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Abstract

To ensure correctness and performance of real-time emioesidgems, early evaluation of properties is needed.
Based on design experience for real-time systems and usingoncepts of the POOSL language, we introduce
modelling patterns that allow easy composition of modetsd&sign space exploration. These patterns cover
different types of real-time tasks, resources and mappiagd include also aspects that are usually ignored in
classical analysis approaches, like task activation lateonr execution context switches. The construction of
system models can be done by integrating the necessarynztées illustrated in two case studies.

1. Introduction

Complex real-time embedded systems are usually comprise@ambination of hardware and software com-
ponents that are supposed to synchronise and coordinéteedif processes and activities. From early stages of
the design, many decisions must be made to guarantee thagaleation of such a complex machine meets all
the functional and non-functional (timing) requirements.

One of the main problems to address concerns the most su#atiitecture of the system such that all the
requirements are met. To properly deal with this questiba,common approaches are design space exploration
and system level performance analysis. An extensive cewrof such methodologies is given in [3] and [12].
They range from analytical computation (Modular Perforoeainalysis [25]) to simulation-based estimation
(Spade [16], Artemis [21]). These are often specialiselrtegies which claim that general purpose languages are
ill-suited for system-level analysis. However, due to te&hogeneity and complexity of systems, for the analysis
of different aspects different models need to be built amidr tboupling is difficult. Therefore, a unified model,
covering all the interesting aspects, is actually needespé®d up the design process. This is how the Unified
Modelling Language (UML) [20] came to be conceived. The laamge was designed mainly for object-oriented
software specification, but recently it was extended (UMD) 2o include (real-time) systems as well.

During the development of new systems, specific problememceuntered again and again, and experienced
designers apply the solutions that worked for them in the [§s These pairs of problem-solution are called
design patterngind their application helps in getting a design “right” &astVith the increase in the development
of real-time systems, design patterns were needed forngealith issues like concurrency, resource sharing,
distribution [8]. As UML has become the standard languagerfodelling, these patterns are described in UML.
However, the semantics of the language is not strong enaugitoperly deal with the analysis mdal-timesystem

*This work has been carried out as part of the Boderc projeseiutine responsibility of the Embedded Systems Institulds project
is partially supported by the Netherlands Ministry of Ecamio Affairs under the Senter TS program.



behaviour. Therefore, an expressive and formal modellimguiage is required instead in order to capture in a
compact modeliming, concurrency probabilitiesandcomplex behaviour

Design patterns refer to problems encountered in the dgsigress itself, but problems appear also in the
specification of components that are commonly encounteredmplex systems [11]. Although components of
the analysed systems exhibit some common aspects for &limeasystems (e.g. characteristics of tasks like
periodicity or aperiodicity, processors, schedulers &edf toverheads), they are built everytime from scratch and
similar issues are encountered over and over.

Contributions of the paper. To reduce the amount of time needed to construct models &gulespace ex-
ploration, we proposenodelling patterngo easily compose models for the design space exploratiosabtime
embedded systems. These modelling patterns, providedlasg/ act like templates that can be applied in many
different situations by setting the appropriate paransetdihey are based on the concepts of a mathematically
defined general-purpose modelling language, POOSL [24d]]tlay are presented as UML diagrams. These boil-
erplate solutions are a critical success factor for thetjmacapplication in an industrial setting and are a step
towards the (semi-) automated design space exploratidreirdrly phases of the system life-cycle.

This paper is organised as follows. Related research waotesented in Section 2. Section 3 briefly presents
the POOSL language, whereas Section 4 provides the magleliitierns. The composition of these patterns into
a model is discussed in Section 5 and their analysis appiioggaction 6. The results of applying this approach
on two case studies are presented in Section 7. Conclugiertsawvn in Section 8.

2. Related Research

An extensive overview of performance modelling and analysethodologies is given in [3] and [12]. They
range from analytical computation (Modular Performancelfsis [25], UPPAAL [4]) to simulation-based esti-
mation (Spade [16], Artemis [21]). The techniques for atiedyly computing the performance of a system are
exhaustive in the sense that possible behaviours of the system are taken into accounth®ather hand, sim-
ulation of models allows the investigation ofimited number of all the possible behaviours of the system. Thus,
the obtained analysis results agtimatef the real performance of the system. To obtain crediblelt®sboth
types of techniques require the models created to be ametmbiathematical analysis (see [23]), using mathe-
matical structures like Real-Time Calculus [7], timed ani#ba [2] or Kahn process networks [13]. As in general
analytical approaches do not scale with the complexity efitidustrial systems, simulation-based estimation of
performance properties is used more often. In this contegtestimation of performance is based on statistical
analysis of simulation results.

With respect to timing behaviour, an impressive amount ofkwas been carried out in the area of schedula-
bility analysis for meeting hard real-time requirementg(€L7], [6], [5]) focussing on worst case. However, less
work addresses the analysis of systems with probabiligf@abiour. For soft real-time systems, it is important
to analyse the variations in the runtime behaviour to deterthe likelihood of occurrence of certain undesired
situations and, based on that, to dimension the system8]afid [23] it is showed that the techniques proposed in
this area are quite restrictive. Some of them target ceagjtication classes, being limited to uni-processor archi
tectures or supporting only exponential distributionsdrpressing the probabilistic behaviour; other approaches
address specific scheduling policies or assume highlyeldagstems.

To overcome these issues, in this paper we present a magefiiproach that can capture any kind of proba-
bilistic distribution of system behaviour. Moreover, fbietanalysis of timing behaviour any scheduling policy is
allowed. Although the evaluation of the system properigdsased on simulations, due to the formal semantics of
the language, the accuracy of the results can be determined.



