Sensors and Actuators
Introduction to sensors

Sander Stuijk
(s.stuijk@tue.nl)
BRIDGE CIRCUITS

(Chapter 5.9-5.12)
Interface circuits

- resistance of linear resistive sensor: \(R(x) = R_0(1+x) \)
 - range of \(x \) depends on type of sensor

- requirements on signal conditioners for resistive sensors
 - electric voltage or current must be applied
 - supply and output voltage/current are limited by self-heating

- current excitation
 - maximal self-heating when \(R \) maximal
 - maximal sensitivity when \(R \) maximal

- voltage excitation
 - when does maximal self-heating error occur?
 - when is sensitivity maximal?
 - when is non-linearity error minimized?
Voltage divider – self-heating error

- sensor driven by voltage source
 - sensor: R
 - load resistance: R_r

- when does maximal self-heating error occur?
 - power consumption by sensor
 \[
 P = \left(\frac{V_r}{R + R_r} \right)^2 R
 \]

- maximal power consumption occurs when
 \[
 \frac{dP}{dR} = 2 \frac{V_r}{R + R_r} \left(\frac{-V_r}{(R + R_r)^2} R + \left(\frac{V_r}{R + R_r} \right)^2 \right) = 0 \Rightarrow R_r = R
 \]

- self-heating error is maximal when $R_r = R$
- power consumption is then equal to
 \[
 P = \left(\frac{V_r}{R_r + R_r} \right)^2 R_r = \frac{V_r^2}{4R_r}
 \]
Voltage divider – self-heating error

example – dimension voltage divider for temperature measurement

- measure temperature from 0°C to 100°C
- PT 100 sensor \((R_0=100\,\Omega\) and \(\alpha=0.00389\,\Omega/\Omega/K\) at 0°C)
- maximal power dissipation in sensor is 1mW
- voltage source \(V_r = 5V\)
- **what resistance \(R_r\) must be used for this voltage divider?**
- power dissipation in sensor

\[
\left(\frac{V_r}{R + R_r} \right)^2 R < 1mW
\]

- maximal dissipation when \(R=R_r\)

\[
\left(\frac{V_r}{R_r + R_r} \right)^2 R_r < 1mW \Rightarrow R_r > \frac{V_r^2}{2 \cdot 0.001W} = \frac{(5V)^2}{2 \cdot 0.001W} = 6.25k\Omega
\]

- sensor range is from 100Ω to 139Ω
- always \(R < R_r\), thus power dissipation always below limit
Voltage divider – linearity

- measure fractional change in resistance x
 - sensor: $R = R_0(1+x)$
 - load resistance: $R_r = R_0k$

- output voltage of the circuit
 $$v_o = \frac{R}{R_r + R}V_r = \frac{R_0(1+x)}{R_0k + R_0(1+x)}V_r = \frac{1+x}{k+1+x}V_r$$

- response becomes linear when $R_r >> R$ (i.e. $k >> 1+x$)
Increasing k is good for linearity, but what about sensitivity?
Voltage divider – sensitivity

- measure fractional change in resistance x
 - sensor: $R = R_0(1+x)$
 - load resistance: $R_r = R_0k$

- sensitivity

$$S = \frac{dv_o}{dx} = \frac{d}{dx} \left(\frac{1+x}{k+1+x} V_r \right) = \frac{(k+1+x)-(1+x)}{(k+1+x)^2} V_r = \frac{k}{(k+1+x)^2} V_r$$

- maximal sensitivity

$$\frac{dS}{dk} = 0 \implies \frac{d}{dk} \left(\frac{k}{(k+1+x)^2} V_r \right) = 0$$

$$(k+1+x)^2 - 2k(k+1+x) = \frac{x+1-k}{(k+1+x)^4} = 0 \implies k = x+1$$

- maximal sensitivity reached when $R = R_r$
- same situation as when self-heating error is maximal
- maximal transfer of power (at $R = R_r$) leads to
 - maximal sensitivity and maximal self-heating
Voltage divider – sensitivity and linearity

- for many sensors $x < 1$
 - sensitivity largest for $k = 1$
 - sensitivity may be considered constant if maximal value of $x << 1$
Voltage divider – output voltage

- maximal sensitivity when $k = 1$
- output voltage

\[
V_o = \frac{1+x}{k+1+x} V_r = \frac{1+x}{2+x} V_r
\]

- offset voltage present in output
Voltage divider

- disadvantages of voltage dividers
 - may have offset voltage at desired reference point (e.g. temperature)

