OO – Venus Exploration

Sander Stuijk
Venus Exploration – A mysterious planet…
Venus Exploration – Craters on the Lavinia Planitia
Venus Exploration – Exploring the planet surface
Venus exploration
Assignment

- use robots find rock samples scattered on planet
- collect all rock samples in the lab

constraints
- robots cannot climb mountains
- when a robot falls of a cliff, the robot is lost

objective
- team that collects all rock samples in least amount of time is the winner
- maximal time 8 minutes, 2 minutes penalty per rock left on planet
Terrain

- terrain boundary marked with black tape
- cliffs marked with black tape
- hills are large objects that
 - reflect ultra-sound
 - absorb most infrared light
- rock samples
 - reflect infrared light
- lab
 - squared container (20 cm x 20cm x 2.5 cm)
 - ramp (angle less then 30 degrees) available on one side
Robot

- Arduino robot kit
 - gripper kit
 - ultrasound distance sensor
 - digital encoders on both wheels
 - ZigBee wireless communication
Material

- list of material per team
 - 2 robots
 - 2 USB cables
 - 2 ACDC 7,5V power supplies
 - 10 AA rechargeable batteries
 - 2 battery charger

- all material must be returned in same state as it has been received
- any components added by a team must be removed
- nothing may be soldered or otherwise permanently connected to the robot
Grading

- design report - 15% of the final result (before May 7, 11:59 pm)
 - system-level description of proposed system
 - detailed specification of the components
 - test and integration plan for components and system
 - detailed planning of the design and development process

- video presentation (week 8) - 15% of the final result (before June 22, 11:59pm)
 - demonstrate your design
 - explain design concept and motivate main design decisions

- final report (week 8) - 70% of the final result (before June 25, 11:59 pm)
 - description of system-level design
 - description of all components
 - discuss the integration of components
 - results from tests carried out to verify the correct operation of the system
Grading

- each team member must contribute to both reports
- contribution of each team member must be clearly marked
- contribution in both reports must reflect technical contribution of team member

- reports must be submitted through Canvas
- reports and videos are subject to peer review
 - each student must review 1 design report, 1 video, and 1 final report
 - reviews are due one week after the submission deadlines
 - you will only receive your grade for 5XIB0 when you submit all your reviews
 - responsible lecturer uses peer reviews as input to determine grade
Grading

- reports and video are peer reviewed on a number of different criteria
- each criterion receives a relative score
 - 2 points – reviewed report is better compared to your own report
 - 1 point – reviewed report is equal to your own report
 - 0 points – reviewed report is worse compared to your own report
- score is computed over all criteria through standard averaging
- score of each team is normalized with respect to all teams
- highest and lowest scored report are graded to map reports of all teams to a grade

<table>
<thead>
<tr>
<th>Design report</th>
<th>Criteria</th>
<th>Ratings</th>
<th>Pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the report provide a clear problem statement that highlights the key challenges that need to be addressed in this design project?</td>
<td>Better 2.0 pts</td>
<td>Equal 1.0 pts</td>
<td>Worse 0.0 pts</td>
</tr>
<tr>
<td>Does the report contain a clear discussion on the system-level design of the system including a discussion on the trade-offs that have been made for each component in the system? i.e., the system level description of the system should consider multiple different scenarios including possible fault situations.</td>
<td>Better 2.0 pts</td>
<td>Equal 1.0 pts</td>
<td>Worse 0.0 pts</td>
</tr>
<tr>
<td>Does the report contain a clear and concise description on the working of each component in the system including a clear definition of the interfaces of each component? i.e., after reading the discussion on the components you should be able to assess whether all components can successfully be interconnected.</td>
<td>Better 2.0 pts</td>
<td>Equal 0.0 pts</td>
<td>Worse 0.0 pts</td>
</tr>
<tr>
<td>Does the report contain a clear and realistic test plan? i.e., a test plan should define tests (and expected outcomes) for testing the components as well as a series of tests that define how the component integration is tested. Note that the test plan does not have to define the time at which the tests are executed (planning).</td>
<td>Better 2.0 pts</td>
<td>Equal 1.0 pts</td>
<td>Worse 0.0 pts</td>
</tr>
</tbody>
</table>
reports and video are peer reviewed on a number of different criteria
each criterion receives a relative score
 - 2 points – reviewed report is better compared to your own report
 - 1 point – reviewed report is equal to your own report
 - 0 points – reviewed report is worse compared to your own report
score is computed over all criteria through standard averaging
score of each team is normalized with respect to all teams
highest and lowest scored report are graded to map reports of all teams to a grade

keep in mind
 - helping other teams with a high score does not work
 - helping yourself by scoring others low does not work
Support resources

- project website
 http://www.es.ele.tue.nl/education/oo2

- teaching assistant office hours
 - Wednesday 15.00-16.00
 - Wednesday 16.00-17.00
 - Friday 10.00-11.00
 - Friday 11.00-12.00

- OGO lockers available for all groups
 - Robinson Medina will come to your OGO room today to program a locker for your team
Equipment

- each team must collect equipment in Flux 8.096 on Wednesday (April 25th) 15.00-17.00
Teams and rooms

KEEP YOUR ROOM CLEAN

NO TAPE ON THE FLOOR, TABLE OR ANYWHERE ELSE