3.2 � (Weighted Set Partitioning problem). Assume a �nite set

A = fa1; :::; ang of n elements, where each element ai with 1 � i � n
has a postive size size(ai) 2 Z+

. Does a subset A0 � A exist such thatP
a2A0 size(a) =

P
a2AnA0 size(a)?

Example 3.7
As a simple example consider a set of elements fa1; a2; a3g 2 A for which

size(a1) = 4, size(a2) = 1 and size(a3) = 3. Figure 3.6 depicts a solution
to this WSP problem letting A0 = fa1g and AnA0 = fa2; a3g.

Theorem 3.6 BMO is NP-hard.

Proof. We �rst reduce the WSP problem to our BMS problem in the following

way. Let A = fa1; :::; ang and let size(ai) denote the size of element ai
(1 � i � n). We de�ne two resources R1 and R2, where R1 has peripheral p1
and R2 has peripheral p2. For each i (1 � i � n) we de�ne two activities a1i
and a2i :

� a1i : (R1; cl)! (xi; p1)! (R1; rl)
� a2i : (R2; cl)! (xi; p2)! (R2; rl)

Here xi is an action referring to element ai with execution time Txi = size(ai).
We further de�ne a logistics automaton with states S = fs1; :::; sn+1g and

with transitions si
a1
i�! si+1 and si

a2
i�! si+1 (1 � i � n). It is not hard to see

that a WSP partitioning exists if and only if the logistics automaton has an

activity sequence exists with a makespan lower than or equal to S=2. Hence
BMS is NP-Hard. It takes polynomial time to verify a possible solution to BMS,

and thus BMS is NP-Complete. Now assume we have a solution ao to BMO. If

mks(ao) does not exceed a bound B, a solution with a lower makespan than

B exists and therefore the answer to BMS is positive. Otherwise, no solution

exists with makespan lower than B, yielding a negative answer to the BMS

problem. Thus, BMO is NP-Hard.

�

3.4 Optimizing the Twilight
To illustrate the optimization steps we use our Twilight system running ex-

ample. Consider logistics automaton

�
(L1 � L2) � Fin � Fout

�
� CCOND �



3.4 Optimizing the Twilight 65

CDRILL � CLR � CUR depicted in Figure 2.18 of Section 2.3.3.

The corresponding (max,+) automaton is obtained by transversing the logistics

automaton of Figure 2.18 using Algorithm 2. The resulting automaton is

shown in Figure 3.7. It represents the optimization-space of the two-product

Twilight system and consists of 193 states and 273 transitions. As expected the

(max,+) expansion results in a larger state-space than the state-space of the

corresponding logistics automaton due to the branching e�ect when adding

timing information. In the �gure states are denoted as circles and transitions

as directed edges. The states in the (max,+) automaton hold a state identi�er

from the corresponding state in the logistics automaton. In addition states

contain a resource time-stamp vector capturing the resource availability times,

but they are only shown in Figure 3.7 for �nal states. These �nal states are

depicted in green boxes. The initial state is colored in cyan and the worst-case

and best-case activity sequences are colored in red and green respectively. In

total we obtained 14 distinct �nal states which implies that there can be 14

di�erent temporal outcomes for the manufacturing of two products.

Table 3.1: Makespan and resource availability times for each of the �nal states of the
optimization-space.