- Wheatstone bridge
 - offset voltage can be removed at desired reference temperature
 - sign of output indicates direction of change with respect to reference point (e.g. temperature)

\[R_1 \cdot V_r \cdot R_2 \cdot R_3 = R_0(1+x) \cdot R_4 \cdot v_o \]
Wheatstone bridge – balance measurement

- **Balance or null** measurement method
 - R_4 adjusted till $V_o = 0$
 - Balance condition $v_o = 0 \Rightarrow \frac{R_3}{R_2} = \frac{R_4}{R_1} \iff R_3 = R_4 \frac{R_2}{R_1}$

- Advantages of null measurement method
 - Insensitive to V_r fluctuations
 - Sensor may have non-linear resistance-input relation

- Fast auto balancing method for R_4 is required
Wheatstone bridge – balance measurement

- DAC outputs two current sources
 - I_o – current corresponding to digital input
 - I_o' – current corresponding to complement of digital input
- bridge imbalance exceeding comparator threshold changes counter
- change in counter value \rightarrow change in current \rightarrow change in voltages
 - on one arm the voltage increases
 - on other arm the voltage decreases
- process of changing counter continues till balance is restored
Wheatstone bridge – deflection measurement

- deflection measurement method
 - measure voltage difference on bridge arms
 - measure current through a detector between both arms
- deflection measurement is much faster than null measurement

- bridge output voltage

\[v_o = \left(\frac{R_3}{R_3 + R_2} - \frac{R_4}{R_4 + R_1} \right) V_r \]

- assume bridge balanced \((v_o = 0)\) when \(x = 0\)
- bridge is then balanced when

\[k = \frac{R_1}{R_4} = \frac{R_2}{R_0} \]

- what is \(v_o\) in terms of \(k\), \(x\) and \(V_r\)?
Wheatstone bridge – deflection measurement

- bridge output voltage in terms of k, x, and V_r

\[
\begin{align*}
 v_o &= \left(\frac{R_3}{R_3 + R_2} - \frac{R_4}{R_4 + R_1} \right) V_r \\

 R_3 &= R_0(1 + x) = R_0 + R_0 x
\end{align*}
\]

\[
\Rightarrow v_o = \left(\frac{R_0 + R_0 x}{R_0 + R_0 x + R_2} - \frac{R_4}{R_4 + R_1} \right) V_r
\]

\[
\Leftrightarrow v_o = \left(\frac{R_0}{R_0 + R_0 x} + \frac{R_0}{R_0 x + R_2} \right) - \frac{R_4}{R_4 + R_1} \right) V_r
\]

\[
\Leftrightarrow v_o = \left(\frac{1}{1 + x + k} - \frac{1}{1 + k} \right) V_r
\]

\[
\Leftrightarrow v_o = \frac{(1 + x)(1 + k) - (1 + x + k)}{(k + 1)(k + 1 + x)} V_r
\]

\[
\Leftrightarrow v_o = \frac{k x}{(k + 1)(k + 1 + x)} V_r
\]
Wheatstone bridge – deflection measurement

- Bridge output voltage

 \[v_o = \frac{kx}{(k+1)(k+1+x)} V_r \]

- Output proportional to x when x << k+1

- Change in \(R_3(x) \) must be small compared to \(R_1/R_4 \) (k)

- Sensitivity of the bridge

 \[S = \frac{dv_o}{dx} = \frac{d}{dx} \left(\frac{kx}{(k+1)(k+1+x)} V_r \right) \]

 \[= \left(\frac{k}{(k+1)(k+1+x)} - \frac{kx}{(k+1)(k+1+x)^2} \right) V_r \]

 \[= \frac{k(k+1)}{(k+1)(k+1+x)^2} V_r = \frac{k}{(k+1+x)^2} V_r \]
Wheatstone bridge – deflection measurement

- maximal sensitivity
 \[
 \left. \frac{dS}{dk} \right|_{x=0} = 0 \Rightarrow \frac{d}{dk} \left(\frac{k}{(k+1)^2} V_r \right) = 0
 \]
 \[
 \Rightarrow \frac{1-k}{(k+1)^3} V_r = 0 \Rightarrow k = 1
 \]

- max sensitivity when
 - \(R_1 = R_4 \)
 - \(R_2 = R_3 \)

- bridge output voltage (k=1)
 \[
 v_o = \frac{x}{4+2x} V_r \approx \frac{x}{4} V_r
 \]

