Quadcopters
History

• Also known as quadrotors
• First flying quadrotor:
 – 11 November 1922
 – Etienne Oehmichen

Image: blogger.com
History

• Quadrotors overtaken by helicopters due to workload of the pilot.
• Some experimental aircraft in the 1950’s
Now

• Increasingly more popular
 – Unmanned and small
 – Very maneuverable
 – Mechanically simple
 – Electronic stabilization

• Used for many applications
 – Photography, inspections, military … toys.
Definitions

• Roll, pitch and yaw
• Lift, drag, trust and weight
How does a quadcopter work?

• 2 pairs of counter rotating motors
• Roll, pitch and yaw control:
 – By varying motor speed
How does a quadcopter work?

• Roll and pitch
• Differential thrust

\[
L_1 + L_2 + L_3 + L_4 = L \\
(L_1 - \alpha) + (L_2 - \alpha) + (L_3 + \alpha) + (L_4 + \alpha) = L \\
(L_1 - \alpha) + (L_2 + \alpha) + (L_3 - \alpha) + (L_4 + \alpha) = L
\]

• Image: pitch forward
How does a quadcopter work?

- Yaw
- Differential torque

\[
L_1 + L_2 + L_3 + L_4 = L \\
T_1 + T_2 + T_3 + T_4 = 0
\]

- Image: rotate clockwise
How does a quadcopter work?

• Requires control of the motors
• Requires (electronic) stabilization:
 – Due to aerodynamic effects (vortices)
 – Differences between motors
 – Weight distribution

• To do this:
 – Requires speed controllers
 – Requires sensors and MCU
 – Understanding of the forces
How does a quadcopter work?

• System overview:

- GPS
- Flight controller with:
 - 3-axis gyro
 - 3-axis accelerometer
 - 3-axis magnetometer
 - Barometer
- Motor control
- RC Receiver
How does a quadcopter work?

• Main components:
 – Frame
 – 4 motors and their propellers
 – 4 speed controllers
 – Electronic stabilization
 – Battery
 – Receiver / other control
Pitch and roll

- Lift is always perpendicular to the flow direction, in our case the rotor plane.

- The gravity is always perpendicular to the ground.
Pitch and roll

• Lift and gravity with pitch and roll.
 – More lift required
 – Horizontal lift component provides thrust
 – When thrust overcomes drag the quadcopter moves.
Pitch and roll

- Gyro can sense the rotation around the pitch or roll axis.
 - Unit is rotation in degrees per second.
 - Integrating this yields pitch or roll angle.

- Accelerometer can measure gravitational components.
 - Pitch and roll angle can be calculated with three axes, two per angle (x,z) and (y,z).

- But....
Pitch and roll

• Why will this not work well in practice?
• Gyro’s (especially MEMS and Piezo):
 – Have a noisy signal
 – Have an offset (temperature, other effects)
 – This results in accumulating error in the integration.
 – Gyro’s can be used for short corrections
• Accelerometers:
 – The forces described previously are only in uniform linear motion.
 – In turns there are more forces due to horizontal lift component.
Pitch and roll

- When a plane/quadcopter turns it has to roll.
- This results in a horizontal and vertical lift component.
- The horizontal lift component gives a centripetal force.
- The weight and centrifugal force result in cancel out the lift (plane does not climb)
- This is more commonly known as g-force or load factor.
- This can be estimated by:

\[g = \frac{1}{\cos(\alpha)} \]

For example 30 degree turn is 1.15g
- The accelerometer will measure this in the Z-axis, the other axes are 0.
Pitch and roll

• A quadcopter not only has this for roll but also for pitch in sideways movements.

• How to solve this:
 – Combine both the gyro and accelerometer information using sensor fusion.
 – This also makes measurements less sensitive to noise (for example due to vibration).
Yaw

• Turning around the top-axis.
• Usually compensated with gyros (short term compensation). Again: drift.
• For absolute yaw control: use a magnetometer
 – Basically an electronic compass.
Altitude

- Can be determined with distance sensors (e.g. ultrasone or infrared)
- Can be determined with barometric sensors
Local control

• Keeps the quadcopter stable.
• Requires sensor fusion
 – (Extended) Kalman filter
 – Direct Cosine Matrix
 – Linear complementary filter
Local control

• Various control schemes are used by open source projects:

![Diagram of various PID control structures](Image: IEEE: Build your own quadrotor)
Navigation

– GPS
– Visual servoing (markers)
– SLAM
– Lidar
TU/e designed quadcopter

- Optional to use, you can design your own quadcopter.
- 17 minutes flying time
- Max. 1 kilogram of payload
- Component list available
- Open source software (MultiWII)
TU/e designed quadcopter
TU/e designed quadcopter
TU/e designed quadcopter

- MultiWII pro flightcontroller
- Flightcontroller communicates via bluetooth
- Can be flown manually with RC controller
- Sensors:
 - 3-axis gyro (*ITG3205*)
 - 3-axis accelerometer (*BMA180*)
 - 3-axis magnetometer (*HMC5883L*)
 - Barometer (*BMP085*)
 - GPS receiver (*MTK3329*)
 - 2 Ultrasound distance sensors (*HC-SR04*)
- Motor RPM counter
TU/e designed quadcopter

- Computer vision:
 - BeagleBoard XM
 - 5 Megapixel leopard camera (*LI-5M03*)
 - VGA webcam with wide-angle lens
TU/e designed quadcopter

• Cost quadcopter including shipping
 – Approximately 500 dollar (385 euro)
 • Frame
 • 2 Batteries
 • RC transmitter and receiver
 • 4 Speed controllers
 • 5 Motors (1 spare)
 • Propellers (12 pieces)
 • Flight controller
 • Battery charger + power supply for charger
 • GPS
 • Bluetooth
 • 2 Distance sensors

• Beware of taxes and customs fees!
TU/e designed quadcopter

- Cost vision boards 310 dollar (240 euro)
 - Beagleboard XM
 - 5 Megapixel Leopard camera
 - Wide-angle lens
 - VGA webcam
 - Wide angle lens
 - WIFI dongle

- Beware of taxes and customs fees!
Questions?

• Thanks for your attention