Resource Availability Times

Final State CA COND DRILL LR UR Makespan
1 65.6 26.9 63.6 55.9 69.4 69.4

2 61.1 39.2 59.1 51.4 64.9 64.9

3 65.3 43.8 63.3 28.9 69.1 69.1

4 68.1 46.2 66.1 58.4 71.9 71.9

5 67.7 46.2 65.7 41.8 71.5 71.5

6 66.3 44.4 64.3 56.5 70.1 70.1

7 70.5 49.0 68.5 36.0 74.3 74.3

8 67.1 40.4 65.1 57.4 70.9 70.9

9 68.5 46.6 66.5 58.8 72.3 72.3

10 68.1 46.6 66.1 42.2 71.9 71.9

11 64.8 42.9 62.8 55.1 68.6 68.3

12 69.0 47.5 67.0 22.5 72.8 72.8

13 60.0 33.3 58.0 50.3 63.8 63.8

14 58.6 30.0 56.6 48.9 62.4 62.4

Table 3.1 shows the makespan values and resource availability times for each



66 Chapter 3. Optimization of FMSs

������

������

�����������������	

�����	

�����
����������

������

�����


�����������������

�����	

����������������

������

���������������	

�����

�����������������	

������

��������������

������

�����

�����
�����	����

�����


������������
������

�����


�����������������

������

�����������	����

������

�����������������
������

������������

������

�����
�����	����

������

������������

�����

������������

�����


�����������������

�����	

����������������
������

���������������	

������

������

��������������
������

��������������

������

���������������	

������

���������������

������

���������������


�����

�������������
���

������

�����
�����	����

������

���
�	������
���	��������
���
��������
������������
���
�����
��

�����������������

�����

�����������������

������

�����
�����	����

������

���
����
���	�������
���
���

������������
�����������

�����������������

������

��������������

���������������	

������

������

��������������

�����	���������������


���������������


�����


�������������
���

������

��������������

�����

��������������

�������������
���

�����
�����	����

�����

�����������������

����������������

������

������

�����
�����	����

������

�����������������

�����	
����������������

������

����������������

�����


�������������
���

������

��������������

����

����

����������������

����

�����������
����

���	

�����������������	

����

����������������

���

����������	���	

����

���������������


���


����������������

���


��������������

����

����������	����

������

���������������

������

������������

�����������������

�����������	����

�����	

�����������������	

������

����������������

������
����������������

������

���������������


��������������������

������

�����������������
������

�����������������

������

�����������	����

������

��������������

�����	
�����
�����	����

�����
�����	����

������������

�����������������

�����

��������������

�����������������

�����������	����

������

����������������

������

�����������������

������

�����
�����	����

������

�����������������

�����	

����������������

������

����������������

�����


�������������
���

������

��������������

�����

��������������

�����

�������������
���

������

�����
�����	����

������

���
�����
��
�����
������
���
�����
��
������������
���
�����	��

�����������������
�����
�����	����

�������������
���

�����
�����	����

������������

������

�����������������	

������ �����������������

������

������������������

������

���������������


������

��������������

�����	

�����
�����	����

�����
�����
�����	����

������

����������������

�����

��������������

������ �����������������

������

�����������������

������

����������������

������ ��������������

������

��������������

������

���������������


�����������������

����������������

�����

��������������

�����

�������������
���

������

�����
�����	����

������

���������
��
��������

�����
���
��
���	��������
���
�����	��

�����������������

�����
�����	����

�������������
���

�����
�����	����

������������

������

�����������������
�����
�����	����

������

��������������

������

���������������	

������

���������������

������

���������������


�����

�������������
���

������

�����
�����	����

������

���
��������
������������
������������
���������	��
���
�	������

�����������������

�����

�����������������

������

�����
�����	����

������

���
��������
���	��������
���
��������
������������
���
��������

�����������������

��������������

���������������	

������
��������������

�����	

���������������


���������������


�����


�������������
���

������ ��������������

�����

��������������

�������������
���

�����
�����	����

�����������������

����������������

������

�����
����������

������

�����������������

�����	

����������������

������

����������������

�����


�������������
���

������

��������������

�����

��������������

�����

�������������
���

������

�����
�����	����

������

���
����
������������
��������

������������
���
��������

�����������������

�����
�����	����

�������������
���

�����
�����	����

����������������

������

��������������

�����
����������

�����������������

����������������

��������������

�����
�����	����

���������������	

�����

�����������������	

��������������������

������

��������������

������

���������������


������

�����������������	

������

����������	���	

������

���������������


������

���������������

������

���������������


�����

�������������
���

������

�����
�����	����

������

���
��������
���	�
������
���
�
������
���������	��
�����������

�����������������

�����

�����������������

������

�����
�����	����

������

���
������
���	�
������
���
�������
���	��������
�����������

�����������������

����������	���	

���������������


������

��������������

�����	

���������������


���������������

�����


�������������
���

������

��������������

�����

��������������

�������������
���

�����
�����	����

�����������������	

������

���������������

����

������������

������

���������������


����������	����

������

�������������
���

������

����������������

�����

�����
�����	����

�����


������������

�����


������������������

������
�����������
����

������������
�����
�����	����

������

�����������������	

������

��������������

������

��������������

������

���������������
�����������������	
�����
����������

�����

�����
����������

������

���������������


�����

��������������

������

�����������������

������

�����������������

������

����������������

������

��������������

������

��������������
������

���������������	

������

���������������

������
���������������


�����

�������������
���

������

�����
�����	����

������

���
�
������
���	�	���	��
���
�	������
�����
���
��
�����������

�����������������

�����

�����������������

������

�����
�����	����

������

�����������
���	����

���
��������
�����
��

����	������

�����������������

��������������

���������������	

������
��������������

�����	

���������������


���������������


�����


�������������
���

������

��������������

�����

��������������

�������������
���

�����
�����	����

�����������������

���������������� ������

�����
����������

������

�����������������

�����	

����������������

������

����������������

�����


�������������
���

������

��������������

�����

��������������

�����

�������������
���

������

�����
�����	����

������

���
�������
���	�����	��
���
��������
��������	��
����������������������������

�����
�����	����

�������������
���

�����
����������

���������������

������

��������������

�����
����������

������

�����������������	

������
����������	���	

������

���������������


������

���������������

������

���������������


�����

�������������
���

������

�����
�����	����

������

���
��������
���	�
���
��
���
�
������
������������
�����������

�����������������

�����

�����������������

������

�����
�����	����

������

���
��������
���	�
���
��
���
�
������
���	��������
�����������

�����������������

����������	���	

���������������


������

��������������

�����	

���������������


���������������


�����


�������������
���

������

��������������

�����

��������������

�������������
���

�����
�����	����

�����������������	

������

�����������������

������

������������

������������
�����
�����	����

�����


������������

�����������������

����������������

���������������	

�����������������

������������

���������������

������������

Figure 3.7: Optimization-space of the Twilight system of Figure 2.18. Nodes �lled in
green represent �nal states and the node �lled in cyan the initial state.



3.4 Optimizing the Twilight 67

Figure 3.8: Worst-case makespan activity sequence for the two-product Twilight system.

Figure 3.9: Best-case makespan activity sequence for the two-product Twilight system.

of the 14 �nal states. Observing the table we conclude that the range of the

makespan for a two-product twilight system is [62.4,74.3] and that the optimal

makespan of the systems is 62.4 time units and the worst-case makespan is

74.3 time units. Notice that resource availability times of the UR resource

determine the makespan. This is because it is used as the last resource in

each sequence. Notice also that in each �nal state the availability times of

the remaining resources take di�erent values. From the analysis we obtain

the following worst-case (wc) and best-case (bc) activity sequences, which

correspond to �nal states 7 and 14 respectively:

wc = 1:1 2:1 11:1 3:1 5:1 1:2 2:2 12:1 6:1 10:1 11:2 7:2 8:2 12:2 6:2 10:2

bc = 1:1 2:1 1:2 11:1 7:1 2:2 8:1 12:1 11:2 3:2 6:1 5:2 10:1 12:2 6:2 10:2

Figures 3.8 and 3.9 depict the Gantt charts of wc and bc respectively. The

horizontal axis represents the action executed in time and the vertical axis



68 Chapter 3. Optimization of FMSs

shows the horizontal lanes for each peripheral. Each horizontal lane of the

Gantt chart depicts two types of boxes. Thick boxes represent the execution of

an action by a peripheral and an action and a slim box represents the time the

corresponding resource is claimed by an activity.

Notice that in the case of wc (Figure 3.8) the activity sequence corresponds

to an almost complete sequential manufacturing of two products, where the

system waits until one product is �nished before starting to manufacture the

next. The robot arms UR and LR are used sequentially and (with the exception

of the input and output operations) that LR is entirely dedicated to product

1 and UR to product 2. On the other hand in sequence bc (Figure 3.9), the

use of LR and UR is intertwined to exploit the pipelining of activities and

thus resulting in a better performance. Moreover, we see that the claiming

and releasing of the Collision Area (CA) is not well utilized in sequence wc
since there are many gaps between accesses to the area in Figure 3.8. In the

best-case sequence bc we see in Figure 3.9 that the CA resource is claimed

uninterruptedly. This shows that the system is optimally utilizing the CA

which might therefore constitute a bottleneck.

3.5 Related Work
In Chapter 2 we discussed the speci�cation of �exible manufacturing systems

with focus on functional aspects such as their capabilities and their logistics

requirements. In this section, we complement this previous related work by

considering the temporal aspects of �exible manufacturing systems. In partic-

ular, we focus on performance analysis and makespan optimization of batches

of products in �exible manufacturing systems. In general, these performance

analysis and optimization techniques are either based on simulations or on

analytical techniques. We start by considering simulation-based approaches.

The CyPhySim tool [50], based on the Ptolemy II modeling language, and

the Simulink toolset of MATLAB [57] provide a number of simulations mod-

els, such as ordinary di�erential equations, discrete/hybrid event models and

discrete periodic systems, that enable system designers to study and analyze

the performance of a �exible manufacturing system. For instance, in [65] a

modeling approach in Simulink is proposed for the performance analysis of

production systems. This includes the modeling and analysis of components

such as robot arms and conveyor belts. Another example of a simulation-based



3.5 Related Work 69

method is [45] in which a re�nement-based design method using the POOSL

[78] language is proposed. It covers multiple model abstractions including

details on the timing information of the system which enable performance

analysis. All these simulation approaches target the investigation such as the

makespan of a batch. However, these simulations su�er from poor scalabil-

ity and long simulation times and are therefore not well-suited for design

exploration targeted in this thesis.

With respect to analytical techniques we can �nd many related approach in

the �eld of job-shop scheduling. In [6], [7] a survey of several approaches

using job shop scheduling to solve di�erent instances of manufacturing sys-

tems. In general, job shop related problems do not consider resource sharing,

multiple resource assignments or di�erent possible routings, which are impor-

tant aspects of �exible manufacturing systems addressed in this thesis. Most

closely related work in this �eld addressing the design exploration of �exible

manufacturing systems is [82]. Here a systematic methodology is proposed to

explore di�erent system con�gurations (i.e. number of resources, operation

assignment or shared areas). For each selected con�guration, a makespan

minimization problem is formulated in terms of a job shop scheduling problem.

The framework then relies on speci�c analysis techniques to �nd a solution

to that particular problem. With respect to functional requirements these are

posteriorly veri�ed by model-checking. In contrast, our approach is general

and can optimize any problem that can be speci�ed in our framework. Further

functional requirements are enforced by construction. We will discuss further

on heuristics and on the scalability of our approach in Chapter 4.

Makespan optimization is also address in the Petri Net domain. In [69] a Petri

Net model of a Multi-Robot System (MRS) is made where several robots operate

simultaneously on the same product. The goal is the design exploration of

di�erent con�gurations (i.e. number of resources and operation assignment).

The system in question exhibits many of the aspects of �exible manufacturing

systems such as resource sharing and multiple resource assignments. Resource

sharing and access to mutually exclusive resources (i.e. share areas/collision

areas) is taken into account implicitly by conservative execution time estimates

for the movement of each robot resource. Functional requirements are not

explicitly taken into account. In contrast, our approach takes explicitly resource

sharing into account as well as functional requirements, either in the design of

the activities or in the formulation of logistics requirements. In [48], [51], [61]



70 Chapter 3. Optimization of FMSs

Petri Net models are used for scheduling optimization of batches of products.

Here the solutions are not guaranteed to be optimal and functional properties

like safety are ignored. On the contrary, our approach guarantees optimal

solutions with respect to the speci�ed functional requirements.