3. POOSL modelling language

The Parallel Object-Oriented Specification Language (POQZ1] lies at the core of the Software/Hardware
Engineering (SHE) system-level design method. POOSL ameset of powerful primitives to formally describe
concurrency, distribution, synchronous communicatiomjnig and functional features [22] of a system into a
single executable model. Its formal semantics is basednoadtiprobabilistic labelled transition systems [15].
This mathematical structure guarantees a unique and ugaous interpretation of POOSL models. Hence,
POOSL is suitable for specification and, subsequentlyfigation of correctness and evaluation of performance
for real-time systems.

POOSL consists of processpart and adata part. The process part is used to specify the behaviour eact
components in the system, the processes, and it is base@aldtare extension of the Calculus of Communicating
Systems (CCS) [19]. The data part is based on traditionaequs of sequential object-oriented programming. Itis
used to specify the information that is generated, exclhdrigeerpreted or modified by the active components. As
mostly POOSL processes are presented in this paper, figs&émnisethe relation between the UML class diagram
and the POOSL process class specification. The name congmdrohthe class symbol for process classes is
stereotyped withk<pr ocess>>. The attributes are nametkpar anet er s>> and allow parameterising the
behaviour of a process at instantiation. The behaviour odegss is described by iks<met hods>>which may
include the specification of sending) énd/or receiving?) of <<messages>>1,

<<process>>

<<class>> ProcessNane
Cl assNane <<par anet er s>>
<<attributes>> @ Par anet er: Type (b)
Attribute: Type <<met hods>>
<<met hods>> Met hod() ()
Met hod() <<messages>>

port ?message

Figure 1. UML (a) vs. POOSL process (b) class specification

The SHE method is accompanied by two tools, SHESiIm and RotaluSHESIm is a graphical environment
intended for incremental specification, modification ankitheion of POOSL models. Rotalumis is a high-speed
symbolic execution engifeenabling fast evaluation of system properties. Compaiiéitl 8HESim, Rotalumis
improves the execution speed by a factor of 100 by compilirgy rhodel into an intermediate format before
executing it.

The algorithm residing at the core of both tools for symbetkecution of a model has been proven correct
in [10] with respect to the formal semantics of the languagach POOSL specification is automatically trans-
lated into Process Execution Trees (PETS) (see fig. 2a and2lfigespectively). A PET represents the remaining
behaviour of a POOSL process. The leaves of the tree arengate describing the timed behaviour of that
process, whereas the internal nodes represent compasifdheir children (e.g. parallel, sequential, nondeter-
ministic choice). There are two phases during executiorst,Fd PET scheduler asynchronously grants all eligible
atomic actions, such as communications or data compugtisithout any passage of time, until there are no
other actions available at the current moment. Then, tinssggmsynchronously for all PETSs, until the moment
when an action becomes eligible again and the first phassusned. The internal state of each PET is changed
according to the choices made by the scheduler and a timsgliganaintained for later analysis (fig. 2c). As there
are potentially infinitely many paths, simulation compietss cannot be claimed, in general, because exhaustive
exploration is an NP-complete problem.

More details about the UML profile for POOSL can be found in][23
2\We use the word execution to denote simulation throughaup#per.



i n?i nput (data); /*receive nessage*/

par
data conputation() /*conputation*/
and
delay T / *passage of time*/
rap;

out!output(data). /*send nessage*/

(@)

in? ; computation out!

(C) - > > Model

Figure 2. Example of a POOSL model

4. Modelling patterns

One of the approaches for performing systematic designespggloration is the Y-chart scheme (fig. 3), in-
troduced in [14]. This scheme makes a distinction betweg@ticgtions (the required functional behaviour) and
platforms (the infrastructure used to perform this funwdilbbehaviour). We have added to this scheme the model
of the environment that is to be controlled by the systemuhats functionality. Although physically the environ-
ment is connected to the platform, logically it is connedtethe application that controls it and thus it was placed
accordingly in the scheme. The design space can be explgregatuating different mappings of applications

onto platforms.
nvironment
model

Modify
mapping

Modify
application

Modify
platform

Figure 3. Y-chart scheme

As real-time embedded systems usually contain componétitcammon characteristics, like tasks, computa-
tion / communication resources, modelling patterns candveldped such that when another model of the same
or of a similar system needs to be built, the appropriateepadtand their parameters can be chosen and used
immediately.

Table 1 presents the modelling patterns developed and uostw icase studies presented in the paper. The
application model is described through real-time taskschvéire characterised by deadline, load (which represents
the number of instructions that the task needs to executeatan activation and which is determined based on
best-case/worst-case load and a certain load distriutiatency of task activation, plus period and number of
iterations for periodic tasks. In Section 4.1, these pagterre presented and their parameters explained. The
platform model consists of (computation and/or commurocatresources, which are uniformly characterised by
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Table 1. Modelling patterns

Y-chart part | Pattern Name| Parameter Name

Application | PeriodicTask period (T)
Model deadline (D)
BCload
W(Cload

loadDistribution
latency (1)
iterations

AperiodicTask| deadline (D)
BCload
W(Cload
loadDistribution
latency (1)
Platform Resource initial latency
Model throughput

Scheduling | scheduling policy,

Environment| Environment arrival stream
Model upper bound (u)

lower bound (1)

an initial latency and throughput, and the scheduling jEsithat handle the concurrent requests (see Section 4.2).
The mapping stage of the Y-chart is explained in Sectionwitigreas the model of the environment, characterised
by an event stream with a certain distribution of arrivales#n an upper and a lower bound, in Section 4.4.

