Sensors and Actuators
Introduction to sensors

Sander Stuijk
(s.stuijk@tue.nl)
CAPACITIVE SENSORS

(Chapter 3.2, 7.2, 9.2, 10.6, 13.1, 13.2)
Sensor classification – type / quantity measured

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Quantity</th>
<th>Position, distance, displacement</th>
<th>Flow rate / Point velocity</th>
<th>Force</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistive</td>
<td></td>
<td>Magnetoresistor</td>
<td>Thermistor</td>
<td>Strain gage</td>
<td>RTD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potentiometer</td>
<td></td>
<td></td>
<td>Thermistor</td>
</tr>
<tr>
<td>Capacitive</td>
<td></td>
<td>Differential capacitor</td>
<td></td>
<td>Capacitive strain gage</td>
<td></td>
</tr>
<tr>
<td>Inductive and electromagnetic</td>
<td>Eddy currents</td>
<td>LVDT</td>
<td>Load cell + LVDT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hall effect</td>
<td></td>
<td>Magnetostriction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetostriction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-generating</td>
<td></td>
<td>Thermal transport + thermocouple</td>
<td>Piezoelectric sensor</td>
<td>Pyroelectric sensor</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>PN junction</td>
<td>Photoelectric sensor</td>
<td></td>
<td>Diode</td>
<td>Bipolar transistor</td>
<td></td>
</tr>
</tbody>
</table>

- reactance variation sensors (capacitive and inductive sensors)
- typically requires no physical contact
- exerts minimal mechanical loading
Capacitive sensors
Capacitive sensor

- charge on two plates separated by a dielectric
 \[Q = C \cdot V \]

- current \(I \) is the change in charge \(Q \) per time unit
 \[I = \frac{dQ}{dt} = C \frac{dV}{dt} \]

- device possibly usable as sensor (why?)
 - device produces electric signal
 - \(C \) depends on physical device properties

- alternating current (AC) signal required to produce output signal
 - resistive sensors operate using direct current signal
 - capacitor requires potentially more complex interface circuit
Capacitive sensor

- capacitance defined by \(Q = C \cdot V \) and \(I = C \frac{dV}{dt} \)
- capacitance depends on physical properties
 \[C = \varepsilon_r \varepsilon_0 \frac{A}{z} \]
 - \(\varepsilon_0 \) – dielectric constant for vacuum (8.85 pF/m)
 - \(\varepsilon_r \) – relative dielectric constant
- device usable as sensor (why?)
 - changing \(A, z, \varepsilon_r \) changes capacitance
 - change in capacitance can be sensed
- capacitance of a cylindrical capacitor
 \[C = \varepsilon_r \varepsilon_0 \frac{2\pi \cdot l}{\ln(b/a)} \]
Capacitive level sensor

example – capacitive level sensor

- sensor based on two concentric cylinders \((d_1 = 8\text{mm}, d_2 = 40\text{mm}) \)
- cylindrical storage tank \((L = 50\text{cm}, H = 1.2\text{m}) \)
- stored liquid has \(\varepsilon_r = 2.1 \)

what is the sensitivity of the sensor \((\text{pF}/\text{L}) \) when used in the storage tank?

hint: capacitance of two cylindrical concentric electrodes is equal to

\[
C = \varepsilon_r \varepsilon_0 \frac{2\pi \cdot h}{\ln(d_2 / d_1)}
\]
Capacitive level sensor

example – capacitive level sensor

- capacitance of two cylindrical concentric electrodes
 \[C = \varepsilon_r \varepsilon_0 \frac{2\pi \cdot h}{\ln(d_2 / d_1)} \]

- relative permittivity varies with height
 \[C = \varepsilon_0 \frac{2\pi \cdot (\varepsilon_1 h_1 + \varepsilon_2 h_2)}{\ln(d_2 / d_1)} \]

- use: \(h_2 = h \) (height of liquid), \(h_1 = H - h \)

- capacitance is equal to
 \[C = \frac{2\pi}{\ln(d_2 / d_1)} (\varepsilon_0 (H - h) + \varepsilon_0 \varepsilon_r h) = \frac{2\pi}{\ln(d_2 / d_1)} (\varepsilon_0 H + \varepsilon_0 (\varepsilon_r - 1)h) \]

