

Modelling Patterns for Analysis and
Design of Real-Time Systems

Oana Florescu, Jeroen Voeten, Henk Corporaal

ES Reports
ISSN 1574-9517

ESR-2006-05
15 July 2006

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2006 Technische Universiteit Eindhoven, Electronic Systems.
All rights reserved.

http://www.es.ele.tue.nl/esreports
esreports@es.ele.tue.nl

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems
PO Box 513
NL-5600 MB Eindhoven
The Netherlands

Modelling Patterns for Analysis and Design of Real-Time Systems∗

Oana Florescu, Jeroen Voeten and Henk Corporaal

Eindhoven University of Technology
Electrical Engineering Department

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
o.florescu@tue.nl

Abstract

To ensure correctness and performance of real-time embedded systems, early evaluation of properties is needed.
Based on design experience for real-time systems and using the concepts of the POOSL language, we introduce
modelling patterns that allow easy composition of models for design space exploration. These patterns cover
different types of real-time tasks, resources and mappings, and include also aspects that are usually ignored in
classical analysis approaches, like task activation latency or execution context switches. The construction of
system models can be done by integrating the necessary patterns, as illustrated in two case studies.

1. Introduction

Complex real-time embedded systems are usually comprised of a combination of hardware and software com-
ponents that are supposed to synchronise and coordinate different processes and activities. From early stages of
the design, many decisions must be made to guarantee that therealisation of such a complex machine meets all
the functional and non-functional (timing) requirements.

One of the main problems to address concerns the most suitable architecture of the system such that all the
requirements are met. To properly deal with this question, the common approaches are design space exploration
and system level performance analysis. An extensive overview of such methodologies is given in [3] and [12].
They range from analytical computation (Modular Performance Analysis [25]) to simulation-based estimation
(Spade [16], Artemis [21]). These are often specialised techniques which claim that general purpose languages are
ill-suited for system-level analysis. However, due to the heterogeneity and complexity of systems, for the analysis
of different aspects different models need to be built and their coupling is difficult. Therefore, a unified model,
covering all the interesting aspects, is actually needed tospeed up the design process. This is how the Unified
Modelling Language (UML) [20] came to be conceived. The language was designed mainly for object-oriented
software specification, but recently it was extended (UML 2.0) to include (real-time) systems as well.

During the development of new systems, specific problems areencountered again and again, and experienced
designers apply the solutions that worked for them in the past [9]. These pairs of problem-solution are called
design patternsand their application helps in getting a design “right” faster. With the increase in the development
of real-time systems, design patterns were needed for dealing with issues like concurrency, resource sharing,
distribution [8]. As UML has become the standard language for modelling, these patterns are described in UML.
However, the semantics of the language is not strong enough to properly deal with the analysis ofreal-timesystem

∗This work has been carried out as part of the Boderc project under the responsibility of the Embedded Systems Institute. This project
is partially supported by the Netherlands Ministry of Economic Affairs under the Senter TS program.

behaviour. Therefore, an expressive and formal modelling language is required instead in order to capture in a
compact modeltiming, concurrency, probabilitiesandcomplex behaviour.

Design patterns refer to problems encountered in the designprocess itself, but problems appear also in the
specification of components that are commonly encountered in complex systems [11]. Although components of
the analysed systems exhibit some common aspects for all real-time systems (e.g. characteristics of tasks like
periodicity or aperiodicity, processors, schedulers and their overheads), they are built everytime from scratch and
similar issues are encountered over and over.

Contributions of the paper. To reduce the amount of time needed to construct models for design space ex-
ploration, we proposemodelling patternsto easily compose models for the design space exploration ofreal-time
embedded systems. These modelling patterns, provided as a library, act like templates that can be applied in many
different situations by setting the appropriate parameters. They are based on the concepts of a mathematically
defined general-purpose modelling language, POOSL [24], and they are presented as UML diagrams. These boil-
erplate solutions are a critical success factor for the practical application in an industrial setting and are a step
towards the (semi-) automated design space exploration in the early phases of the system life-cycle.

This paper is organised as follows. Related research work ispresented in Section 2. Section 3 briefly presents
the POOSL language, whereas Section 4 provides the modelling patterns. The composition of these patterns into
a model is discussed in Section 5 and their analysis approachin Section 6. The results of applying this approach
on two case studies are presented in Section 7. Conclusions are drawn in Section 8.

2. Related Research

An extensive overview of performance modelling and analysis methodologies is given in [3] and [12]. They
range from analytical computation (Modular Performance Analysis [25], UPPAAL [4]) to simulation-based esti-
mation (Spade [16], Artemis [21]). The techniques for analytically computing the performance of a system are
exhaustive in the sense thatall possible behaviours of the system are taken into account. Onthe other hand, sim-
ulation of models allows the investigation of alimited number of all the possible behaviours of the system. Thus,
the obtained analysis results areestimatesof the real performance of the system. To obtain credible results, both
types of techniques require the models created to be amenable to mathematical analysis (see [23]), using mathe-
matical structures like Real-Time Calculus [7], timed automata [2] or Kahn process networks [13]. As in general
analytical approaches do not scale with the complexity of the industrial systems, simulation-based estimation of
performance properties is used more often. In this context,the estimation of performance is based on statistical
analysis of simulation results.

With respect to timing behaviour, an impressive amount of work has been carried out in the area of schedula-
bility analysis for meeting hard real-time requirements (e.g. [17], [6], [5]) focussing on worst case. However, less
work addresses the analysis of systems with probabilistic behaviour. For soft real-time systems, it is important
to analyse the variations in the runtime behaviour to determine the likelihood of occurrence of certain undesired
situations and, based on that, to dimension the system. In [18] and [23] it is showed that the techniques proposed in
this area are quite restrictive. Some of them target certainapplication classes, being limited to uni-processor archi-
tectures or supporting only exponential distributions forexpressing the probabilistic behaviour; other approaches
address specific scheduling policies or assume highly-loaded systems.