4.1. Application model

The functional behaviour of a real-time embedded systemjgemented through a number of tasks that may
communicate with each other. Task activation requests egmebiodic (time-driven), being activated at regular
intervals equal to the task periddor aperiodic (event-driven), waiting for the occurrenta oertain event. There
are three types of uncertainties, shown in fig. 4, that masca# task:

e activation latency: caused, for example, by the inaccagsaof the processor clock that might drift from the
reference time because of temperature variations. Fort-even tasks, the performance of the runtime
system, which cannot continuously monitor the environnfienévents, may also have influence.

e release jitter: caused by the interference of other taskts depending on the scheduling mechanism, may
impede the newly activated task to start immediately itsatien

e output jitter: caused by the cumulated interference ofrothsks in the system, the scheduling mechanism
that may allow preemption of the executing task, the vammtf the activation latency and even of the
execution time of the task itself, which may depend on thetitata.



Activation Starts

request execution output
jitter
release l -
latency jitter
[ |
BEHAVIOUR Reference
| . Time
Ready for Deadline
execution

Figure 4. Real-time task parameters

In classical real-time scheduling theory [6], the releaerjand, to some extent, the output jittezan be
computed, but the activation latency is ignored. Thereforedelling patterns are provided here to overcome this
problem (see fig. 5 for the UML diagrams and fig. 6 for the POOc#ication). The core of these patterns is
the complete decoupling of the desired timing behavioumftbe actual timing when the behaviour of the task
executes. For a time-driven task (see fig. 6a) paeand-rap POOSL statement indicating parallel composition
in PERIODIC, is used to decouple the task period from its real activatimment. Thepar branch is used to
execute the actu@EHAVIOUR, possibly with latency, while thand branch is used to determine the next period
by delaying exactlyl and then recursively calling itself. The actual deadlin¢heftask is given as parameter of
the BEHAVIOUR because it is considered with respect to the reference fiisi@alue depends on the amount of
latency (D+-lat). Furthermore, the execution of the periodic task igleled to be finite (ifiterations > 0) or
infinite (if iterations= —1).

<<process>> <<process>>

Peri odi cTask Aperi odi cTask
<<paraneters>> <<paraneters>>

T: Real D: Real
D: Real BCl oad: | nt eger
BC oad: | nt eger WCl oad: | nt eger
WCl oad: | nt eger | oadDi stribution: Distribution
| oadDi stribution:Distribution| |:Real
| : Real <<net hods>>
iterations:|nteger Init()()

<<net hods>> Aperiodic()()
Init()() Behavi our () ()
Periodic() () <<messages>>
Behavi our () () i n?event

<<nmessages>> out ! out put

Figure 5. UML task patterns

The data objectatencyis an instance of a class representing a discrete unifortribdigson in [0,1]. In the
ideal situation| = 0 andsamplealways returns zero. If > 0, samplereturns a value if0, ] and the actual
activation moment drifts from the reference time witli. Hence,BEHAVIOUR is invoked somewhere in the
interval [0,[|U[n*T —I,n+T +1],l < T,n € NT. Note that each timBeHAVIOUR is called, it is possible that
the previous activation is still in progress. During sintiga of the model, the designer can be informed if two or
more activations are in progress at the same time or if ahynasses its deadline.

3The output jitter can be computed without taking into actqessible variations nor dependencies on the input data.



PERIODIX)() |lat : Real APeERIODIC()() |lat : Real

if (iterations != O)then in?event;
par par
delay T-I; par
lat := 2*Latencysampl€); lat := Latencysampl€)
delaylat; delay lat;
BEHAVIOUR(D+l-lat)() BEHAVIOUR(D-lat)()
and and
delayT; delayD
if (iterations !=-1)then rap;
iterations := iterations-1i; out!output
PERIODIQ)() and
rap APERIODIC()()
fi. rap.
(a) time-driven task (b) event-driven task

Figure 6. POOSL task patterns specification

The event-driven tasks are activated at the arrival of a agess/enton the portin (fig. 6b). For this reason,
there is no need to express a certain number of iteratiom® iekecution of an aperiodic task is not infinite, as
it is blocked/stopped anyway waiting for an event to happésually, an aperiodic task is required to output its
computations resulio(it!outpu) before some deadling. If BEHAVIOUR does not finish by that time, the output
is postponed, causing output jitter. During simulatior, designer is informed about such situations.

In a real-time system, the functional behaviour of a tasksisig of independent computations and inter-task
communications. These two aspects can be intuitively cagtin theBEHAVIOUR method specification (see
for example fig. 7). While the modelling patterns for taska ba directly used, by instantiating objects of the
appropriate class and setting the necessary values foratiagnpters, the specification BEHAVIOUR must be
overloaded by the user at design time.

BEHAVIOUR(deadline : Real)(Jtstart, tstop : Real
tstart :=currentTime;
COMMUNICATE(messageLength)();
tstop :=currentTime;
compuTEdeadline - tstop + tstart)().

Figure 7. BEHAVIOUR model

4.2. Platform model

The platform on which the software runs can be described a#lectton of resources. A resource is able to
provide the capacity to perform the desired functional biha. The modelling patterns provided here allow
a unified way of modelling resources by exploiting their coomntharacteristics. There is no large conceptual
difference between a CPU and a bus: they both receive requescute them and send back a notification on
completion.