- min, max capacitance
 \[C_{\text{min}} = \frac{2\pi \varepsilon_0 H}{\ln(d_2 / d_1)} = \frac{2\pi (8.85 \text{ pF/m})(1.2\text{ m})}{\ln(40\text{ mm}/8\text{ mm})} = 41.46 \text{ pF} \]
 \[C_{\text{max}} = \frac{2\pi \varepsilon_0 \varepsilon_r H}{\ln(d_2 / d_1)} = 41.46 \text{ pF} \cdot 2.1 = 87.07 \text{ pF} \]
Capacitive level sensor

example – capacitive level sensor

- volume of the storage tank

\[V = \frac{\pi \cdot L^2}{4}, \quad H = \frac{\pi \cdot (0.5m)^2}{4} \cdot (1.2m) = 235.6L \]

- sensitivity

\[S = \frac{C_{\text{max}} - C_{\text{min}}}{V} = \frac{87.07\, pF - 41.46\, pF}{235.6L} = 0.19\, pF/L \]
Dielectric material

example – capacitive level sensor

![Capacitive Level Sensor Diagram]
Capacitive sensor

- capacitance depends on physical properties
 \[C = \varepsilon_r \varepsilon_0 \frac{A}{z} \]
 - \(\varepsilon_0 \) – dielectric constant for vacuum (8.85 pF/m)
 - \(\varepsilon_r \) – relative dielectric constant

- device usable as sensor
 - changing \(A, z, \varepsilon_r \) changes capacitance
 - change in capacitance can be sensed

- capacitive level sensor changes \(\varepsilon_r \)
 - sensor assumes that \(\varepsilon_r \) is a (material) constant

\[C_x = \frac{2\pi}{\ln(d_2 / d_1)} \left(\varepsilon_0 H + \varepsilon_0 (\varepsilon_r - 1)h \right) = C_0 (1 + x) \]
Dielectric material

- Dielectric materials are electrical insulators (share pair of electrons) with a high polarizability.
- Dielectric materials have a permanent dipole moment.
- External field aligns molecules (dielectric polarization).
 - Dipoles form electric field opposite to external field.
 - Capacitance depends on properties of dielectric material.

- Relative dielectric constant depends on:
 - Material (air, water, ...)
 - Temperature.
Dielectric material

- example – temperature sensor based on barium titanate (BaTiO$_3$)
- relative permittivity of ferromagnetic materials
 \[\varepsilon_r = \frac{k}{T - T_c} \]
 - T_c – Curie temperature
 - k – material depend constant

- ε_r (BaTiO$_3$) = 1250 at 20°C
- ε_r (BaTiO$_3$) = 10000 at 120°C

- (+) sensitive sensor (TCR = -7%/°C @ 20°C)
- (+) simple to integrate in silicon process
Dielectric material

example – relative humidity (RH) sensor (HC1000)

- relative permittivity
 - ε_r (air) = 1
 - ε_r (water) = 88 at 0°C, ε_r (water) = 55.33 at 100°C
- use dielectric that absorbs and exudes water without hysteresis
- capacitance of the sensor
 $$C = C_{76}[1 + \alpha_{76}(RH - 76)]$$
 - $C_{76} = 500\text{pF}$
 - $\alpha_{76} = (2900) \times 10^{-6}/(\%\text{RH})$

(-) sensitivity 1.40pF/\%RH
(+) linearity error < 1.5\%RH
(+) temperature dependency $\Delta RH = -0.003 \cdot RH \cdot (T - 20^\circ C)$
Capacitive sensor

- Capacitance depends on physical properties:
 \[C = \varepsilon_r \varepsilon_0 \frac{A}{z} \]
 - \(\varepsilon_0 \) – dielectric constant for vacuum (8.85 pF/m)
 - \(\varepsilon_r \) – relative dielectric constant
- Device usable as sensor:
 - Changing \(A, z, \varepsilon_r \) changes capacitance
 - Change in capacitance can be sensed
- Capacitance defined by:
 \[Q = CV \quad \text{and} \quad I = C \frac{dV}{dt} \]
Capacitor – impedance and admittance