To overcome these issues, in this paper we present a modelling approach that can capture any kind of proba-
bilistic distribution of system behaviour. Moreover, for the analysis of timing behaviour any scheduling policy is
allowed. Although the evaluation of the system properties is based on simulations, due to the formal semantics of
the language, the accuracy of the results can be determined.

2

3. POOSL modelling language

The Parallel Object-Oriented Specification Language (POOSL) [24] lies at the core of the Software/Hardware
Engineering (SHE) system-level design method. POOSL contains a set of powerful primitives to formally describe
concurrency, distribution, synchronous communication, timing and functional features [22] of a system into a
single executable model. Its formal semantics is based on timed probabilistic labelled transition systems [15].
This mathematical structure guarantees a unique and unambiguous interpretation of POOSL models. Hence,
POOSL is suitable for specification and, subsequently, verification of correctness and evaluation of performance
for real-time systems.

POOSL consists of aprocesspart and adatapart. The process part is used to specify the behaviour of active
components in the system, the processes, and it is based on a real-time extension of the Calculus of Communicating
Systems (CCS) [19]. The data part is based on traditional concepts of sequential object-oriented programming. It is
used to specify the information that is generated, exchanged, interpreted or modified by the active components. As
mostly POOSL processes are presented in this paper, fig. 1 presents the relation between the UML class diagram
and the POOSL process class specification. The name compartment of the class symbol for process classes is
stereotyped with<<process>>. The attributes are named<<parameters>> and allow parameterising the
behaviour of a process at instantiation. The behaviour of a process is described by its<<methods>>which may
include the specification of sending (!) and/or receiving (?) of <<messages>>1.

<<class>>

ClassName
<<attributes>>

Attribute:Type
<<methods>>

Method()

(a)

<<process>>

ProcessName
<<parameters>>

Parameter:Type
<<methods>>

Method()()
<<messages>>

port?message

(b)

Figure 1. UML (a) vs. POOSL process (b) class specification

The SHE method is accompanied by two tools, SHESim and Rotalumis. SHESim is a graphical environment
intended for incremental specification, modification and validation of POOSL models. Rotalumis is a high-speed
symbolic execution engine2, enabling fast evaluation of system properties. Compared with SHESim, Rotalumis
improves the execution speed by a factor of 100 by compiling the model into an intermediate format before
executing it.

The algorithm residing at the core of both tools for symbolicexecution of a model has been proven correct
in [10] with respect to the formal semantics of the language.Each POOSL specification is automatically trans-
lated into Process Execution Trees (PETs) (see fig. 2a and fig.2b respectively). A PET represents the remaining
behaviour of a POOSL process. The leaves of the tree are statements describing the timed behaviour of that
process, whereas the internal nodes represent compositions of their children (e.g. parallel, sequential, nondeter-
ministic choice). There are two phases during execution. First, a PET scheduler asynchronously grants all eligible
atomic actions, such as communications or data computations, without any passage of time, until there are no
other actions available at the current moment. Then, time passes synchronously for all PETs, until the moment
when an action becomes eligible again and the first phase is resumed. The internal state of each PET is changed
according to the choices made by the scheduler and a timed trace is maintained for later analysis (fig. 2c). As there
are potentially infinitely many paths, simulation completeness cannot be claimed, in general, because exhaustive
exploration is an NP-complete problem.

1More details about the UML profile for POOSL can be found in [23].
2We use the word execution to denote simulation throughout the paper.

3

in?input(data); /*receive message*/
par
 data computation()/*computation*/
and
 delay T /*passage of time*/
rap;
out!output(data). /*send message*/

;

in? out!par

T

(a) (b)

T
in? ; computation

Model
time

out!

com
putat
ion

(c)

Figure 2. Example of a POOSL model

4. Modelling patterns

One of the approaches for performing systematic design space exploration is the Y-chart scheme (fig. 3), in-
troduced in [14]. This scheme makes a distinction between applications (the required functional behaviour) and
platforms (the infrastructure used to perform this functional behaviour). We have added to this scheme the model
of the environment that is to be controlled by the system through its functionality. Although physically the environ-
ment is connected to the platform, logically it is connectedto the application that controls it and thus it was placed
accordingly in the scheme. The design space can be explored by evaluating different mappings of applications
onto platforms.

Application
model

Platform
model

Mapping

Analysis

Modify
application

Modify
platform

Modify
mapping

Environment
model

Figure 3. Y-chart scheme

As real-time embedded systems usually contain components with common characteristics, like tasks, computa-
tion / communication resources, modelling patterns can be developed such that when another model of the same
or of a similar system needs to be built, the appropriate patterns and their parameters can be chosen and used
immediately.

Table 1 presents the modelling patterns developed and used in the case studies presented in the paper. The
application model is described through real-time tasks, which are characterised by deadline, load (which represents
the number of instructions that the task needs to execute at acertain activation and which is determined based on
best-case/worst-case load and a certain load distribution), latency of task activation, plus period and number of
iterations for periodic tasks. In Section 4.1, these patterns are presented and their parameters explained. The
platform model consists of (computation and/or communication) resources, which are uniformly characterised by

4

Table 1. Modelling patterns

Y-chart part Pattern Name Parameter Name
Application PeriodicTask period (T)

Model deadline (D)
BCload
WCload

loadDistribution
latency (l)
iterations

AperiodicTask deadline (D)
BCload
WCload

loadDistribution
latency (l)

Platform Resource initial latency
Model throughput

Scheduling scheduling policy
Environment Environment arrival stream

Model upper bound (u)
lower bound (l)

an initial latency and throughput, and the scheduling policies that handle the concurrent requests (see Section 4.2).
The mapping stage of the Y-chart is explained in Section 4.3,whereas the model of the environment, characterised
by an event stream with a certain distribution of arrival between an upper and a lower bound, in Section 4.4.