If a resource is shared by a number of concurrent tasks, alglghies needed to arbitrate the access to the
resource. Depending on the type of application and the ressuan appropriate scheduling algorithm can be
modelled: preemptive, non-preemptive, priority-basexliest deadline first, etc. A general preemptive schedul-
ing behaviour, whose UML class diagram is given in fig. 8, camindelled as a POOSL process, as shown in
fig. 9. The core of this pattern relies on the non-determaishoice that allows any possible sequence in the
scheduler behaviour. It can either receive schedulingagigifrom newly activated tasks (the owetbranch), or
notifications from the platform about completed requestsdt branch). The newly activated request is put in the
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<<process>>
Schedul i ng
<<par anet er s>>
Schedul er: Schedul i ngPol i cy
<<met hods>>
Init()()
Schedul e() ()
<<messages>>
f ronirask?schedul e
t oResour ce! execut e
f ronResour ce?st opped
t oResour ce! preenption
t oTask! execut ed

Figure 8. UML scheduling pattern

scHEDULK)() | req, oldreq : Request
sel
fromTask?schedule(req);
SchedulescheduleRequédseq);
if (SchedulehasHighestPriorityreq) ==true) then
sel
toResourcelexecute(req)
or
toResource!preemption;
fromResource?stopped(oldreq);
toResourcelexecute(req);
Scheduleupdatéoldreq)
les
fi;
SCHEDULK)()
or
fromResource?stopped(oldreq);
toTask!executed;
req := ScheduleremoveReque&tidreq);
if (req !'=nil) then toResource!execute(refi)
SCHEDULK)()
les

Figure 9. POOSL scheduling pattern specification

list of scheduled requests by calling the data metbatbduleRequest(redf req has the current highest priority,
it is sent to the resource for being immediately handled ifther selbranch). As the resource might already be
running another request, the correspondindpranch models the situation when the old request is preehagute
rescheduledupdate(oldred) In the outeror branch, the scheduler receives completed requests froresbarce
and removes them from the ready list by callimgnoveRequest(oldreqyvhich also returns the next scheduled
request, if there is one.

The data objecBcheduleiis an instance of a class that implements a scheduling #igoriDifferent subclasses
of the SchedulingPolicyabstract class (fig. 10) may implement different algorittifeng. EDF, RMA) and for each
resource, a different scheduler can be instantiated. Ibeasthanged anytime during the design, without affecting
the rest of the model. The methods of this class require aser a data object of tygeequestcontaining
the information needed for scheduling: release time, laastrictions number of a task / length of a message),
and deadline. Such a data object is built at run-time, dumieglel execution, as the scheduler need not make any
difference whether it is a task or a message to schedule amtiherlying resource. To model a hon-preemptive



scheduler, the methduasHighestPriorityreq) should returiialseif there is a task already being executed. Note
that, whenever a new instance of a task is released, it islatde without taking into account that a previous
instance might still be running. If this situation is unweghtit can be detected and reported. In case the deadline
of a request is missed, the scheduler detects it when it resnibne request from the list, and announces this as an

error during simulation.

Request
SchedulingPolic "
uingPoficy releaseTime
#reqList deadline
+scheduleRequest(in req : Request)  fm == = —yl0ad
+hasHighestPriority(in req : Request) [+setReleaseTime()
+update(in req : Request) tgetReleaseTime()
+removeRequest(in req : Request) i+setDeadline()
trgetDeadline()
t+setLoad()
HgetLoad()
EDF RMA FCFS

Figure 10. UML diagram for scheduling policies

<<process>>
Resour ce
<<paraneters>>
initial Latency: Real
t hr oughput : I nt eger
<<met hods>>
Init()()
Resour ceRun() ()
<<messages>>
sch! st opped
sch?execut e
sch?preenption
(a) for worst-case analysis
<<process>>
Resour ce
<<paraneters>>
initial Latency: Di stribution
t hr oughput : | nt eger
<<met hods>>
Init()()
Resour ceRun() ()
<<messages>>
sch! st opped
sch?execut e
sch?preenption
(b) for average-case analysis

Figure 11. UML resource patterns

Fig. 12 presents the resource model as a POOSL processimgcekecution requests from the scheduler.
Before the actual execution, the resource has an initiahtyt which is given as a parameter of the modelling
pattern, as shown in the UML diagrams in fig. 11. For a worsecanalysis of the system, a fixed, worst-case
value of it is provided, whereas for an average case analyssgiven as a distribution. The initial latency is
justified by: in case of a CPU, the context switch that prosdbd execution of a newly scheduled task for saving
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the status of the previous task and loading the current taskase of a bus, the time it takes for the first bit
of the message to be transferred, which depends mostly ocothenunication protocol used. After the initial
delay, the resource lets the time pass according to the gexedime associated to the request. The execution
time is computed based on the load of the request (reprageaitiher the number of instructions of a task or a
message length) and tlleroughputof the resource, which is the second parameter. The corespoibehind
the presented modelling pattern for a resource is the phbigsitf the language to express the breaking of the
execution, needed if the scheduling mechanism allows gsgem In POOSL, this can be modelled with the
abort statement. The remaining execution time of the requestgfgtthe remaining load) is computed and
updated feq setLoad(loadLeff)and the request is sent back to the scheduler. Preemptigudly the case for
computation resources, and less common for communicakievertheless, as preemptions and their associated
latencies (like context switches) might have a large infteeon the finishing time and the output jitter of a task,
they must be taken into account.

RESOURCERUN()() | req: Request, loadLeft, tstart, tstop : Integer RESOURCERUN()() | req: Request, loadLeft, tstart, tstop : Integer

sch?execute(req); sch?execute(req);
delay initialLatency; delay initialLatencysamplé);
tstart :=currentTime; tstart :=currentTime;
abort abort
delayreqgetLoad) / throughput delayreqgetLoad) / throughput

with sch?preemption; with sch?preemption;
tstop :=currentTime; tstop :=currentTime;
loadLeft := reqgetLoad) - (tstop - tstart) * throughput; loadLeft := regetLoad) - (tstop - tstart) * throughput;
regsetLoadloadLeft); regsetLoadloadLeft);
sch!stopped(req); sch!stopped(req);
RESOURCERUN()(). RESOURCERUN()().