- Impedance (reluctance to charge flow)
 \[Z = R + jX \]
 - \(R \) – resistance, \(X \) – reactance
- Impedance of a capacitor
 \[Z = \frac{1}{j\omega C} = \frac{1}{j2\pi fC} \]
- Admittance (conductance)
 \[Y = \frac{1}{Z} = \frac{1}{R + jX} \]
- Admittance of a capacitor
 \[Y = j\omega C \]
- Interface circuit measures impedance (through voltage) or admittance (through current)
 \[V = ZI = \frac{1}{j\omega C} I \]
 \[I = \frac{V}{Z} = YV = j\omega CV \]
Capacitive sensor – sensitivity

- measure impedance (voltage drop) or admittance (measure current)
 \[V = \frac{1}{j \omega C} I \quad I = j \omega CV \quad C = \varepsilon_r \varepsilon_0 \frac{A}{z} \]

- sensor is linear when changing \(\varepsilon_r \) or \(A \) while measuring admittance
 - \(C \) linear with respect to \(\varepsilon_r \) and \(A \)
 - sensitivity does not depend on changing parameter
 \[\frac{dC}{d\varepsilon_r} = \varepsilon_0 \frac{A}{z} \quad \frac{dC}{dA} = \varepsilon_r \varepsilon_0 \frac{1}{z} \]

- sensor is non-linear when changing \(z \)
 \[\frac{dC}{dz} = \frac{d}{dz} \varepsilon_r \varepsilon_0 \frac{A}{z} = -\varepsilon_r \varepsilon_0 \frac{A}{z^2} = -\frac{C_0}{z} \]
Capacitive sensor

- sensor is non-linear when changing z
 \[
 \frac{dC}{dz} = d \varepsilon_r \varepsilon_0 \frac{A}{z} = -\varepsilon_r \varepsilon_0 \frac{A}{z^2} = -\frac{C_0}{z}
 \]

- solution: allow only small displacement of plates
 - total distance between plates ($d + z$)
 - small displacement (z) allowed

- capacitance equal to
 \[
 C = \varepsilon_r \varepsilon_0 \frac{A}{d + z} \\
 x = \frac{z}{d}
 \]
 \[
 \Rightarrow C = \varepsilon_r \varepsilon_0 \frac{A}{d(1 + x)}
 \]

- sensitivity
 \[
 \frac{dC}{dz} = -\frac{\varepsilon_r \varepsilon_0 A}{d^2 (1 + x)^2} = -\frac{C_0}{d(1 + x)^2} \approx -\frac{C_0}{d}\left(1 - 2x + 3x^2 - 4x^3 + \ldots\right)
 \]

- non-linear sensitivity (sensitivity depends on z through x)
- sensitivity increases when d and z are small (choose small d)
- distance d limited by dielectric breakdown (30kV/cm for air)
Capacitive sensor

- sensor is non-linear when changing z
 \[
 \frac{dC}{dz} = \frac{d}{dz} \varepsilon_r \varepsilon_0 \frac{A}{z} = -\varepsilon_r \varepsilon_0 \frac{A}{z^2} = -\frac{C_0}{z}
 \]

- alternative: non-linearity improved by adding dielectric
 - two capacitors C_z and C_0 in series
 \[
 C = \frac{C_0 C_z}{C_0 + C_z} = \varepsilon_r \varepsilon_0 \frac{A}{(d + \varepsilon_r z)}
 \]
 - sensitivity of series capacitor
 \[
 \frac{dC}{dz} = -\frac{\varepsilon_r \varepsilon_0 A \varepsilon_r}{(d + \varepsilon_r z)^2} = -\frac{\varepsilon_r^2 \varepsilon_0 A}{d^2} \frac{1}{(1 + \frac{\varepsilon_r z}{d})^2}
 \]
 \[
 \approx -\frac{C_0}{d} \varepsilon_r \left[1 - 2\varepsilon_r \frac{z}{d} + 3 \left(\varepsilon_r \frac{z}{d}\right)^2 - \ldots\right]
 \]
 - first term independent of z
 - sensor is more linear then sensor without dielectric material
Differential capacitor