4.1. Application model

The functional behaviour of a real-time embedded system is implemented through a number of tasks that may
communicate with each other. Task activation requests can be periodic (time-driven), being activated at regular
intervals equal to the task periodT, or aperiodic (event-driven), waiting for the occurrence of a certain event. There
are three types of uncertainties, shown in fig. 4, that may affect a task:

• activation latency: caused, for example, by the inaccuracies of the processor clock that might drift from the
reference time because of temperature variations. For event-driven tasks, the performance of the runtime
system, which cannot continuously monitor the environmentfor events, may also have influence.

• release jitter: caused by the interference of other tasks that, depending on the scheduling mechanism, may
impede the newly activated task to start immediately its execution

• output jitter: caused by the cumulated interference of other tasks in the system, the scheduling mechanism
that may allow preemption of the executing task, the variation of the activation latency and even of the
execution time of the task itself, which may depend on the input data.

5

Reference
Time

Activation
request

BEHAVIOUR

Ready for
execution

Deadline

release
jitterlatency

Starts
execution output

jitter

Figure 4. Real-time task parameters

In classical real-time scheduling theory [6], the release jitter and, to some extent, the output jitter3 can be
computed, but the activation latency is ignored. Therefore, modelling patterns are provided here to overcome this
problem (see fig. 5 for the UML diagrams and fig. 6 for the POOSL specification). The core of these patterns is
the complete decoupling of the desired timing behaviour from the actual timing when the behaviour of the task
executes. For a time-driven task (see fig. 6a), thepar-and-rap POOSL statement indicating parallel composition
in PERIODIC, is used to decouple the task period from its real activationmoment. Thepar branch is used to
execute the actualBEHAVIOUR, possibly with latency, while theand branch is used to determine the next period
by delaying exactlyT and then recursively calling itself. The actual deadline ofthe task is given as parameter of
the BEHAVIOUR because it is considered with respect to the reference time:its value depends on the amount of
latency (D+l-lat). Furthermore, the execution of the periodic task is modelled to be finite (ifiterations > 0) or
infinite (if iterations= −1).

<<process>>

PeriodicTask
<<parameters>>

T:Real
D:Real
BCload:Integer
WCload:Integer
loadDistribution:Distribution
l:Real
iterations:Integer

<<methods>>

Init()()
Periodic()()
Behaviour()()

<<messages>>

<<process>>

AperiodicTask
<<parameters>>

D:Real
BCload:Integer
WCload:Integer
loadDistribution:Distribution
l:Real

<<methods>>

Init()()
Aperiodic()()
Behaviour()()

<<messages>>

in?event
out!output

Figure 5. UML task patterns

The data objectLatencyis an instance of a class representing a discrete uniform distribution in [0, l]. In the
ideal situation,l = 0 andsamplealways returns zero. Ifl > 0, samplereturns a value in[0, l] and the actual
activation moment drifts from the reference time with±l. Hence,BEHAVIOUR is invoked somewhere in the
interval [0, l]∪ [n ∗ T − l, n ∗ T + l], l < T, n ∈ N+. Note that each timeBEHAVIOUR is called, it is possible that
the previous activation is still in progress. During simulation of the model, the designer can be informed if two or
more activations are in progress at the same time or if any task misses its deadline.

3The output jitter can be computed without taking into account possible variations nor dependencies on the input data.

6

PERIODIC()() |lat : Real| APERIODIC()() |lat : Real|
if (iterations != 0)then in?event;
par par
delayT-l; par
lat := 2*Latencysample(); lat := Latencysample()
delay lat; delay lat;
BEHAVIOUR(D+l-lat)() BEHAVIOUR(D-lat)()

and and
delayT; delayD
if (iterations != -1)then rap;
iterations := iterations-1fi; out!output

PERIODIC()() and
rap APERIODIC()()

fi. rap.
(a) time-driven task (b) event-driven task

Figure 6. POOSL task patterns specification

The event-driven tasks are activated at the arrival of a messageeventon the portin (fig. 6b). For this reason,
there is no need to express a certain number of iterations if the execution of an aperiodic task is not infinite, as
it is blocked/stopped anyway waiting for an event to happen.Usually, an aperiodic task is required to output its
computations result (out!output) before some deadlineD. If BEHAVIOUR does not finish by that time, the output
is postponed, causing output jitter. During simulation, the designer is informed about such situations.

In a real-time system, the functional behaviour of a task consists of independent computations and inter-task
communications. These two aspects can be intuitively captured in theBEHAVIOUR method specification (see
for example fig. 7). While the modelling patterns for tasks can be directly used, by instantiating objects of the
appropriate class and setting the necessary values for the parameters, the specification ofBEHAVIOUR must be
overloaded by the user at design time.

BEHAVIOUR(deadline : Real)()|tstart, tstop : Real|
tstart :=currentTime ;
COMMUNICATE(messageLength)();
tstop :=currentTime ;
COMPUTE(deadline - tstop + tstart)().

Figure 7. BEHAVIOUR model

4.2. Platform model

The platform on which the software runs can be described as a collection of resources. A resource is able to
provide the capacity to perform the desired functional behaviour. The modelling patterns provided here allow
a unified way of modelling resources by exploiting their common characteristics. There is no large conceptual
difference between a CPU and a bus: they both receive requests, execute them and send back a notification on
completion.