3.6 Conclusions
In this chapter we introduced the necessary concepts and methods for the

optimization domain of our framework such that di�erent design speci�cations

can be evaluated in terms of their expected performance. Since we focus on

�exible manufacturing systems which often work with small product batches

and a mix of di�erent product types we introduced and de�ned the Batch

Makespan Optimization (BMO) problem. We provided a complexity analysis

and showed that the BMO falls within the class of NP-Hard problems. A

solution to the BMO problem can be obtained by �nding the activity sequence

with the lowest makespan within the language of activity sequences of the

speci�ed logistics automaton. In order to e�ciently compute the makespan of

an activity sequence, we introduced (max,+) algebra semantics for activities.

The temporal behavior of each activity is captured by a single (max,+) matrix

and an initial resource time-stamp vector. Themakespan of an activity sequence

is then e�ciently computed by a series of (max,+) matrix multiplications. A

(max,+) automaton was introduced for which each activity sequence represents

the correct manufacturing of a batch of products for which the completion

time is found by computing the norm of the resource time-stamp vector of its

�nal state. We showed that the (max,+) automaton is obtained by the means of

a (max,+) expansion of a logistics automaton with the (max,+) characterization

of all system activities and that a solution for the BMO problem can be obtained

by �nding an activity sequence in the optimization-space terminating in a

�nal state with the lowest resource time-stamp vector norm. Finally we use

the two-product Twilight system example to show how these concepts and

methods can be used in practice to compute best and worst-case makespan

values for a manufacturing system.



4 | Exploiting Constraints to
Reduce the Optimization-space

Chapters 2 and 3 introduced the speci�cation and optimization steps of our

design exploration and optimization framework for �exible manufacturing

systems. The framework is able to determine the optimal makespan activity

sequence for a batch of products of a given system speci�cation. The modular-

ity of the framework allows for the speci�cation of complex manufacturing

systems and their requirements. However, as it was shown in Chapter 3 the

Batch Makespan Optimization (BMO) problem induced by the speci�ed logis-

tics automaton, falls under the class of NP-Hard problems. As a consequence,

optimal solutions might take prohibitively long depending on the size of the

optimization-space induced by the optimization problem. To cope with this

complexity, in this chapter we will develop an algebra of logistics automata to

reason in a modular (algebraic) way about (behavioural and structural) equiv-
alence and inclusion relations between logistics automata. These allow us to

systematically relate their languages, their state-space and optimization-space

sizes and their solutions to the BMO problem. We will prove that these rela-

tions are substitutive under the MaxPlus;�, � and Tree (which we introduce

in this chapter) operators and discuss the commutativity, associativity and

distributivity of the operators.

To support optimization, we could develop heuristic approaches. These how-

ever, typically come at the cost of sub-optimal solutions and uncertainty re-

garding their quality. In this chapter we introduce a novel approach where we

exploit the modular constraints of the framework as an alternative to heuristic

solutions which allows us to i) compute optimal solutions of the BMO prob-

lem when the (additional) constraints are taken into account and ii) compute

bounds for the (original) BMO problem (without using the constraints). The



72 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

approach is inspired by industrial practices, where manufacturing systems are

typically over-speci�ed [74] and in which over-speci�cation is used implicitly

and unconsciously to deal with complexity. Examples of over-speci�cation

that we have encountered in industrial cases are disallowing multiple map-

ping possibilities for an operation or enforcing the static ordering of system

operations. Our approach allows system designers to deal consciously with

over-speci�cation by an explicit formalization in terms of constraints. Counter

intuitively, in general the constraining of a logistics automaton neither leads

to state-space reduction nor to optimization-space reduction. Therefore in this

chapter we establish su�cient conditions on logistics automata and constraints

that do lead to these reductions. To this end we extend our algebra with the no-

tions of nonpermutation-repulsiveness and permutation-attractiveness and prove
that the constraining of a nonpermutation-repulsing logistics automaton with

a permutation-attracting constraint always results in a reduced state-space

and optimization-space.

The chapter is organized as follows. In Section 4.1 we discuss the growth of the

optimization-space through an example of a bu�ered variant of the Twilight

system. In Section 4.2 we de�ne equivalence and inclusion relations on logistics

automata. In Section 4.3 we introduce the concept of Tree automata to capture

the worst-case optimization-space in terms of state-space size. In Section 4.4 we

discuss the substitutivity of the inclusion and equivalence relations under all

operators and the commutativity, associativity and distributivity properties of

the composition and constraining operators. Section 4.5 establishes and proves

the conditions under which the constraining of a logistics automaton leads to

state-space and optimization-space reduction. For this purpose we introduce

nonpermutation-repulsing and permutation-attracting automata. In Section

4.6 we show how the algebra is used to systematically relate logistics automata

regarding their languages, their state-space and optimization-space sizes and

their BMO solutions. In Section 4.7 we exemplify the application of the algebra

by using over-speci�cation as a means to reduce the optimization-space of the

bu�ered variant of the Twilight system. Finally, Section 4.8 discusses related

work and Section 4.9 concludes the chapter.

4.1 Growth of the Optimization-space
In Chapter 3 we discussed how to compute the optimization-space of a system
speci�cation via the (max,+) expansion of the logistics automaton encoding



4.1 Growth of the Optimization-space 73

the language of allowed activity sequences. This optimization-space is then

used to compute the makespan optimal activity sequence by searching for a

�nal state of the optimization-space which minimizes the norm of its resource

time-stamp vector and by computing an activity sequence leading to that �nal

state.

During (max,+) expansion the state-space of the logistics automaton can grow

and in some cases this growth can be exponential (see Section 3.3.2). The

growth of the optimization-space is due to the multiplication of states of

the logistics automaton in the (max,+) automaton during the expansion step.

Each state of the logistics automaton can occur multiple times in the (max,+)

automaton depending on the cumulative products of (max,+) matrices along

the paths from the initial state to this particular state. In the worst case the

(max,+) expansion generates a (max,+) automaton where each state has a single

incoming transition (this (max,+) automaton is then a Tree automaton as will

be discussed in Section 4.3). But also the nature of the system speci�cation

plays a role. For instance, the �exibility exhibited by a system (e.g. assignment

and routing choices) and its requirements (e.g. input/output orders and product

�ow) have an impact on the state-space of of the logistics automaton which

directly in�uences the size of the (max,+) automaton.

4.1.1 Bu�ered Twilight

To illustrate the growth of the optimization-space leading to infeasible op-

timization, we introduce a variation of the Twilight which we call Bu�ered
Twilight. Later in this section we will revisit this example and use constraints to

e�ectively reduce the optimization-space and compute bounds on the optimal

solution. In this variant, a Bu�er resource of capacity two is added to the

resources of the Twilight system. At each step in the product �ow (i.e. after the

input, conditioning or drilling of a product) the system is allowed to place/pick

a product on the Bu�er resource, thus allowing the out-of-order execution of

di�erent products, without relaxing the end-to-end FIFO requirements. For

example, after product i is inputted it can be placed on the bu�er after which

the following product i+ 1 can be inputted and placed on the COND resource

for conditioning. In this way product i+ 1 executes activity Condition before

product i, which is not possible in the regular Twilight system. We assume

that placing a product on the Bu�er resource after conditioning does not alter

its conditioning properties (i.e. the product remains aligned and at a correct

temperature).



74 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

Table 4.1: Size of the state-space of the logistics automaton and optimization-space of
the regular Twilight system for di�erent batch sizes.

State-Space Optimization-Space

Batch Size N. States N. Edges N. States N. Edges

2 43 65 170 243

4 178 484 1013 1820

6 323 690 1949 3588

8 487 9760 2885 5365

10 647 1229 3821 7124

Table 4.2: Size of the state-space logistics automaton and optimization-space of the
Bu�ered Twilight variant for di�erent batch sizes.