(a) for worst-case analysis (b) for average-case analysis

Figure 12. POOSL resource pattern specification

4.3. Mapping model

To analyse the performance of a system, a mapping of thecagiplh model onto the platform model is com-
posed (fig. 13). In this approach, an explicit mapping has lbbesen, represented by a POOSL communication
channel linking one or more tasks to a resource. A task mappteda resource is able to send execution requests
to that resource, modelled as POOSL messages sent throaighaibping channel. For example, when the task
needs tacoMPUTE (as depicted in fig. 14), a message is sent to the CPU corgdimenrequired deadline and the
imposed loadtpRes!execute(deadline, lodd)Such a message is encapsulated in a data object oRgpaest
discussed in the previous section, which arrives at the GiPlddailer, where it is first scheduled and then sent to
execution. As soon as the execution is finished, the taskdmired to continue its behaviouirgmRes?executgd

BUFFER

CPU1 BUS CPU2

Figure 13. Mapping model

10



comMpPUTHdeadline : Real)()
toRes!execute(deadline, loadDistributigemmpl€));
fromRes?executed.

Figure 14. COMPUTE model

Although POOSL channels can model inter-task communicatteey cannot be mapped onto communication
resources; thus, a buffer model is required to completetpdgle the application from the platform model. When
a task needs taOMMUNICATE with another task over a bus (fig. 7), the message is put inufferb The buffer
sends a request to the bus to transfezssagelengthytes and waits for its completion. By simply connecting
tasks to resources in different ways, easy explorationftérént mappings can be achieved.

4.4. Environment model

Research in the area of classical scheduling theory maitlyssed on the assumption that all external events
arrive either perfectly periodic or aperiodic, based onegipfined arrival pattern, without any latencies or sporadic
effects. Therefore, only models of the application and tlgq@m were typically considered for reasoning about
the properties of the system.

<<process>>

Envi ronnent
<<paraneters>>

Events: Distribution
u: | nt eger
| : 1 nteger

<<met hods>>
Envi ronnment () ()

<<messages>>
out ! event

ENVIRONMENT() ()

Events: =new(Di stri buti on)
of Type(Uni form
wi t hParameters(l, u);
while (true) do
del ay Events sanple();
out ! event
od.

Figure 15. Environment pattern and specification

However, to reason accurately about the properties of aredddal system, its whole behaviour should be
modelled realistically, including a probabilistic modétioe environment that triggers the events. For this purpose
a discrete-event approximation of the continuous-timeabiglur of the physical components can be modelled in
terms of event streams occurring according to some disioibuAn example of such a model, generating a stream
based on a uniform distribution, is given in fig. 15.

5. Model composition from patterns

To build a model of a real-time system for design space eaptor, its specific components that correspond
to the modelling patterns described in the previous sectiost be identified together with their parameters. The
names of the necessary patterns and their parameterdheogéth the specification of the mapping (which task
is scheduled on which processor, etc.) and the layout ofldtBopm (which processor is connected to which bus)
can be provided as the configuration of the system. From swcdmfiguration, the POOSL model of the system
can be automatically generated and fed to SHESim or Rotaltouls for analysis. As an example, for the system
in fig. 16a, the specification of the necessary patterns maly llke the one in fig. 16b, and the structure of the
generated model is shown in fig. 16c¢.

For design space exploration, different configurationstrbescompared. To do this, changes in the initial
configuration may be done and the POOSL model re-generatedian to analyse them. To specify a different

11



TASK1 = PeriodicTask(6, 6, 100, 2, 10)
TASK2 = PeriodicTask(8, 6, 200, 3, 10)
BUFFER = Buffer(TASK1, TASK?2)
CPUL1 = Resource(.01, 50)

CPU2 = Resource(.02, 50)

BUS = Resource(.04, 10)

Schl = Scheduler(EDF)

Sch2 = Scheduler(RMA)

Sch3 = Scheduler(FCFS)
Map(TASK1, Schl, CPU1)
Map(TASK2, Sch2, CPU2)
Map(BUFFER, Sch3, BUS)
Connection(CPU1, BUS)
Connection(CPU2, BUS)

(b)

Figure 16. Use of patterns

mapping, theMap specifications must be changed according to the new tasdstmirce mapping. To change
the architecture components, simply changeRasour ce specifications and/or their parameters. Similarly, the
layout of the platform can be changed in tb@nnect i on specification tags. In this way, the model can be easily
tuned to specify different possibilities in the design spadthout any knowledge about the underlying formal
model that will be generated in accordance with the desonpif the new configuration.

6. Model analysis

By composing together the necessary modelling patternsoagsin Section 5, the complete model of a system
can be built and validated. For each configuration specifiedgenerated, during the execution of the model, the
scheduler can report if there are any tasks that miss thadtlises. Furthermore, based on the POOSL semantics
derived from CCS, it can be detected if there is any deadlothke system. If all the deadlines are met and there
is no deadlock, then the corresponding architecture is d gandidate that meets the system requirements.

However, for soft real-time systems, it is allowed that sateadlines are missed (usually there is a requirement
for an upper limit). Therefore, in this case, it is espeyiaibeful that the analysis of the model can handle and
record tasks with multiple active instantiations that havissed their deadlines. The percentage of deadlines
missed can be monitored and checked against the requirerfgmiccording to this criterion, the underlying
platform is suitable.