If a resource is shared by a number of concurrent tasks, a scheduler is needed to arbitrate the access to the
resource. Depending on the type of application and the resources, an appropriate scheduling algorithm can be
modelled: preemptive, non-preemptive, priority-based, earliest deadline first, etc. A general preemptive schedul-
ing behaviour, whose UML class diagram is given in fig. 8, can be modelled as a POOSL process, as shown in
fig. 9. The core of this pattern relies on the non-deterministic choice that allows any possible sequence in the
scheduler behaviour. It can either receive scheduling requests from newly activated tasks (the outerselbranch), or
notifications from the platform about completed requests (theor branch). The newly activated request is put in the

7

<<process>>

Scheduling
<<parameters>>

Scheduler:SchedulingPolicy
<<methods>>

Init()()
Schedule()()

<<messages>>

fromTask?schedule
toResource!execute
fromResource?stopped
toResource!preemption
toTask!executed

Figure 8. UML scheduling pattern

SCHEDULE()() | req, oldreq : Request|
sel
fromTask?schedule(req);
SchedulerscheduleRequest(req);
if (SchedulerhasHighestPriority(req) ==true) then

sel
toResource!execute(req)

or
toResource!preemption;
fromResource?stopped(oldreq);
toResource!execute(req);
Schedulerupdate(oldreq)

les
fi;
SCHEDULE()()

or
fromResource?stopped(oldreq);
toTask!executed;
req := SchedulerremoveRequest(oldreq);
if (req !=nil) then toResource!execute(req)fi;
SCHEDULE()()

les.

Figure 9. POOSL scheduling pattern specification

list of scheduled requests by calling the data methodscheduleRequest(req). If req has the current highest priority,
it is sent to the resource for being immediately handled (theinnerselbranch). As the resource might already be
running another request, the correspondingor branch models the situation when the old request is preempted and
rescheduled (update(oldreq)). In the outeror branch, the scheduler receives completed requests from theresource
and removes them from the ready list by callingremoveRequest(oldreq), which also returns the next scheduled
request, if there is one.

The data objectScheduleris an instance of a class that implements a scheduling algorithm. Different subclasses
of theSchedulingPolicyabstract class (fig. 10) may implement different algorithms(e.g. EDF, RMA) and for each
resource, a different scheduler can be instantiated. It canbe changed anytime during the design, without affecting
the rest of the model. The methods of this class require as parameter a data object of typeRequest, containing
the information needed for scheduling: release time, load (instructions number of a task / length of a message),
and deadline. Such a data object is built at run-time, duringmodel execution, as the scheduler need not make any
difference whether it is a task or a message to schedule on theunderlying resource. To model a non-preemptive

8

scheduler, the methodhasHighestPriority(req) should returnfalse if there is a task already being executed. Note
that, whenever a new instance of a task is released, it is scheduled, without taking into account that a previous
instance might still be running. If this situation is unwanted, it can be detected and reported. In case the deadline
of a request is missed, the scheduler detects it when it removes the request from the list, and announces this as an
error during simulation.

+scheduleRequest(in req : Request)
+hasHighestPriority(in req : Request)
+update(in req : Request)
+removeRequest(in req : Request)

#reqList

SchedulingPolicy

EDF RMA FCFS ...

+setReleaseTime()
+getReleaseTime()
+setDeadline()
+getDeadline()
+setLoad()
+getLoad()

-releaseTime
-deadline
-load

Request

Figure 10. UML diagram for scheduling policies

<<process>>

Resource
<<parameters>>

initialLatency:Real
throughput:Integer

<<methods>>

Init()()
ResourceRun()()

<<messages>>

sch!stopped
sch?execute
sch?preemption
(a) for worst-case analysis

<<process>>

Resource
<<parameters>>

initialLatency:Distribution
throughput:Integer

<<methods>>

Init()()
ResourceRun()()

<<messages>>

sch!stopped
sch?execute
sch?preemption

(b) for average-case analysis

Figure 11. UML resource patterns

Fig. 12 presents the resource model as a POOSL process receiving execution requests from the scheduler.
Before the actual execution, the resource has an initial latency, which is given as a parameter of the modelling
pattern, as shown in the UML diagrams in fig. 11. For a worst-case analysis of the system, a fixed, worst-case
value of it is provided, whereas for an average case analysis, it is given as a distribution. The initial latency is
justified by: in case of a CPU, the context switch that proceeds the execution of a newly scheduled task for saving

9

the status of the previous task and loading the current task;in case of a bus, the time it takes for the first bit
of the message to be transferred, which depends mostly on thecommunication protocol used. After the initial
delay, the resource lets the time pass according to the execution time associated to the request. The execution
time is computed based on the load of the request (representing either the number of instructions of a task or a
message length) and thethroughputof the resource, which is the second parameter. The core concept behind
the presented modelling pattern for a resource is the possibility of the language to express the breaking of the
execution, needed if the scheduling mechanism allows preemption. In POOSL, this can be modelled with the
abort statement. The remaining execution time of the request (actually the remaining load) is computed and
updated (req setLoad(loadLeft)) and the request is sent back to the scheduler. Preemption isusually the case for
computation resources, and less common for communication.Nevertheless, as preemptions and their associated
latencies (like context switches) might have a large influence on the finishing time and the output jitter of a task,
they must be taken into account.

RESOURCERUN()() | req: Request, loadLeft, tstart, tstop : Integer| RESOURCERUN()() | req: Request, loadLeft, tstart, tstop : Integer|
sch?execute(req); sch?execute(req);
delay initialLatency; delay initialLatencysample();
tstart :=currentTime ; tstart :=currentTime ;
abort abort

delay reqgetLoad() / throughput delay reqgetLoad() / throughput
with sch?preemption; with sch?preemption;
tstop :=currentTime ; tstop :=currentTime ;
loadLeft := reqgetLoad() - (tstop - tstart) * throughput; loadLeft := reqgetLoad() - (tstop - tstart) * throughput;
reqsetLoad(loadLeft); reqsetLoad(loadLeft);
sch!stopped(req); sch!stopped(req);
RESOURCERUN()(). RESOURCERUN()().