State-Space Optimization-Space

Batch Size N. States N. Edges N. States N. Edges

2 174 353 5227 8528

4 5700 13872 2344026 3960469

6 23464 57093 - -

8 - - - -

10 - - - -

To take advantage of the added Bu�er resource, the Bu�ered Twilight permits

the execution of mixed product types. In this variant, we assume that the

system is able to perform two distinct product �ows: the regular Twilight
product �ow (as discussed in Section 2.1.3) and a double pass product �ow
(where a product passes twice on the Drill processing unit for a more detailed

pro�ling). Further, we assume that the batch to be processed consists of an

alternating sequence of regular and double-pass products. When we continue

with this example in Section 4.7 we will give a detailed speci�cation.

Table 4.1 and Table 4.2 show the size of the state-space of the logistics automa-

ton and of the optimization-space for batches of 2, 4, 6, 8 and 10 products for

the regular Twilight system and for the Bu�ered Twilight systems. We denote

state-spaces and optimization-spaces that could not be computed by placing



4.2 Equivalence and Inclusion 75

a dash (-) in the respective N. States and N. Edges. Notice that in case of the

regular Twilight system the optimization-space seems to grow in linear pace,

while in case of the Bu�ered Twilight it seems to grow much faster. From a

batch of 2 products to a batch of 4 products the number of states jumps from

5227 to 3960469. Moreover, we are no longer able to compute the optimization-

space from 6 products onwards. This exempli�es the observation that in some

cases we might encounter an exponential growth of the optimization-space. In

Section 4.7 we will explain in detail the speci�cation of the Bu�ered Twilight

and use the algebra introduced in this chapter to prune the optimization-space

so that (sub-optimal) solutions for larger batch sizes can be found. For this

purpose we exploit over-speci�cation by further constraining the logistics

automata of the Bu�ered Twilight with additional non-essential constraints

formalized as constraint automata.

4.2 Equivalence and Inclusion

In this section we de�ne equivalence and inclusion relations on logistics au-

tomata that capture both behavioral and structural aspects. The behavioral

aspect relates the languages of the automata, while the structural aspect relates

their state-space sizes. We start by de�ning a strong equivalence relation on

logistics automata.

Definition 4.1 � (Equivalence). Let L1 = hS1;Act1;
:�!1;S01i and L2 =

hS2;Act2;
:�!2;S02i be logistics automata. Then L1 and L2 are equivalent,

written L1 � L2, if and only if Act1 = Act2 and either i) S1 = ; and
S2 = ; or ii) S01 = fs01g and S02 = fs02g and there exists a bijective

function F : S1 ! S2 satisfying:
1. F(s01) = s02 ;

2. For all s; s0 2 S1 and a 2 Act1 s
a�!1 s0 if and only ifF(s)

a�!2 F(s0).

It is easy to show that � is re�exive, transitive and symmetric. Hence:

Theorem 4.1 � is an equivalence relation on logistics automata.

Equivalent logistics automata encode the same languages, the proof of which

easily follows from De�nitions 2.10 and 4.1.



76 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

Lemma4.2 LetL1 andL2 be equivalent logistics automata. ThenL(L1) =
L(L2).

In correspondence to the equivalence relation we de�ne a partial order (inclu-

sion) relation on logistics automata.

Definition 4.2 � (Inclusion). Let L1 = hS1;Act1;
:�!1;S01i and L2 =

hS2; Act2;
:�!2;S02i be logistics automata. Then L1 is included in L2,

written L1 v L2, if and only if Act1 = Act2 and either i) S1 = ; or ii)
S01 = fs01g and S02 = fs02g and there exists a relation R � S1 � S2
which is injective (i.e. for all (s1; s2); (s01; s02) 2 R, s2 = s02 implies s1 = s01)
and satis�es the following conditions:

1. (s01 ; s02) 2 R;

2. For all (s1; s2) 2 R and a 2 Act1 if s1
a�!1 s01 (for some s01 2 S1)

then s2
a�!2 s02 (for some s02 2 S2) and (s01; s02) 2 R;

3. For all (s1; s2) 2 R if s2
:�!2 then s1

:�!1.

where injectivity

Theorem 4.3 v is a partial order relation on logistics automata. In partic-

ular L1 � L2 if and only if L1 v L2 and L2 v L1.

Proof. We will �rst shown that v is re�exive, transitive and anti-symmetric.

Re�exivity: Let L = hS;Act; :�!;S0i. If S = ; then by de�nition L v L.
Otherwise S0 = fs0g. In that case de�ne R = f(s; s) j s 2 Sg. R satis�es

conditions 1., 2. and 3. of De�nition 4.2 and hence also in this case L v L.

Transitivity: Let L1 = hS1;Act1;
:�!1;S01i, L2 = hS2;Act2;

:�!2;S02i and
L3 = hS3;Act3

:�!3;S03i be logistics automata such that L1 v L2 and L2 v
L3. Then clearly Act1 = Act3. Further either i) S1 = ; or S2 = ; or ii)
S01 = fs01g, S02 = fs02g and S03 = fs03g for some s01 2 S1, s02 2 S2 and
s03 2 S3. In case i) S1 = ; and thus L1 v L3 by de�nition. In case ii) there

exist relations R1 � S1�S2 and R2 � S2�S3 that both satisfy conditions 1.,
2. and 3. of De�nition 4.2. It is easy to verify that R2 �R1 also satis�es these

conditions, where composition R2 � R1 is de�ned by f(s1; s3) 2 S1 � S3 j
(s1; s2) 2 R1 and (s2; s3) 2 R2 for some s2 2 S2g.

Anti-symmetry: Let L1 = hS1;Act1;
:�!1;S01i and L2 = hS2;Act2;

:�!2;S02i



4.2 Equivalence and Inclusion 77

be logistics automata with L1 v L2 and L2 v L1. We have to show that

L1 � L2. Now clearly Act1 = Act2. Further either i) S01 = S02 = ;
or ii) S01 = fs01g and S02 = fs02g for some s01 2 S1 and s02 2 S2. In
case i) the result follows directly from De�nition 4.1. In case ii) relations

R1 � S1 � S2 and R2 � S2 � S1 exist, both satisfying conditions 1., 2. and 3.
of De�nition 4.2. Since R1 is injective #S1 � #S2 (where we let #S denotes

the number of states in S). Likewise #S2 � #S1 and thus #S1 = #S2. But
then both R1 and R2 must be bijective functions. We claim that R1 satis�es

conditions 1. and 2. of De�nition 4.1. Condition 1. is obviously true because

R1 satis�es condition 1. of De�nition 4.2. (Note that since R1 is a bijection

we can write R1(s01) = s02 as an alternative to (s01 ; s02) 2 R1). To establish

condition 2 (of De�nition 4.1) let s; s0 2 S1 and a 2 Act. We have to show that

s a�! s0 if and only if R1(s)
a�! R1(s0). The “only if” part readily follows from

condition 2. of De�nition 4.2. For the “if” part notice that R1(s)
a�! R1(s0)

implies that R2(R1(s))
a�! R2(R1(s0)) which implies that R1(R2(R1(s)))

a�!
R1(R2(R1(s0))) and R2(R1(R2(R1(s))))

a�! R2(R1(R2(R1(s0)))) etcetera.
Hence for any n � 1 (R2 � R1)n(s)

a�! (R2 � R1)n(s0). Now R2 � R1 is

an element of the �nite group of permutations on S1. So when we compute

(R2 �R1)1, (R2 �R1)2, � � � we must eventually get (R2 �R1)i = (R2 �R1)j

for some j > i. But then (R2 �R1)j�i
is the identify permutation I (for which

I(s) = s for each s 2 S1). Filling in j � i for n yields I(s) a�! I(s0) and
therefore s a�! s0.

Finally to show that L1 � L2 if and only if L1 v L2 and L2 v L1 we �rst

observe that the “if” part immediately follows from the proof of anti-symmetry.

For the “only if” part we claim that the bijective function (required in De�nition

4.1) also satis�es conditions 1., 2. and 3. of De�nition 4.2. �

If a logistics automaton is included in another logistics automaton, the size of

the state-space of the former never exceeds that of the latter, which follows

directly from the proof of anti-symmetry of the inclusion relation.