Furthermore, as shown in Section 4, the task models arersbiglative to a reference time, not to the platform
time. This differs from traditional approaches as the pennce of the architecture or the drifts of a processor
clock do not influence the timeliness of the control of thegitgl components in the environment anymore. As the
environment “runs” relative to the reference time, the giesi is able to check if, under different circumstances,
the behaviour still meets the critical deadlines.

To correctly dimension a system (the required CPUs perfoo@and buses) such that it works in any situation,
the worst-case behaviour of the system must be analyses ushally means to consider the worst-case execution
times for all the activities in the system. On the other hahe, analysis of the average behaviour, based on
probabilities, is also important, as it gives a measure efdhitability of the design. If the dimension of the
system, needed for the worst-case situation that appebrewce in a while, is far bigger than the one needed in
average, that could give useful hints for a re-design (eptit tasks into smaller ones in order to spread the load
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onto different CPUS).

Some other useful results the analysis of the proposed ncadgbrovide are the release jitter, the output jitter
and the number of instances of a task active at the same time.

7. Case studies

In this section, two case studies are presented for whicigrnlepace exploration has been performed using
the modelling patterns proposed in this work. The charesties of the systems and the results of their analysis
follow.

7.1. A printer paper-path

The first case study is inspired by a system architectureoeaddbn for the control of the paper-path of a printer.
The high-level view of the system model, visualised usindgSkn tool, is given in fig. 17. User’s printing requests
arrive at the high-level control (HLC) of the machine whiadmgutes which activities need to take place when to
accomplish the request. The HLC tasks activate the tasksgepting the low-level control (LLC) of the physical
components of the paper path, like motors, sensors andtau#s HLC tasks are soft real-time, whereas LLC
tasks (fig. 18) are hard real-time, a rather natural solutias to consider a distributed architecture. LLC can be
assigned to dedicated processor(s) and connected throngtwark to the general-purpose processor that runs
HLC.

®L SHESIm System Level Editor , i _-ngil

File iClass Defintions  Scematios Options  Interaction Diagrams.  Sbout

~

57

PhysicalComponents

sensor actuate

1= —

erents 7
actuation

T T

Ukl printingRequests ke i H mElUFFER aut h in out
send [ Orecy comim| send recy | comm  LLC

Al t I BbEE

i
3 2 |
l Edit ] Reset l Run l Stop I Comm.Step I Titne-Step ] Step l

P

Figure 17. High-level printer control POOSL model

Under these circumstances, thwblemwas mainlyto find an economical architecture for LL.@hose task
parameters are shown in table 2. For the models of the timmerdtasks of type T1, T3 and T4, we took into
account a latency of upto 10% of their period. Although taskype T2 are activated based on notifications from
HLC, they behave completely periodic until the next notifica arrives. Therefore, their dynamical behaviour
was captured using an aperiodic task which triggers a pertadk with a finite number of activations. Tasks of
type T5 are event-driven; therefore, a model of the enviremmvas neededPhysicalComponenysfor which we
considered event streams with a uniform distributioflir20] ms.

Given the frequency of events and the task execution time$iave analysed three commercially available low-
end processors, a 40 MIPS, a 20 MIPS and a 10 MIPS, and comhaiedtilisations under different schedulers.
Fig. 19 presents the results obtained using the earlieglidedirst scheduling algorithm. Although the 10 MIPS
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Figure 18. POOSL LLC model

Table 2. LLC task parameters

Task No. of Load| T D
type | Instantiations (ms) | (ms)
Tl 3 3200| 2 2
T2 8 1200 2 2
T3 1 2000 2 2
T4 3 800 | 0.66| 0.1
T5 4 160 - | 0.064

processor seems to be used the most efficiently (close tagmam capacity), the analysis of the model showed
that some of the deadlines are missed; thus this processot ésgood candidate. For the other two, all deadlines
are met and there were no deadlocks detected in the systeentoioe fast execution engine Rotalumis, tens of
hours of system behaviour could be covered in less than onetensimulation. Moreover, the analysis of the
model gave the values of the maximum release jitter, resdcoutput jitter of the tasks (for the 20 MIPS they
are shown in table 3) which could be checked against the &gbasargins of errors of the environment control
design.

7.2. An in-car navigation system

The second case study is inspired by a distributed in-cagatwn system [1]. The system, depicted in fig. 20,
has three clusters of functionality: the man-machine fater (MMI) handles the interaction with the user; the
navigation functionality (NAV) deals with route-planniagnd navigation guidance; the radio (RAD) is responsible
for basic tuner and volume control, as well as receivinditrafformation from the network. For this system,
three application scenarios are possible: the Change\lscenario allows users to change the volume; the
ChangeAddr scenario enables route planning by looking dpeades in the maps stored in the database; in the
HandleTMC scenario the system needs to handle the navigatessages received from the network. Each of
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Table 3. Tasks jitter for the 20 MIPS

Task type| Release jitter (ms) Output jitter (ms)
T1 0.466 1.852
T2 0.466 1.852
T3 0.414 1.884
T4 0.042 0.128
T5 0.472 1.094

these scenarios is described by a UML message sequenceardjdite the one shown in fig. 21. A detailed
description of the system and of its scenarios can be foufbin

The problemrelated to this system was find suitable platform candidatekat meet the timing requirements
of the application. To explore the design space, a few piaiso presented in fig. 22, were proposed and analysed
using Modular Performance Analysis (MPA) in [25]. MPA is amayytical technique in which the functionality
of a system is characterised by the incoming and outgoingteaées, message sizes and execution times. Based
on Real-Time Calculus, hard upper and lower bounds of thiesyperformance are computed. However, these
bounds are in general not exact, meaning that they are langalier than theactual worst/best case. Thus,
the analysis performed is conservative. As the in-car radidg is a soft real-time system that allows a certain
percentage of deadline misses, it is doubtfully intergstmexplore if there is an architecture of lower cost and
performance than what have been obtained with MPA that damsiet the timing requirements.