(a) for worst-case analysis (b) for average-case analysis

Figure 12. POOSL resource pattern specification

4.3. Mapping model

To analyse the performance of a system, a mapping of the application model onto the platform model is com-
posed (fig. 13). In this approach, an explicit mapping has been chosen, represented by a POOSL communication
channel linking one or more tasks to a resource. A task mappedonto a resource is able to send execution requests
to that resource, modelled as POOSL messages sent through the mapping channel. For example, when the task
needs toCOMPUTE (as depicted in fig. 14), a message is sent to the CPU containing the required deadline and the
imposed load (toRes!execute(deadline, load)). Such a message is encapsulated in a data object of typeRequest,
discussed in the previous section, which arrives at the CPU scheduler, where it is first scheduled and then sent to
execution. As soon as the execution is finished, the task is informed to continue its behaviour (fromRes?executed).

TASK2BUFFER

CPU1 CPU2BUS

TASK1

Figure 13. Mapping model

10

COMPUTE(deadline : Real)()
toRes!execute(deadline, loadDistributionsample());
fromRes?executed.

Figure 14. COMPUTE model

Although POOSL channels can model inter-task communication, they cannot be mapped onto communication
resources; thus, a buffer model is required to completely decouple the application from the platform model. When
a task needs toCOMMUNICATE with another task over a bus (fig. 7), the message is put in the buffer. The buffer
sends a request to the bus to transfermessageLengthbytes and waits for its completion. By simply connecting
tasks to resources in different ways, easy exploration of different mappings can be achieved.

4.4. Environment model

Research in the area of classical scheduling theory mainly focussed on the assumption that all external events
arrive either perfectly periodic or aperiodic, based on a predefined arrival pattern, without any latencies or sporadic
effects. Therefore, only models of the application and the platform were typically considered for reasoning about
the properties of the system.

<<process>>

Environment
<<parameters>>

Events:Distribution
u:Integer
l:Integer

<<methods>>

Environment()()
<<messages>>

out!event

ENVIRONMENT()()

Events:=new(Distribution)
ofType(Uniform)
withParameters(l, u);

while (true) do
delay Events sample();
out!event

od.

Figure 15. Environment pattern and specification

However, to reason accurately about the properties of an embedded system, its whole behaviour should be
modelled realistically, including a probabilistic model of the environment that triggers the events. For this purpose,
a discrete-event approximation of the continuous-time behaviour of the physical components can be modelled in
terms of event streams occurring according to some distribution. An example of such a model, generating a stream
based on a uniform distribution, is given in fig. 15.

5. Model composition from patterns

To build a model of a real-time system for design space exploration, its specific components that correspond
to the modelling patterns described in the previous sectionmust be identified together with their parameters. The
names of the necessary patterns and their parameters, together with the specification of the mapping (which task
is scheduled on which processor, etc.) and the layout of the platform (which processor is connected to which bus)
can be provided as the configuration of the system. From such aconfiguration, the POOSL model of the system
can be automatically generated and fed to SHESim or Rotalumis tools for analysis. As an example, for the system
in fig. 16a, the specification of the necessary patterns may look like the one in fig. 16b, and the structure of the
generated model is shown in fig. 16c.

For design space exploration, different configurations must be compared. To do this, changes in the initial
configuration may be done and the POOSL model re-generated inorder to analyse them. To specify a different

11

TASK
2

BUFFER

Sch1

TASK
1

TASK1 = PeriodicTask(6, 6, 100, 2, 10)
TASK2 = PeriodicTask(8, 6, 200, 3, 10)
BUFFER = Buffer(TASK1, TASK2)
CPU1 = Resource(.01, 50)
CPU2 = Resource(.02, 50)
BUS = Resource(.04, 10)
Sch1 = Scheduler(EDF)
Sch2 = Scheduler(RMA)
Sch3 = Scheduler(FCFS)
Map(TASK1, Sch1, CPU1)
Map(TASK2, Sch2, CPU2)
Map(BUFFER, Sch3, BUS)
Connection(CPU1, BUS)
Connection(CPU2, BUS)

TASK
1

TASK
2

CPU1 CPU2BUS

(a)

(b) (c)

CPU1

Sch2

CPU2

Sch3

BUS

Figure 16. Use of patterns

mapping, theMap specifications must be changed according to the new task-to-resource mapping. To change
the architecture components, simply change theResource specifications and/or their parameters. Similarly, the
layout of the platform can be changed in theConnection specification tags. In this way, the model can be easily
tuned to specify different possibilities in the design space without any knowledge about the underlying formal
model that will be generated in accordance with the description of the new configuration.

6. Model analysis

By composing together the necessary modelling patterns as shown in Section 5, the complete model of a system
can be built and validated. For each configuration specified and generated, during the execution of the model, the
scheduler can report if there are any tasks that miss their deadlines. Furthermore, based on the POOSL semantics
derived from CCS, it can be detected if there is any deadlock in the system. If all the deadlines are met and there
is no deadlock, then the corresponding architecture is a good candidate that meets the system requirements.

However, for soft real-time systems, it is allowed that somedeadlines are missed (usually there is a requirement
for an upper limit). Therefore, in this case, it is especially useful that the analysis of the model can handle and
record tasks with multiple active instantiations that havemissed their deadlines. The percentage of deadlines
missed can be monitored and checked against the requirements if, according to this criterion, the underlying
platform is suitable.

Furthermore, as shown in Section 4, the task models are designed relative to a reference time, not to the platform
time. This differs from traditional approaches as the performance of the architecture or the drifts of a processor
clock do not influence the timeliness of the control of the physical components in the environment anymore. As the
environment “runs” relative to the reference time, the designer is able to check if, under different circumstances,
the behaviour still meets the critical deadlines.