Lemma 4.4 LetL1 = hS1;Act1;
:�!1;S01i andL2 = hS2;Act2;

:�!2;S02i
be logistics automata such that L1 v L2. Then#S1 � #S2.

Automata inclusion carries over to language inclusion, which is stated in the

following lemma.



78 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

Lemma 4.5 LetL1 = hS1;Act1;
:�!1;S01i andL2 = hS2;Act2;

:�!2;S02i
be logistics automata such that L1 v L2. Then L(L1) � L(L2).

Proof. If S1 = ; then the claim holds vacuously. Otherwise S01 = fs01g and
S02 = fs02g. We then have to show that for all a 2 L(L1), a 2 L(L2). If
a = a1 � � � an 2 L(L1) then for some s1; � � � ; sn 2 S1, s01

a1�! s1 � � �
an�! sn

and sn 6�!. Since L1 v L2 there exists a relation R � S1 � S2 satisfying

the conditions of De�nition 4.2. Therefore for some s01; � � � ; s0n 2 S2, s02
a1�!

s01 � � �
an�! s0n and s0n 6�!. Hence a 2 L(L2). Notice that condition 3. of

De�nition 4.2 is essential for lemma to be true. In fact, this lemma is the key

reason why this condition was posed in the �rst place.

�

Example 4.1 Consider logistics automata Lf and Lg depicted in Figure

4.1. These automata have the same language fa; bg. It is easy to check that

Lf is included in Lg but that Lg is not included in Lf . Thus, even though

Lf and Lg have the same language they are not equivalent.

Example 4.2 Consider logistics automata Lh and Li depicted in Figure

4.2. It is easy to check that Li is included in Lh but Lh is not included

in Li. Lh and Li are therefore not equivalent, even though they have the

same language. Note that our inclusion relation is stronger than Milner’s

[59] simulation relation � for which both Lh � Li and Li � Lh hold. �
is a pre-order but not a partial order in the sense that Li 6� Lh, where �
denotes Milner’s strong bisimulation. The essential property that makes v
into a partial order is the property of injectivity.

Example 4.3 Consider logistics automata Lj and Lk depicted in Figure

4.3. Even though Lj � Lk (where � denotes Milner’s simulation relation),

Lj 6v Lk . This is because the inclusion relation enforces (through condition

3. of De�nition 4.2) all activity sequences of L(Lj) to be included in L(Lk).



4.2 Equivalence and Inclusion 79

a

b

a

b
s0

s1 s0

s1

s2

L f L g

Figure 4.1: Example logistics automata Lf and Lg . Lf is included in Lg , but Lf and
Lg are not equivalent.

a

b
a

a

b

b

c

c
s0

s1

s2

s3

s4 s5

s0 s1

s2

s3

L h L i

Figure 4.2: Example logistics automata Lh and Li. Li is included in Lh but Lh and Li
are not equivalent.

a a b

s0 s0
s1 s1 s2

L j L k

Figure 4.3: Example where logistics automaton Lj is not included in logistics automaton
Lk .



80 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

4.3 Worst-case Optimization-space
In this section we introduce Tree automata to capture the worst-case encoding

of the optimization-space and show that for any logistics automaton L, L v
MaxPlus(L) v Tree(L). We start by looking at the inclusion relation between

a logistics automaton and its corresponding (max,+) automaton.

Recall that each state of a logistics automaton can occur multiple times in the

(max,+) automaton, depending on the cumulative products of (max,+) matrices

along the paths from the initial state leading to this particular state. Therefore

the number of states of the (max,+) automaton is at least as large as the number

of states of the corresponding logistics automaton. Even stronger, the logistics

automaton is included in the (max,+) automaton as stated by the following

lemma.

Lemma 4.6 Let L be a logistics automaton. Then L v MaxPlus(L).

Proof. In case L has an empty set of states, the result holds vacuously. Other-

wise the proof is established by de�ning a relation relating each state s in L
to every state of the form (s; R) in MaxPlus(L). It is easy to verify that this

relation is injective and satis�es conditions 1., 2. and 3. of De�nition 4.2. �

Example 4.4 Consider the logistics automaton Lm and the (max,+) ma-

trices of activities a; b; c and d depicted in Figure 4.4. The corresponding

MaxPlus(Lm) ofLm is also depicted in Figure 4.4. Given thatm0 = (s0;0R)
we have m1 = (s1; [2; 2]); m2 = (s2; [5; 6]) and m3 = (s2; [7; 5]) accord-
ing to De�nition 3.1. Notice that Lm is included in MaxPlus(Lm). Note
also that due to the di�erent (max;+) matrices of activities c and d, state
s2 is duplicated in statesm2 andm3 of MaxPlus(Lm). On the other hand,

since activities a and b have equal (max;+) matrices s1 occurs only once

in the states of MaxPlus(Lm).

As discussed in Section 4.1, the size of the state-space of a (max,+) automaton

can grow exponentially in the size of the state-space of the corresponding logis-

tics automaton. It is exactly this reason that makes the makespan optimization

problem NP-hard. In the worst case each path in the logistics automaton in-

duces a unique cumulative product of (max,+) matrices. This worst case is



4.3 Worst-case Optimization-space 81

captured by what we will call the tree automaton Tree(L) of L and we will

show that indeed MaxPlus(L) v Tree(L).

Definition 4.3� (Tree automaton). LetL = hS;Act; :�!;S0i be a logistics
automaton. We �rst de�ne Paths(L) as the smallest set V satisfying:

S0 = fs0g
s0 2 V (1)

q s 2 V s a�! s0

q s a s0 2 V
(2)

Here s; s0 2 S and a 2 Act. Paths(L) contains sequences of elements in

S and Act. Each sequence is of the form s0 a0 s1 a1 � � � sn and encodes the

path from starting state s0 to state sn (via transitions labeled with activities

a0 � � � an�1 and intermediate states s1 � � � sn�1). In inference rule (2), q s
refers to a path that ends in state s. Note that q can refer to an empty

sequence of elements. Remark that Paths(L) = ; if S = ;. We now de�ne

Tree(L) as

(Paths(L);Act; :�!0;S 00)

where
:�!0= f(q s; a; q s a s0) 2 Paths(L)�Act� Paths(L) j s a�! s0g and

S 00 = ; if S0 = ; and S 00 = fs0g otherwise. Note that a Tree automaton is

a logistics automaton.

Lemma 4.7 Let L = hS;Act; :�!; S0i be a logistic automaton. Then

MaxPlus(L) v Tree(L).

Proof. The results follows directly in case S = ;. Otherwise S0 = fs0g
for which case we de�ne relation R � MaxPlusStates(L) � Paths(L) as the
smallest set V that satisfying the following inference rules:

S0 = fs0g
((s0;0R); s0) 2 V

(1)
((s; R); q s) 2 V s a�! s0

((s0;Ma 
 R); q s a s0) 2 V
(2)

It is not hard to show that R satis�es conditions 1., 2. and 3. of De�nition 4.2.

To prove that R is injective we have to show that any two pairs in R with

equal right-hand elements also have equal left-hand elements. We will do this

by induction on the depth of the derivation tree of one of the pairs. Notice

that the pairs are either both derived by inference rule (1) or both derived by

inference rule (2). In the �rst case their left-hand elements are obviously the



82 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

same. In the other case the pairs must be of the forms ((s0;Ma 
 R); q s a s0)
and ((s0;Ma 
 0R); q s a s0) and we further know that ((s; R); q s) 2 R and

((s; 0R); q s) 2 R. By induction we then have R = 0R. �

Even though for each logistic automaton L we have L v MaxPlus(L) v
Tree(L), we claim without proof that these automata encode precisely the

same language.

Lemma4.8 LetL be a logistic automaton. ThenL(L) = L(MaxPlus(L)) =
L(Tree(L)).