7.2.1 Worst-case analysis

The UML diagrams specifying the case study provide the wease values of the load (number of instructions)

imposed by tasks on the CPUs. They also specify what is tleeofaiask activations (how often the events are

triggered) which depends on the scenario in which they ap&ased on these activation rates, priorities were
assigned to tasks according to the rate monotonic appro@bke. timing requirements of the system are also

specified in the UML diagrams as end-to-end deadlines fdn eaenario. The loads of the tasks, the frequencies
(f) of activation$ per scenario and the timing requirements are given in table 4

“Tasks are triggered by the events in the environment as kimoing or messages from the network. In this analysis, tleatsvare
assumed to arrive periodic, so the values of the lower andrdppits of the arrival stream in the environmental model equal.
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Figure 20. In-car navigation system

Table 4. Timeliness requirements of the system

Scenario Deadline Task Load f
name [mg name [instruction§ | [1/9
ChangeVolumeg 200 HandleKeyPressg 1E5 32
AdjustVolume 1E5 32
UpdateScreen 5E5 32
ChangeAddr 200 HandleKeyPressg 1E5 1
Databasel ookup 5E6 1
UpdateScreen 5E5 1
HandleTMC 1000 ReceiveTMC 1E6 1/3
DecodeTMC 5E6 1/3
UpdateScreen 5E5 1/30

By simulating the behaviour of the system, using each of the proposedtectinies in fig. 22, the end-to-end
delays were monitored. Fig. 23 shows, as an illustratiaaptaximum end-to-end delay obtained for HandleTMC
scenario when running alone on each of the proposed platf@firom A to E).

The most interesting situations to monitor were the oneshithvtwo scenarios are running in parallel as
such a situation can lead to a larger value for the end-togehaly. In our simulation, we have observed that all
the deadlines are met on all the architectures. As an exaitmgleesults obtained for different combinations of
scenarios on architecture A are presented in table 5. Neketo, the results obtained using MPA and UPPAAL
techniques are also provided. Architecture A was chosefuftiter discussion because it was the one chosen for
deeper analysis by both techniques.

MPA is an analysis technique which finds hard upper boundsneacessarily the actual worst case reached
by the model. This explains the larger values that are obthby applying this method. On the other hand, the
results computed by UPPAAL are exact values of the worst eaddo-end delay. It is interesting to observe that
our results are very close to UPPAAL-1% difference which also represents the accuracy of thédtsgsexcept

®Note that, the simulation was run with the fast executiorimmgotalumis; thus, a few minutes of system simulationasent several
hours of runtime behaviour. The simulation was run until ecuaacy of 99% of the results was reached.
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Figure 22. Platforms proposed for analysis

for HandleTMC scenario for which the difference is 7%. Fas ituation we suspect a miss-match between the
corresponding models and this aspect is still under inyastin.

Besides keeping track of the end-to-end delays, duringlation, we have also monitored the resources utili-
sation. For architecture A, the obtained results are pteden table 6. Based on the amount of idle time of the
CPUs and on the fact that the worst case values of the delaysiach smaller than the specified deadlines, we
concluded that the performance of the underlying architectould be reduced in order to have a platform with

less cost and energy consumption.

7.2.2 Average case analysis

For an average case analysis of the system, we have assuatdédetioads of all tasks variate according to a
uniform distribution, based on the inspiration got from sw@waments of similar systems. As the UML diagrams
provide only the worst case value of the load of each task,ave bonsidered that the actual load varies between
75% and 100% of the value provided. The limits of the loadatan for each task are given in fig. 7. Based on
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Table 5. Architecture A worst case end-to-end delays

Measured Other active | POOSL| MPA | UPPAAL
scenario scenario [mg [mg [mg
ChangeVolume HandleTMC | 41.771 | 42.2424| 41.796
HandleTMC | ChangeVolumg 357.81 | 390.086| 381.632
ChangeAddr | HandleTMC 78.89 | 84.066 | 79.075
HandleTMC ChangeAddr | 171.77 | 265.849| 172.106

0.60 1

0.50 1

0.40 4

0.30 1

0.20 1

0.00

Figure 23. Maximum end-to-end delay for scenario HandleTMC

the MIPS rate of the CPUs on the proposed architectures giviig. 22, we can compute the execution times of
tasks.

During simulation® of the system behaviour for each of the architectures peapasfig. 22, the end-to-end
delays were monitored. The results obtained were grappipkitted as distribution histograms, showing on the
horizontal axis the values of the end-to-end delay and orehgal axis the rate of occurrence of each value. As
the parallel execution of two scenarios is likely to lead trenvariation in the end-to-end delay, fig. 24 shows the
distribution histogram for the HandleTMC scenario wheruitg in parallel with ChangeVolume on architecture
A. From such distribution histograms, the minimum (bestfasd the maximum (worst case) values for the
end-to-end delays can be deduced. Columns 3 and 4 in tablevB thlese values for all the combinations of
scenarios running on architecture A. Moreover, the retafiequency of occurrence of the maximum value can
also be deduced. During simulations, we have observedhbattjuirements are met for all the scenarios on all
the proposed architectures and that the maximum delayswk smaller than the deadlines.