To correctly dimension a system (the required CPUs performance and buses) such that it works in any situation,
the worst-case behaviour of the system must be analysed. This usually means to consider the worst-case execution
times for all the activities in the system. On the other hand,the analysis of the average behaviour, based on
probabilities, is also important, as it gives a measure of the suitability of the design. If the dimension of the
system, needed for the worst-case situation that appears only once in a while, is far bigger than the one needed in
average, that could give useful hints for a re-design (e.g. split tasks into smaller ones in order to spread the load

12

onto different CPUs).
Some other useful results the analysis of the proposed modelcan provide are the release jitter, the output jitter

and the number of instances of a task active at the same time.

7. Case studies

In this section, two case studies are presented for which design space exploration has been performed using
the modelling patterns proposed in this work. The characteristics of the systems and the results of their analysis
follow.

7.1. A printer paper-path

The first case study is inspired by a system architecture exploration for the control of the paper-path of a printer.
The high-level view of the system model, visualised using SHESim tool, is given in fig. 17. User’s printing requests
arrive at the high-level control (HLC) of the machine which computes which activities need to take place when to
accomplish the request. The HLC tasks activate the tasks representing the low-level control (LLC) of the physical
components of the paper path, like motors, sensors and actuators. As HLC tasks are soft real-time, whereas LLC
tasks (fig. 18) are hard real-time, a rather natural solutionwas to consider a distributed architecture. LLC can be
assigned to dedicated processor(s) and connected through anetwork to the general-purpose processor that runs
HLC.

Figure 17. High-level printer control POOSL model

Under these circumstances, theproblemwas mainlyto find an economical architecture for LLC, whose task
parameters are shown in table 2. For the models of the time-driven tasks of type T1, T3 and T4, we took into
account a latency of upto 10% of their period. Although tasksof type T2 are activated based on notifications from
HLC, they behave completely periodic until the next notification arrives. Therefore, their dynamical behaviour
was captured using an aperiodic task which triggers a periodic task with a finite number of activations. Tasks of
type T5 are event-driven; therefore, a model of the environment was needed (PhysicalComponents), for which we
considered event streams with a uniform distribution in[1, 20] ms.

Given the frequency of events and the task execution times, we have analysed three commercially available low-
end processors, a 40 MIPS, a 20 MIPS and a 10 MIPS, and comparedtheir utilisations under different schedulers.
Fig. 19 presents the results obtained using the earliest deadline first scheduling algorithm. Although the 10 MIPS

13

Figure 18. POOSL LLC model

Table 2. LLC task parameters
Task No. of Load T D
type Instantiations (ms) (ms)
T1 3 3200 2 2
T2 8 1200 2 2
T3 1 2000 2 2
T4 3 800 0.66 0.1
T5 4 160 - 0.064

processor seems to be used the most efficiently (close to its maximum capacity), the analysis of the model showed
that some of the deadlines are missed; thus this processor isnot a good candidate. For the other two, all deadlines
are met and there were no deadlocks detected in the system. Due to the fast execution engine Rotalumis, tens of
hours of system behaviour could be covered in less than one minute simulation. Moreover, the analysis of the
model gave the values of the maximum release jitter, respectively output jitter of the tasks (for the 20 MIPS they
are shown in table 3) which could be checked against the expected margins of errors of the environment control
design.

7.2. An in-car navigation system

The second case study is inspired by a distributed in-car navigation system [1]. The system, depicted in fig. 20,
has three clusters of functionality: the man-machine interface (MMI) handles the interaction with the user; the
navigation functionality (NAV) deals with route-planningand navigation guidance; the radio (RAD) is responsible
for basic tuner and volume control, as well as receiving traffic information from the network. For this system,
three application scenarios are possible: the ChangeVolume scenario allows users to change the volume; the
ChangeAddr scenario enables route planning by looking up addresses in the maps stored in the database; in the
HandleTMC scenario the system needs to handle the navigation messages received from the network. Each of

14

MAX

MAX

AVG

AVG

MAX

AVG

0

20

40

60

80

100

120

40 MIPS 20 MIPS 10 MIPS

W
or

kl
oa

d
[%

]

Figure 19. CPU workload comparison

Table 3. Tasks jitter for the 20 MIPS
Task type Release jitter (ms) Output jitter (ms)

T1 0.466 1.852
T2 0.466 1.852
T3 0.414 1.884
T4 0.042 0.128
T5 0.472 1.094

these scenarios is described by a UML message sequence diagram, like the one shown in fig. 21. A detailed
description of the system and of its scenarios can be found in[25].

Theproblemrelated to this system wasto find suitable platform candidatesthat meet the timing requirements
of the application. To explore the design space, a few platforms, presented in fig. 22, were proposed and analysed
using Modular Performance Analysis (MPA) in [25]. MPA is an analytical technique in which the functionality
of a system is characterised by the incoming and outgoing event rates, message sizes and execution times. Based
on Real-Time Calculus, hard upper and lower bounds of the system performance are computed. However, these
bounds are in general not exact, meaning that they are larger/smaller than theactual worst/best case. Thus,
the analysis performed is conservative. As the in-car navigation is a soft real-time system that allows a certain
percentage of deadline misses, it is doubtfully interesting to explore if there is an architecture of lower cost and
performance than what have been obtained with MPA that can still meet the timing requirements.

7.2.1 Worst-case analysis

The UML diagrams specifying the case study provide the worst-case values of the load (number of instructions)
imposed by tasks on the CPUs. They also specify what is the rate of task activations (how often the events are
triggered) which depends on the scenario in which they appear. Based on these activation rates, priorities were
assigned to tasks according to the rate monotonic approach.The timing requirements of the system are also
specified in the UML diagrams as end-to-end deadlines for each scenario. The loads of the tasks, the frequencies
(f) of activations4 per scenario and the timing requirements are given in table 4.

4Tasks are triggered by the events in the environment as knob turning or messages from the network. In this analysis, the events are
assumed to arrive periodic, so the values of the lower and upper limits of the arrival stream in the environmental model are equal.