Example 4.5 Consider logistics automaton Lm depicted in Figure 4.4

again, together with its (max,+) and Tree counterparts. It is easy to see that

both Lm and MaxPlus(Lm) are included in Tree(Lm). Note that each state

in Tree(Lm) has a single incoming transition (with the exception of the

initial state). Therefore the tree automaton has the shape of a tree. Further

notice that each state in the tree automaton represents a unique path in the

original automaton. For instance t6 = s0 b s1 d s2 represent that Lm can

move from s0 to s2 via activities b and d and intermediate state s1. Finally
observe that the automata encode the same language fac; ad; bc; bdg and
note their increasing number of states.

A property that will appear to be very useful is that our equivalence and

inclusion relations are substitutive under both the MaxPlus and Tree operators:

Lemma 4.9 � (Substitutivity 1). Let L1 = hS1;Act1;
:�!1; S01i and L2 =

hS2;Act2;
:�!2; S02i be logistics automata. ThenL1 v L2 impliesMaxPlus(L1)

v MaxPlus (L2) and Tree(L1) v Tree(L2). Further L1 � L2 implies

MaxPlus(L1) � MaxPlus(L2) and Tree(L1) � Tree(L2).

Proof. Substitutivity of� follows directly from the substitutivity ofv. We �rst

prove substitutivity for the MaxPlus operator and then for the Tree operator.

MaxPlus: if S1 = ; the result follows immediately. Otherwise S01 = fs01g
and S02 = fs02g and an injective relation R � S1 � S2 exists that satis�es
conditions 1., 2. and 3. of De�nition 4.2. Based on R we de�ne a new relation

R0 � MaxPlusStates(L1) � MaxPlusStates(L2) as the smallest set V that

satis�es the following inference rules:



4.3 Worst-case Optimization-space 83

a

bs0
s1

c

d
s2

a

b

c

d

c

d

t 5

t 6

t 0

t 1

t 2

t 3

t 4
a

b

c

d
m0 m1

m2

m3

a

b

s0
s1

c

d
s2

a

b

c

d

c

d

t 5

t 6

t 0

t 1

t 2

t 3

t 4a

b

c

d

m0
m1

m2

m3

e

s3

e

m4

e

t 4

L m

L q Tree(L q)

Tree(L m )

Act m = { a, b, c, d}

Act q = { a, b, c, d, e}

MaxPlus(L q)

MaxPlus(L m )

Ma = Mb = Me =

"
2 �1
�1 2

#

Mc =

"
3 �1
4 3

#

Md =

"
3 5
�1 3

#

Figure 4.4: Example where logistics automataLm andLq are included in their (max;+)
and tree counterparts. Ma;Mb;Mc;Md and Me refer to the (max,+) matrices of activi-
ties a; b; c; d and e.



84 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

S01 = fs01g S02 = fs02g
((s01 ;0R); (s02 ;0R)) 2 V

(1)

((s1; R); (s2; R)) 2 V s1
a�!1 s01 s2

a�!2 s02 (s01; s02) 2 R
((s01;Ma 
 R); (s02;Ma 
 R)) 2 V

(2)

It is easy to show that R0
is injective and satis�es conditions 1., 2. and 3. of

De�nition 4.2.

Tree: if S1 = ; the result follows immediately. Otherwise S01 = fs01g
and S02 = fs02g and an injective relation R � S1 � S2 exists that satis�es
conditions 1., 2. and 3. of De�nition 4.2. Based on R we de�ne a new relation

R0 � Paths(L1)�Paths(L2) as the smallest set V that satis�es the following

inference rules:

S01 = fs01g S02 = fs02g
(s01 ; s02) 2 V

(1)

(q1 s1; q2 s2) 2 V s1
a�!1 s01 s2

a�!2 s02 (s01; s02) 2 R
(q1 s1 a s01; q2 s2 a s02) 2 V

(2)

Here s1; s01 2 S1 and s2; s02 2 S2 and a 2 Act1. It is easy to show that R0

satis�es conditions 1., 2. and 3. of De�nition 4.2. To show that R0
is injective

we show that any two pairs in R0
with equal right-hand elements also have

equal left-hand elements. To this end notice �rst that the pairs are either both

derived from rule (1) or both from rule (2). If the pairs are derived by inference

rule (1) then the left elements are obviously the same. If the pairs are derived

by inference rule (2) then they are of the forms (q1 s1 a s01; q2 s2 a s02) and
(q01 s1 a s01; q2 s2 a s02). This implies that (q1 s1; q2 s2) 2 R0

and (q01 s1; q2 s2) 2
R0

and by induction we then know that q1 = q2. Thus R0
is injective.

�



4.4 Composition and Constraining Operators 85

Substitutivity also holds for language equivalence, which follows directly

from Lemma 4.8.

Lemma 4.10 � (Substitutivity 2). Let L1 and L2 be logistics automata.

Then L(L1) � L(L2) implies L(MaxPlus(L1)) � L(MaxPlus(L2)) and
L(Tree(L1)) � L(Tree(L2)).

Example 4.6 Consider the logistics automata Lm and Lq and the (max,+)

matrices of activities a; b; c; d and e depicted in Figure 4.4. The corre-

sponding MaxPlus(Lm), MaxPlus(Lq), Tree(Lm) and Tree(Lq) are also

depicted in Figure 4.4. First notice that Lm v Lq . As stated in Lemma

4.9, MaxPlus(Lm) v MaxPlus(Lq) and Tree(Lm) v Tree(Lq). Note that
L(Lm) = L(MaxPlus(Lm)) = L(Tree(Lm)) = fac; ad; bc; bdg and that

L(Lq) = L(MaxPlus(Lq)) = L(Tree(Lq)) = fac; ad; bc; bd; eg (is consis-
tent with Lemma 4.8) and also L(MaxPlus(Lm)) � L(MaxPlus(Lq)) and
L(Tree(Lm)) � L(Tree(Lq)) (as stated in Lemma 4.10).

4.4 Composition and Constraining Operators
In Section 4.2 we de�ned equivalence and inclusion relations on logistics

automata to reason about their behavior and state-space size. In this section

we analyze the commutativity, distributivity and associativity properties of

the composition and constraining operators with respect to the equivalence

and inclusion relations.

The composition operator is both commutative and associative as claimed by

the following lemma:

Lemma 4.11 � (Commutativity and Associativity). Let L1; L2 and L3 be

logistics automata. Then L1 � L2 � L2 � L1 and (L1 � L2) � L3 �
L1 � (L2 � L3).

Proof. We will only demonstrate commutativity; associativity is proven in

a similar manner. Let L1 = hS1;Act1;
:�!1; S01i and L2 = hS2;Act2;

:�!2
; S02i be logistics automata. Below we will show that for all s 2 S1 and

t 2 S2, (s; t) 2 SL1�L2 i� (t; s) 2 SL2�L1 and that for all s01 2 S01 and

s02 2 S02 , (s01 ; s02) 2 S0L1�L2
i� (s02 ; s01) 2 S0L2�L1

(where SL1�L2 and

SL2�L1 denote the state-spaces of respectively L1�L2 and L2�L1 and where



86 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

S0L1�L2
and S0L2�L1

denote the sets of initial states of respectively L1 � L2
and L2 � L1). Now either i) SL1�L2 = ; or ii) S0L1�L2

= f(s01 ; s02)g (where
s01 2 S01 and s02 2 S02 ). In case i) SL2�L1 = ; and thus L1 �L2 � L2 �L1.

For case ii) de�ne F ((s; t)) = (t; s) for all s 2 S1 and t 2 S2. F is a bijective

function satisfying condition 1. of De�nition 4.1. Further (s; t) a�!L1�L2 (s0; t0)
i� (t; s) a�!L2�L1 (t0; s0) (where :�!L1�L2 and

:�!L2�L1 denote the transition

relations of L1 � L2 and L2 � L1 respectively) and thus condition 2. of

De�nition 4.1 is also satis�ed. Hence L1 � L2 � L2 � L1.

The facts that (s; t) 2 SL1�L2 i� (t; s) 2 SL2�L1 and that (s01 ; s02) 2 S0L1�L2
i� (s02 ; s01) 2 S0L2�L1

follow straightforwardly from the following property:

for all (s; t); (s0; t0) 2 S1 � S2 and a 2 (Act1 [Act2)�, (s; t)
a
�!