7.2.3 Dimensioning of the system

The in-car navigation system is a soft real-time systemadlaivs a rate of 5% of deadline misses. Based on this,
together with the utilisation rates of the resources, wkiehe also monitored during simulation, and the observed
maximum values of the delays, one can reason about possdtferm performance reduction in order to reduce
cost and energy consumption of the system.

In [25], where this case study was analysed using MPA, theoasiinvestigated the robustness of architecture
A. Therefore, in this paper we have also focussed on thigtaottire to reason about its resources. The utilisation

®By using the fast execution engine Rotalumis, a few minutesystem simulation represent several hours of runtime\beta The
simulation was run until an accuracy of 99% of the results rgashed.
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Table 6. Resources utilisations in architecture A

Scenario Scenario Scenario | MMI | NAV | RAD | Bus
ChangeVolume ChangeAddr| HandleTMC| [%] | [%] | [%] | [%]
YES NO NO 87 0 30 3
NO YES NO 3 5 0 1
NO NO YES 1 2 4 1
YES NO YES 88 2 33 4
NO YES YES 4 6 2 2

Table 7. Tasks loads for the average case analysis
Task Min Max
name [instr] | [instr]

HandleKeyPress 7.5E4 | 1E5

AdjustVolume | 7.5E4 | 1E5
UpdateScreen | 3.75E5| 5E5
DatabaselLookup 3.75E6| 5E6
ReceiveTMC | 7.5E5 | 1EG6
DecodeTMC | 3.75E6| 5E6

of MMI is 88%. As the periods and loads of the tasks mapped on thiegsor are quite heavy, there is not much
room for the decrease of its capacity. THAV processor is used 6%. The histograms of scenarios ChangeAdd
and HandleTMC showed a difference of 80ms and 200ms regphcbetween the worst case delays obtained
and the requirements. Hence, we redusi&y capacity to 40MIPS. The utilisation &AD is 33%. The analysis
showed a difference of 100ms for ChangeAddr and 200ms fodld&MC respectively between the maximum
delays and the deadlines. As there is potential for capaeityiction, we reduce the capacity of this processor to
5MIPS.

With this new configuration for architecture A, we resumed simulations using the same variances in the
task loads and the same task priorities. The distributi@tograms of the end-to-end delays were plotted and,
as an example, fig. 25 shows the histogram for the HandleTMGas®m. The mean and maximum values of the
end-to-end delays for all the scenarios are presented imew 5 and 6 in table 8. From the confidence intervals
calculated during simulation, we observed that the rateeafdtine misses is within 5%, thereby fulfilling the
requirements. In this way, we have found a better dimensgpof the system than what was found using MPA,
reducing two of the processors with 65% (NAV) and respebti&% (RAD).

Furthermore, in order to use such analysis results in ani-gisttiplinary model of complex systems aiming at
design trade-offs across disciplines, an abstractioneofithing behaviour of the software part is needed. To this
end, we propose to fit the resulting distribution curves kriown types of distribution. According to tleentral
limit theoremin probability theory, due to the uniformly distributed ézaof the tasks and to the fact that tasks in
different scenarios are independent, the end-to-end adélayscenario has approximately a normal distribution.
Therefore, over the distribution histogram obtained frosmaulation, a normal distribution curve is fitted. Fig. 25
shows such a curve fitted over the HandleTMC histogram. Trempeters of the normal distribution are the mean
value (1) of 838.32 (ms) (the mean value of the delay) and the standiewition ¢2) of 3953.36 (ms). From
such curves, the rate of deadline misses can be deduced, drasigeir characteristics. For example, the deadline
for HandleTMC, which is 1000ms, can be found between two hrektstandard deviations from the mean. Thus,
the probability of missing the deadline is less than 5%, Wineans the requirements are met. Furthermore, from
these curves the probability of rare events occurrence Isarba computed.
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Figure 24. HandleTMC distribution histogram on architectu re A
Table 8. End-to-end delays of all scenarios
Measured Active Min. delay | Max. delay| Mean delay| Max. delay
scenario scenario [md [md [md [mg
ChangeVolumeg HandleTMC 28.17 47.82 49.66 58.48

HandleTMC | ChangeVolume  180.9 353.51 838.32 1056.06
ChangeAddr | HandleTMC 61.08 127.51 134.12 270.8
HandleTMC ChangeAddr 132.59 204.06 349.712 496.03

The analysis approach we considered for the in-car navigaise study is summarised in fig. 26 in which the
steps to be performed for the analysis of a soft real-timeegysre provided.

8. Conclusions

In this paper, we have presented modelling patterns, basetieoconcepts of the Parallel Object-Oriented
Specification Language, for the design space exploratiaealftime embedded systems. These patterns allow
easy composition of system models consisting of real-teskd, computation and communication resources and
their associated schedulers. Due to the expressivene€3@EPR, important aspects, like task activation latencies
and context switches, can be taken into account, enabliaduliding of realistic models without sacrificing
their conciseness. Moreover, due to this reason, the asalge provide more realistic results than the classical
scheduling techniques can.

The use of the patterns presented in this paper reduceshmthddelling and the analysis effort. The models
made can be analysed for worst-case and average loadsngnigsileadlines and deadlock absence. Although
completeness cannot be claimed, the efficiency of the madelation allows exploration of a substantial part of
the design space. Furthermore, we presented a way to makestracion of the analysis results of the timing
behaviour to use it as input for multi-disciplinary models.

As future work, we aim at extending the modelling patternsdeer for complex platforms like networks-on-
chip, by taking into account memory components, routingi@lgms and even batteries for the analysis of energy
consumption.
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