15

DB

MMI

RADNAV

Figure 20. In-car navigation system

Table 4. Timeliness requirements of the system
Scenario Deadline Task Load f

name [ms] name [instructions] [1/s]
ChangeVolume 200 HandleKeyPress 1E5 32

AdjustVolume 1E5 32
UpdateScreen 5E5 32

ChangeAddr 200 HandleKeyPress 1E5 1
DatabaseLookup 5E6 1

UpdateScreen 5E5 1
HandleTMC 1000 ReceiveTMC 1E6 1/3

DecodeTMC 5E6 1/3
UpdateScreen 5E5 1/30

By simulating5 the behaviour of the system, using each of the proposed architectures in fig. 22, the end-to-end
delays were monitored. Fig. 23 shows, as an illustration, the maximum end-to-end delay obtained for HandleTMC
scenario when running alone on each of the proposed platforms (from A to E).

The most interesting situations to monitor were the ones in which two scenarios are running in parallel as
such a situation can lead to a larger value for the end-to-enddelay. In our simulation, we have observed that all
the deadlines are met on all the architectures. As an example, the results obtained for different combinations of
scenarios on architecture A are presented in table 5. Next tothem, the results obtained using MPA and UPPAAL
techniques are also provided. Architecture A was chosen forfurther discussion because it was the one chosen for
deeper analysis by both techniques.

MPA is an analysis technique which finds hard upper bounds, not necessarily the actual worst case reached
by the model. This explains the larger values that are obtained by applying this method. On the other hand, the
results computed by UPPAAL are exact values of the worst caseend-to-end delay. It is interesting to observe that
our results are very close to UPPAAL (∼1% difference which also represents the accuracy of the results), except

5Note that, the simulation was run with the fast execution engine Rotalumis; thus, a few minutes of system simulation represent several
hours of runtime behaviour. The simulation was run until an accuracy of 99% of the results was reached.

16

Figure 21. ChangeVolume scenario

(A)

(E)
(D)(C)

(B)

22 MIPS

113 MIPS 11 MIPS

72 kbps

22 MIPS

113 MIPS 11 MIPS

72 kbps 57 kbps

260 MIPS 22 MIPS

72 kbps

113 MIPS 130 MIPS

72 kbps

260 MIPS

MMI

RAD

NAV

MMI

RADNAV

MMI

RAD

NAV

MMI

RADNAV

MMI

RADNAV

Figure 22. Platforms proposed for analysis

for HandleTMC scenario for which the difference is 7%. For this situation we suspect a miss-match between the
corresponding models and this aspect is still under investigation.

Besides keeping track of the end-to-end delays, during simulation, we have also monitored the resources utili-
sation. For architecture A, the obtained results are presented in table 6. Based on the amount of idle time of the
CPUs and on the fact that the worst case values of the delays are much smaller than the specified deadlines, we
concluded that the performance of the underlying architecture could be reduced in order to have a platform with
less cost and energy consumption.

7.2.2 Average case analysis

For an average case analysis of the system, we have assumed that the loads of all tasks variate according to a
uniform distribution, based on the inspiration got from measurements of similar systems. As the UML diagrams
provide only the worst case value of the load of each task, we have considered that the actual load varies between
75% and 100% of the value provided. The limits of the load variation for each task are given in fig. 7. Based on

17

Table 5. Architecture A worst case end-to-end delays
Measured Other active POOSL MPA UPPAAL
scenario scenario [ms] [ms] [ms]

ChangeVolume HandleTMC 41.771 42.2424 41.796
HandleTMC ChangeVolume 357.81 390.086 381.632
ChangeAddr HandleTMC 78.89 84.066 79.075
HandleTMC ChangeAddr 171.77 265.849 172.106

A B C D E
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Figure 23. Maximum end-to-end delay for scenario HandleTMC

the MIPS rate of the CPUs on the proposed architectures, given in fig. 22, we can compute the execution times of
tasks.

During simulations6 of the system behaviour for each of the architectures proposed in fig. 22, the end-to-end
delays were monitored. The results obtained were graphically plotted as distribution histograms, showing on the
horizontal axis the values of the end-to-end delay and on thevertical axis the rate of occurrence of each value. As
the parallel execution of two scenarios is likely to lead to more variation in the end-to-end delay, fig. 24 shows the
distribution histogram for the HandleTMC scenario when it runs in parallel with ChangeVolume on architecture
A. From such distribution histograms, the minimum (best case) and the maximum (worst case) values for the
end-to-end delays can be deduced. Columns 3 and 4 in table 8 show these values for all the combinations of
scenarios running on architecture A. Moreover, the relative frequency of occurrence of the maximum value can
also be deduced. During simulations, we have observed that the requirements are met for all the scenarios on all
the proposed architectures and that the maximum delays are much smaller than the deadlines.

7.2.3 Dimensioning of the system

The in-car navigation system is a soft real-time system thatallows a rate of 5% of deadline misses. Based on this,
together with the utilisation rates of the resources, whichwere also monitored during simulation, and the observed
maximum values of the delays, one can reason about possible platform performance reduction in order to reduce
cost and energy consumption of the system.

In [25], where this case study was analysed using MPA, the authors investigated the robustness of architecture
A. Therefore, in this paper we have also focussed on this architecture to reason about its resources. The utilisation

6By using the fast execution engine Rotalumis, a few minutes of system simulation represent several hours of runtime behaviour. The
simulation was run until an accuracy of 99% of the results wasreached.

18

Table 6. Resources utilisations in architecture A
Scenario Scenario Scenario MMI NAV RAD Bus

ChangeVolume ChangeAddr HandleTMC [%] [%] [%] [%]
YES NO NO 87 0 30 3
NO YES NO 3 5 0 1
NO NO YES 1 2 4 1
YES NO YES 88 2 33 4
NO YES YES 4 6 2 2

Table 7. Tasks loads for the average case analysis
Task Min Max
name [instr.] [instr.]