- differential sensor with two capacitors
 \[C_1 = \frac{\varepsilon_r \varepsilon_0 A}{d + z} \quad C_2 = \frac{\varepsilon_r \varepsilon_0 A}{d - z} \]

- voltage drop across capacitors
 \[V_1 = \frac{1}{j \omega C_1} V_r = \frac{C_2}{C_1 + C_2} V_r \quad V_2 = \frac{C_1}{C_1 + C_2} V_r \]

- substitute capacitor values
 \[V_1 = \frac{1/(d - z)}{1/(d + z) + 1/(d - z)} V_r = \frac{d + z}{2d} V_r \quad V_2 = \frac{1/(d + z)}{1/(d + z) + 1/(d - z)} V_r = \frac{d - z}{2d} V_r \]

- use differential amplifier to subtract voltages
 \[V_1 - V_2 = \left(\frac{d + z}{2d} - \frac{d - z}{2d} \right) V_r = \frac{z}{d} V_r \]

- linear relation between displacement (z) and output voltage
Differential capacitor versus single capacitor
Differential capacitor

- differential capacitor with changing area
 \[C_1 = \varepsilon \frac{w(z_0 + z)}{d} = \varepsilon \frac{w \cdot z_0}{d} \frac{z_0 + z}{z_0} = C_0 \frac{z_0 + z}{z_0} \]
 \[C_2 = \varepsilon \frac{w(z_0 - z)}{d} = \varepsilon \frac{w \cdot z_0}{d} \frac{z_0 - z}{z_0} = C_0 \frac{z_0 - z}{z_0} \]

- voltage difference
 \[V_1 = \frac{C_2}{C_1 + C_2} V_r = \frac{(z_0 - z)/z_0}{(z_0 + z)/z_0 + (z_0 - z)/z_0} V_r = \frac{z_0 - z}{2z_0} V_r \]
 \[V_2 = \frac{C_1}{C_1 + C_2} V_r = \frac{(z_0 + z)/z_0}{(z_0 + z)/z_0 + (z_0 - z)/z_0} V_r = \frac{z_0 + z}{2z_0} V_r \]
 \[V_1 - V_2 = \left(\frac{z_0 - z}{2z_0} - \frac{z_0 + z}{2z_0} \right) V_r = -\frac{z}{z_0} V_r \]

- linear relation between displacement \((z)\) and output voltage
Differential capacitor

example – capacitive rotation sensor

- two equal sized parallel circular plates separated by an insulator
- one pair of plates acts as rotor, other pair as stator
- sensor is placed in bridge circuit

show that the output voltage v_o is proportional to the angle of rotation Θ

![Diagram of differential capacitor with rotor and stator plates, insulator gap, and bridge circuit](image)
Differential capacitor

example – capacitive rotation sensor

- ¼ overlap when $\Theta = 0$ rad

$$A = \frac{\pi R^2}{4}$$

- capacitance is then equal to

$$C = \frac{\varepsilon_r \varepsilon_0 \pi R^2}{4d}$$

- maximal overlap when $\Theta = \pi/2$ rad
- capacitance C_1 and C_3 are maximal
- C_1 and C_3 have ½ overlap, hence

$$C_1 = C_3 = \frac{\varepsilon_r \varepsilon_0 \pi R^2}{4d} \left(1 + \frac{2\Theta}{\pi} \right)$$

- capacitance C_2 and C_4 have no overlap at $\Theta = \pi/2$ rad, hence

$$C_2 = C_4 = \frac{\varepsilon_r \varepsilon_0 \pi R^2}{4d} \left(1 - \frac{2\Theta}{\pi} \right)$$
Differential capacitor

example – capacitive rotation sensor

- capacitance proportional to angle

\[
C_1 = C_3 = \frac{\varepsilon_r \varepsilon_0 \pi R^2}{4d} \left(1 + \frac{2\Theta}{\pi}\right)
\]

\[
C_2 = C_4 = \frac{\varepsilon_r \varepsilon_0 \pi R^2}{4d} \left(1 - \frac{2\Theta}{\pi}\right)
\]