0
L1�L2 (s0; t0)

i� (t; s)
a
�!

0
L2�L1 (t0; s0) (where :�!0

L1�L2 and
:�!0
L2�L1 refer to the transitions

relations of L1 � L2 and L2 � L1 before pruning). This property is proved by

induction on the structure of a:
� In case a = �, (s; t) ��!

0
L1�L2 (s0; t0) and thus (s; t) = (s0; t0). But then

also (t; s) = (t0; s0) and (t; s) ��!
0
L2�L1 (t0; s0).

� Otherwise a = ba for some b 2 (Act1 [ Act2)� and (s; t)
ba
�!

0

L1�L2

(s0; t0). This implies (s; t)
b
�!

0

L1�L2 (s00; t00) a�!
0
L1�L2 (s0; t0) (for some

(s00; t00) 2 S1 � S2). By induction we then have (t; s)
b
�!

0

L2�L1 (t00; s00).
Showing that also (t00; s00) a�!

0
L2�L1 (t0; s0) depends onwhether inference

rule (1), (2) or (3) of De�nition 2.11 is used in the derivation:

(1) In that case a 2 Act1nAct2, s00
a�!1 s0 and t00 = t0. But then via

inference rule (3) we have (t00; s00) a�!
0
L2�L1 (t0; s0).

(2) In that case a 2 Act1\Act2 then s00 a�!1 s0 and t00
a�!2 t0. But then

via inference rule (2) we have (t00; s00) a�!
0
L2�L1 (t0; s0).

(3) In that case a 2 Act2nAct1, t00
a�!2 t0 and s00 = s0. But then via

inference rule (1) we have (t00; s00) a�!
0
L2�L1 (t0; s0).

�

Another very useful property is that our equivalence and inclusion relations

are substitutive under the composition operator:



4.4 Composition and Constraining Operators 87

Lemma 4.12 � (Substitutivity 3). Let L1 = hS1;Act1;
:�!1; S01i and L2 =

hS2;Act2;
:�!2; S02i and L = hS;Act; :�!; S0i be logistics automata. Then

L1 v L2 implies L1�L v L2�L and L1 � L2 implies L1�L � L2�L.

Proof. Substitutivity of � follows directly from the substitutivity of v. To
prove substitutivity of v assume L1 v L2. Firstly remark that ActL1�L =

ActL2�L. Further let SL1�L and SL2�L denote the state-spaces of L1 � L
and L2 � L respectively and distinguish two cases. Either i) SL1�L = ; or
ii) S0L1�L = f(s01 ; s0)g (where s01 2 S01 and s0 2 S0). In case i) obviously

L1�L v L2�L. In case ii) an injective relationR � S1�S2 exists satisfying
conditions 1., 2. and 3. of De�nition 4.2. Based on R we de�ne a new relation

R0 = f((s1; s); (s2; s)) j (s1; s) 2 SL1�L; (s2; s) 2 SL2�L and (s1; s2) 2 Rg.
Since R is injective, R0

is injective as well. We still have to show that R0

satis�es conditions 1., 2. and 3. of De�nition 4.2. For this let
:�!0
L2�L denote

the transition relation of L2 � L before pruning (corresponding to relation
:�!

in De�nition 2.11).

For condition 1. we know (s01 ; s0) 2 SL1�Lwhich implies that (s01 ; s0)
:�!�
L1�L

(s1; s) for some s1 2 S1 and s 2 S for which s1 6
:�!1 and s 6

:�!. Since (s01 ; s02) 2
R, (s02 ; s0)

:�!0�
L2�L (s2; s) for some s2 2 S2 such that (s1; s2) 2 R (which can

be proven by induction on the number of steps to transit from (s01 ; s0) to (s1; s)
distinguishing the di�erent inference rules in De�nition 2.11). Now s2 6

:�!2
since s1 6

:�!1 and hence (s02 ; s0) 2 SL2�L. Therefore ((s01 ; s0), (s02 ; s0)) 2 R0

and thus condition 1. is satis�ed.

For condition 2. assume ((s1; s); (s2; s)) 2 R0
, a 2 ActL1�L and (s1; s)

a�!L1�L (s01; s0) for some (s01; s0) 2 SL1�L. We have to show that (s2; s)
a�!L2�L

(s02; s0) for some (s02; s0) 2 SL2�L such that ((s01; s0); (s02; s0)) 2 R0
. For this

we distinguish three cases, dependent on which inference rule of De�nition

2.11 was used to derive (s1; s)
a�!L1�L (s01; s0):

(1) In case rule (1) was used a 2 Act1nAct and s1
a�!1 s01 and s0 = s.

Since (s1; s2) 2 R we know s2
a�!2 s02 for some s02 2 S2 such that

(s01; s02) 2 R. Since a 2 Act2nAct rule (1) can be applied again to derive

(s2; s)
a�!

0
L2�L (s02; s). To see that (s02; s) 2 SL2�L �rst notice that

(s02 ; s0)
:�!0�
L2�L (s02; s). Further since (s01; s) 2 SL1�L we know that

(s01; s)
:�!�
L1�L (s001; s00) for some s001 2 S1 and s00 2 S for which s001 6

:�!1
and s00 6 :�!. Now since (s01; s02) 2 R, (s02; s)

:�!0�
L2�L (s002; s00) for some



88 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

s002 2 S2 such that s002 6
:�!2 (which can be proven by induction on the

number of steps to transit from (s01; s) to (s001; s00) distinguishing the

di�erent inference rules in De�nition 2.11). Therefore (s02; s) 2 SL2�L

which implies (s2; s)
a�!L2�L (s02; s). Hence also ((s01; s); (s02; s)) 2 R0

holds.

(2) In case rule (2) was used a 2 Act1 \ Act and s1
a�!1 s01 and s a�! s0.

Since (s1; s2) 2 R we know s2
a�!2 s02 for some s02 2 S2 such that

(s01; s02) 2 R. Since a 2 Act2 \ Act rule (2) can be applied again to

derive (s2; s)
a�!

0
L2�L (s02; s0). The proof that (s02; s0) 2 SL2�L and

((s01; s0); (s02; s0)) 2 R0
is the same as in case (1).

(3) In case rule (3) was used a 2 ActnAct1 and s1 = s01 and s a�! s0. Since
a 2 ActnAct2 rule (3) can be applied again to derive (s2; s)

a�!
0
L2�L

(s2; s0). The proof that (s2; s0) 2 SL2�L and ((s1; s0); (s2; s0)) 2 R0
is

the same as in case (1).

For condition 3. assume ((s1; s); (s2; s)) 2 R0
, and (s2; s)

:�!L2�L. This implies

that either s2
:�!2 or s

:�!. Since (s1; s2) 2 R we then know that either s1
:�!1

or s :�!. Since (s1; s) 2 SL1�L, (s1; s)
:�!�
L1�L (s01; s0) for some s01 2 S1 and

s0 2 S for which s01 6
:�!1 and s0 6 :�!. So (s1; s) 6

:�!L1�L implies s1 6
:�!1 and s 6 :�!.

Vice versa s1
:�!1 or s

:�! implies (s1; s)
:�!L1�L. Hence (s1; s)

:�!L1�L.

�

Example 4.7 Consider the logistics automata L1, L2 and L in Figure 4.5.

L1 is included in L2 and because of this L1 �L is included in L2 �L (as is

claimed in Lemma 4.12).

Example 4.8 Consider the logistics automata L1, L2 and L in Figure 4.6,

where L1 is included in L2. The resulting composite automata L1 � L and

L2�L are both empty and thus L1�L is included in L2�L indeed. Here

we notice that this substitutivity result (Lemma 4.12) would not hold if we

had required Act1 � Act2 instead of Act1 = Act2 in De�nition 4.2; the

proof of the lemma would fail for condition 2), inference rule 3. For instance

for Act1 = fa; bg and Act2 = fa; b; cg, L1 would then be included in L2
but L1 � L has language fabcg while L2 � L is empty.