- \(x \) in denominator can be ignored when \(x \ll 1 \)
- otherwise more advanced signal processing required
Wheatstone bridge versus voltage divider

- sensitivity
 \[S = \frac{k}{(k+1+x)^2} V_r \]
- max sensitivity when
 \(k=1: R_1=R_4=R_2=R_0 \)
- output voltage (\(k=1 \))
 \[v_o = \frac{x}{4+2x} V_r \approx \frac{x}{4} V_r \]
- bridge removes DC offset

\[S = \frac{k}{(k+1+x)^2} V_r \]
\(k=1: R_1=R_0 \)
\[v_o = \frac{1+x}{2+x} V_r \approx \frac{1}{2} V_r + \frac{x}{2} V_r \]
Wheatstone bridge versus voltage divider

- sensitivity is equal, but DC offset makes response look “flat”
- output of Wheatstone bridge can easily be boosted with amplifier
Wheatstone bridge versus voltage divider

- Output voltage \((k=1)\)
 \[
 v_o = \frac{x}{4+2x} V_r \approx \frac{x}{4} V_r
 \]

- Response of bridge output to change in \(x\) only half of response when using divider

- Can we change the bridge to get the same response?
 - Use operational amplifier (also amplifies non-linearity error)
 - Use an additional sensor

\[
\begin{align*}
R_3 &= R_0(1+x) \\
R_2 &= R_0(1+x)
\end{align*}
\]
Wheatstone bridge

- **increase sensitivity** by adding sensor on other side of opposing arm
- **bridge output voltage**

\[
V_o = \left(\frac{R_3}{R_3 + R_2} - \frac{R_4}{R_4 + R_1} \right) V_r
\]

\[
R_1 = R_3 = R_0(1 + x) = R_0 + R_0 x
\]

\[
\Rightarrow V_o = \left(\frac{R_0 + R_0 x}{R_0 + R_0 x + R_2} - \frac{R_4}{R_4 + R_0 + R_0 x} \right) V_r
\]

\[
\Leftrightarrow V_o = \left(\frac{1 + x}{1 + x + R_2/R_0} - \frac{1}{1 + R_0/R_4 x + R_0/R_4} \right) V_r
\]

\[
\Rightarrow V_o = \left(\frac{1 + x}{1 + x + k} - \frac{1}{1 + x + k} \right) V_r
\]

\[
\Rightarrow V_o = \left(\frac{x}{2 + x} V_r \right)
\]

\[
k = 1
\]

\[
\Rightarrow V_o \approx \frac{x}{2} V_r
\]
Wheatstone bridge

- **measure difference** by adding sensor on same side of opposing arm
- bridge output voltage

\[
R_3 = R_0(1 + x_1), \quad R_4 = R_0(1 + x_2)
\]

\[
v_o = \left(\frac{R_3}{R_3 + R_2} - \frac{R_4}{R_4 + R_1} \right) V_r
\]

\[
\Rightarrow v_o = \left(\frac{1 + x_1}{1 + x_1 + k} - \frac{1 + x_2}{1 + x_2 + k} \right) V_r
\]

\[
\Rightarrow v_o = \left(1 + x_2 + k + x_1 + x_1 x_2 + k x_1 - 1 - x_1 - k x_1 - x_2 + x_2 x_1 + x_2 k \right) V_r
\]

\[
\Rightarrow v_o = \left(1 + x_2 + k + x_1 + x_1 x_2 + k x_1 - 1 - x_1 - k x_1 - x_2 + x_2 x_1 + x_2 k \right) V_r
\]

\[
\Rightarrow v_o = \frac{k(x_1 - x_2)}{(1 + x_1 + k)(1 + x_2 + k)} V_r
\]

when \(x_1, x_2 << k + 1 \)

\[
\Rightarrow v_o = \frac{k(x_1 - x_2)}{(1 + k)^2} V_r
\]
Wheatstone bridge

- different sensor placements in Wheatstone bridge allow
 - increasing sensitivity
 - create differential sensor
 - create averaging sensor
 - compensate error sources (strain, temperature, ...)

\[V_r \]

\[V_r = \frac{kR_0}{3} \]

\[R_1 = \frac{R_0}{3} \]

\[R_2 = R_0(1-x) \]

\[R_3 = R_0(1+x) \]

\[R_4 = R_0(1+x_1)/3 \]

\[R_5 = R_0(1+x_2)/3 \]

\[R_6 = R_0(1+x_3)/3 \]