- capacitors in bridge circuit

\[
V_0 = \left(\frac{C_1}{C_1 + C_2} - \frac{C_4}{C_3 + C_4}\right) V_r = \left(\frac{C_1 - C_4}{C_1 + C_2}\right) V_r
\]

\[
= \frac{\left(1 + \frac{2\Theta}{\pi}\right) - \left(1 - \frac{2\Theta}{\pi}\right)}{\left(1 + \frac{2\Theta}{\pi}\right) + \left(1 - \frac{2\Theta}{\pi}\right)} V_r = \frac{2\Theta}{\pi} V_r
\]

- output proportional to angle
Fringe effect – error source

- capacitance of a flat plate capacitor is equal to
 \[C = \varepsilon_r \varepsilon_0 \frac{A}{d} \]
- only when \(d \ll A \)
- error source (fringe effect)
 - electric field does not end at edge
 - field bends outside the plates
 - real capacitance larger than formula suggests
- reduce fringe effect with outer guard ring at same voltage
Stray capacitance – error source

- only one of two capacitor plates can be grounded
- other plate can form capacitor with any nearby conductor
- **stray capacitance** exists between each pair of conductors
- stray capacitance reduces sensitivity of the sensor
- stray capacitance can be reduced using **shielding**
- shielding creates another capacitor in parallel with the sensor
Stray capacitance – error source

- capacitor has high output impedance
 \[Z = \frac{1}{j\omega C} \]
- requires
 - processing circuit with high input impedance
 - sensor used at high frequency
- frequency is limited by stray capacitances
- solution: place processing circuit close to sensor
Signal processing

- variable reactance sensors
 - single varying capacitance \((C_0 \pm \Delta C)\)
 - differential capacitance \((C_0 + \Delta C, C_0 - \Delta C)\)

- voltage / current relation for capacitor
 \[
 I = C \frac{dV}{dt} \Leftrightarrow I = j\omega CV
 \]

- AC voltage or current source needed
- typically \(C_0 \sim 100\) pF
- excitation frequency typically between 10 kHz to 100 MHz to get reasonable impedance
Signal processing

- Output voltage of sensor
 \[v_o = v_1 - v_2 = \frac{z}{d} v_r \]
 \[v_r = V_r \sin(\omega t) \] \[\implies v_o = \frac{z}{d} V_r \sin(\omega t) \]

- Information present in
 - Amplitude (magnitude)
 - Phase shift (direction)
Signal processing

- parallel plate capacitor
 \[C_x = \varepsilon_r \varepsilon_0 \frac{A}{d(1+x)} = \frac{C_0}{1+x} \]
 - non-linear relation between capacitance and distance

- circuit for linear impedance changes
 - R provides bias current path
 - allows \(C_x \) to discharge
 - impedance \(R \gg \text{impedance } C_x \) at excitation frequency
 - output voltage
 \[v_o = -\frac{Z_x}{Z} v_e = -\frac{C}{C_0} (1+x) v_e \]
 - linear relation between output voltage and displacement
 - offset voltage present in output
Signal processing

- capacitive level sensor
 \[C_x = \frac{2\pi}{\ln(d_2 / d_1)} \left(\varepsilon_0 H + \varepsilon_0 (\varepsilon_r - 1)h \right) = C_0 (1 + x) \]

- circuit for linear admittance changes
 - R provides bias current path
 - output voltage
 \[v_o = -\frac{C_x}{C} v_e = -\frac{C_0}{C} (1 + x)v_e \]
 - linear relation between output voltage and input signal x
 - offset voltage present in output
 - circuit known as charge amplifier
 - response larger compared to measuring voltage drop over \(C_x \)
Signal processing

- stray capacitance influences output signal
- output voltage (ignoring stray capacitance)
 \[v_o = -\frac{C_x}{C} v_e \]
- stray capacitance \(C_{s1} \) and \(C_{s2} \) do not affect output voltage
 - \(C_{s1} \) in parallel with \(v_e \)
 - both ends of \(C_{s2} \) at same voltage
- output voltage (considering stray capacitance)
 \[v_o = -\frac{(C_x + C_{s3})}{C} v_e \]
- shielding reduces \(C_{s3} \)