4.4 Composition and Constraining Operators 89

a

b
s0

s1

a

s0
s1

a

b
s0

s1

s2

a

s  00
s  11

a

b
s  00

s  11

s  22

L 1

L 2

L

L 1 ! L

L 2 ! L
Act 2 = { a, b}

Act 1 = { a, b}

Act = { a, b}

s2

Figure 4.5: Substitutivity example where composed automaton L1 � L is included in
composed automaton L2 � L.

a

s0
s1

s2

b

a b

s0 s1 s2
s3

c

a b

s  00
s  11

s   22

a b

s  00
s  11

s   22

a

s0
s1

s2

b

c

s3

L 1
Act 1 = { a, b, c}

L 2
Act 2 = { a, b, c}

L
Act = { a, b, c}

L 1 ! L

L 2 ! L

Figure 4.6: Substitutivity example where composed automaton L1 � L is only included
in composed automaton L2 � L because Act1 = Act2.



90 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

From Lemma 2.1 it follows straightforwardly that both language inclusion

and language equivalence are substitutive under the composition operator:

Lemma 4.13 � (Substitutivity 4). Let L1; L2 and L be logistics automata.

ThenL(L1) � L(L2) impliesL(L1�L) � L(L2�L) andL(L1) = L(L2)
implies L(L1 � L) = L(L2 � L).

Example 4.9 Consider the logistics automata L1, L2 and L in Figure 4.5

again. Since L(L1) � L(L2) we also have L(L1 � L) � L(L2 � L) (as is
claimed in Lemma 4.13). Also consider the logistics automata L1, L2 and L
in Figure 4.6. Since L(L1) � L(L2) we also have L(L1 � L) � L(L2 � L)
(as is claimed in Lemma 4.13). Here we notice that this substitutivity results

would not hold if we had required Act1 � Act2 instead of Act1 = Act2
in De�nition 4.2; even though Lemma 2.1 would still hold, Lemma 4.13

would not. For instance for Act1 = fa; bg and Act2 = fa; b; cg, L1 would

be included in L2 but L1 � L has language fabcg while L2 � L is empty.

Constraining is a commutative operator and distributes over automaton com-

position, which is claimed in the following lemmas:

Lemma 4.14 � (Commutativity). Let L be a logistics automaton and let

C1 and C2 be two constraints on L. Then

(L � C1) � C2 � (L � C2) � C1

Proof. The proof is similar to the proof of Lemma 4.11. �

Lemma 4.15 � (Distributivity). Let L1 and L2 be two logistics automata

and C be a constraint on both L1 and on L2. Then

(L1 � L2) � C � (L1 � C)� (L2 � C)

Proof. The proof is similar to the proof of Lemma 4.11.

�



4.4 Composition and Constraining Operators 91

Another very useful property is that our equivalence and inclusion relations

are substitutive under the constraint operator:

Lemma 4.16 � (Substitutivity 5). Let L1 and L2 be logistics automata and

letC be a constraint onL1 andL2. ThenL1 v L2 impliesL1 � C v L2 � C
and L1 � L2 implies L1 � C � L2 � C .

Proof. The proof is similar to the proof of Lemma 4.12.

�

From Lemma 2.2 it follows straightforwardly that both language inclusion and

language equivalence are substitutive under the constraint operator:

Lemma 4.17 � (Substitutivity 6). Let L1; L2 be logistics automata and let

C be a constraint on both L1 and L2. Then L(L1) � L(L2) implies L(L1 �
C) � L(L2 � C) and L(L1) = L(L2) implies L(L1 � C) = L(L2 � C).

b c

a

b

c

d

a

a

b

b

c

c

d

d
a

b

c

d
a

b

c

d

a

b
c

d
a

b
c

d

e

f

e

f

Act 1 = { a, b, c, d, e, f} Act 2 = { a, b, c, d, e, f}Act c = { b, c}
L 1 L 2C

L 1 ! C L 2 ! C

Figure 4.7: Example of the substitutivity property in the constraining operation using
logistics automata L1 and L2, constraint automaton C and the resulting constrained
automata L1 � C and L2 � C .



92 Chapter 4. Exploiting Constraints to Reduce the Optimization-space

Example 4.10 Consider logistics automata L1 and L2 and constraint

automata C depicted in Figure 4.7. First notice that L1 v L2 and ActL1 =
ActL2 and ActC � ActL1 . Consider constrained automata L1 � C and

L2 � C also depicted in Figure 4.7. Note that L1 � C v L2 � C which

should indeed be the case according to Lemma 4.16.

4.5 Optimization-space Reduction
In this section we discuss how to reduce

1
the optimization-space by constrain-

ing logistics automata. For this purpose we establish su�cient conditions on

L and C so that L � C v L. First note that the application of a constraint to a

logistics automaton, results in a subset of the original language. This follows

immediately from Lemma 2.2:

Lemma 4.18 � (Language constraining). Let L be a logistics automaton

and let C be a constraint on L. Then L(L � C) � L(L).

Example 4.11 Consider again logistics automata L1 and L2 and con-

straint automataC depicted in Figure 4.7. Notice thatL(L1) = fabcd; cdabg,
L(L1 � C) = fabcdg and L(L2 � C) = fabcd; efg and that L(L1 � C) �
L(L2 � C) (which should indeed be the case according to Lemma 4.5 since

L1 � C v L2 � C). Further observe that L(L1 � C) � L(L1) (which
follows from Lemma 4.18).

Lemma 2.3 tells us that the application of a constraint will reduce the language

induced by the constrained automaton. This does not imply however that

L � C is included in L. In general even MaxPlus(L � C) is not included in

MaxPlus(L) and Tree(L � C) is not included in Tree(L). This implies that

constraining does not in general lead to optimization-space reduction, not even

a reduction of the worst-case optimization-space (see Example 4.12).

Example 4.12 Consider logistics automaton Lk , constraint automata C1
andLk � C1 depicted in Figure 4.8. ObviouslyLk � C1 6v Lk , MaxPlus(Lk �
C) 6v MaxPlus(Lk) and Tree(Lk � C) 6v Tree(Lk). This is caused by

constraint C1 which is non-deterministic.

1

With state-space reduction we mean that the state-space will not grow.



4.5 Optimization-space Reduction 93

Figure 4.8: Example showing that the constraining of Lk with a non-deterministic
constraint C1 results in a constrained automaton Lk � C which is not included in Lk .
The same holds true for their (max;+) and tree counterparts.

Example 4.12 shows that non-deterministic constraints can increase the worst-

case optimization space (which is the state-space of the Tree automaton). On

the other hand, if a constraint is deterministic this worst-case optimization

space will not increase, which follows from the following lemma.

Lemma 4.19 Let L = hS1;Act1;
:�!1; S01i be a logistics automaton and

C = hS2;Act2;
:�!2; S02i a constraint on L. If C is deterministic, then

Tree(L � C) v Tree(L).

Proof. Let Tree(L) = hPaths(L);Act1;
:�!
Tree(L); S0

Tree(L)i and Tree(L � C) =
hPaths(L � C);Act1;

:�!
Tree(L�C); S0

Tree(L�C)i. Notice that these tree automata

have the same alphabets. Now either i) Paths(L � C) = ; or ii) S0
Tree(L�C) =

(s0; c0) and S0
Tree(L) = s0 where s0 2 S01 and c0 2 S02 . In case i) Tree(L �

C) v Tree(L) holds by de�nition. Otherwise, we de�ne R � Paths(L �
C)� Paths(L) as the smallest set V satisfying the following inference rules:


































































































































































































	Introduction
	Manufacturing Systems
	Flexible Manufacturing Systems
	Specification and Design Exploration of FMSs
	Problem Statement and Contributions
	Thesis Overview

	Modular Specification of FMSs
	The Twilight System
	System Purpose

	Plant

	Optimization of FMSs
	Batch Makespan Optimization

	Exploiting Constraints to Reduce the Optimization-space