HandleKeyPress 7.5E4 1E5
AdjustVolume 7.5E4 1E5
UpdateScreen 3.75E5 5E5

DatabaseLookup 3.75E6 5E6
ReceiveTMC 7.5E5 1E6
DecodeTMC 3.75E6 5E6

of MMI is 88%. As the periods and loads of the tasks mapped on this processor are quite heavy, there is not much
room for the decrease of its capacity. TheNAV processor is used 6%. The histograms of scenarios ChangeAddr
and HandleTMC showed a difference of 80ms and 200ms respectively between the worst case delays obtained
and the requirements. Hence, we reducedNAV capacity to 40MIPS. The utilisation ofRAD is 33%. The analysis
showed a difference of 100ms for ChangeAddr and 200ms for HandleTMC respectively between the maximum
delays and the deadlines. As there is potential for capacityreduction, we reduce the capacity of this processor to
5MIPS.

With this new configuration for architecture A, we resumed our simulations using the same variances in the
task loads and the same task priorities. The distribution histograms of the end-to-end delays were plotted and,
as an example, fig. 25 shows the histogram for the HandleTMC scenario. The mean and maximum values of the
end-to-end delays for all the scenarios are presented in columns 5 and 6 in table 8. From the confidence intervals
calculated during simulation, we observed that the rate of deadline misses is within 5%, thereby fulfilling the
requirements. In this way, we have found a better dimensioning of the system than what was found using MPA,
reducing two of the processors with 65% (NAV) and respectively 55% (RAD).

Furthermore, in order to use such analysis results in an multi-disciplinary model of complex systems aiming at
design trade-offs across disciplines, an abstraction of the timing behaviour of the software part is needed. To this
end, we propose to fit the resulting distribution curves intoknown types of distribution. According to thecentral
limit theoremin probability theory, due to the uniformly distributed loads of the tasks and to the fact that tasks in
different scenarios are independent, the end-to-end delayof a scenario has approximately a normal distribution.
Therefore, over the distribution histogram obtained from asimulation, a normal distribution curve is fitted. Fig. 25
shows such a curve fitted over the HandleTMC histogram. The parameters of the normal distribution are the mean
value (µ) of 838.32 (ms) (the mean value of the delay) and the standarddeviation (σ2) of 3953.36 (ms). From
such curves, the rate of deadline misses can be deduced, based on their characteristics. For example, the deadline
for HandleTMC, which is 1000ms, can be found between two and three standard deviations from the mean. Thus,
the probability of missing the deadline is less than 5%, which means the requirements are met. Furthermore, from
these curves the probability of rare events occurrence can also be computed.

19

180 200 220 240 260 280 300 320 340
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

End−to−end delay HandleTMC

D
en

si
ty

End−to−end delay distribution HandleTMC − ChangeVolume

TMCVOL data

Figure 24. HandleTMC distribution histogram on architectu re A

Table 8. End-to-end delays of all scenarios
Measured Active Min. delay Max. delay Mean delay Max. delay
scenario scenario [ms] [ms] [ms] [ms]

ChangeVolume HandleTMC 28.17 47.82 49.66 58.48
HandleTMC ChangeVolume 180.9 353.51 838.32 1056.06
ChangeAddr HandleTMC 61.08 127.51 134.12 270.8
HandleTMC ChangeAddr 132.59 204.06 349.712 496.03

The analysis approach we considered for the in-car navigation case study is summarised in fig. 26 in which the
steps to be performed for the analysis of a soft real-time system are provided.

8. Conclusions

In this paper, we have presented modelling patterns, based on the concepts of the Parallel Object-Oriented
Specification Language, for the design space exploration ofreal-time embedded systems. These patterns allow
easy composition of system models consisting of real-time tasks, computation and communication resources and
their associated schedulers. Due to the expressiveness of POOSL, important aspects, like task activation latencies
and context switches, can be taken into account, enabling the building of realistic models without sacrificing
their conciseness. Moreover, due to this reason, the analysis can provide more realistic results than the classical
scheduling techniques can.

The use of the patterns presented in this paper reduces both the modelling and the analysis effort. The models
made can be analysed for worst-case and average loads, missing of deadlines and deadlock absence. Although
completeness cannot be claimed, the efficiency of the model simulation allows exploration of a substantial part of
the design space. Furthermore, we presented a way to make an abstraction of the analysis results of the timing
behaviour to use it as input for multi-disciplinary models.

As future work, we aim at extending the modelling patterns tocover for complex platforms like networks-on-
chip, by taking into account memory components, routing algorithms and even batteries for the analysis of energy
consumption.

20

650 700 750 800 850 900 950 1000 1050
0

1

2

3

4

5

6

x 10
−3

End−to−end delay HandleTMC [ms]

D
en

si
ty

 [%
]

End−to−end delay distribution HandleTMC with ChangeVolume

Figure 25. Distribution fitted over the HandleTMC distribut ion histogram on the improved A

Build
system
model

Modelling
patterns

System
properties

Generate
histograms

reduce performance
of the platform

Deadline
misses?

NO

YESsimulate Fit
distribution

curve

Calculate
miss rate

Within
req.?

NO

YES

increase performance
of the platform

OK

Figure 26. Flow of the steps in the analysis approach

Acknowledgments. The authors would like to thank Marcel Verhoef and Menno de Hoon for their help with the
in-car navigation system case study.

References

[1] Modular Performance Analysis. http://www.mpa.ethz.ch/.

[2] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science, 126 (2), April
1994.

[3] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-based performance
prediction in software development: A survey.IEEE Transactions on Software Engineering, 30 (5): pp.
295–310, 2004.

[4] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A Tutorial on UPPAAL. In:SFM, pp.
200–236, 2004.

[5] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe Buttazzo. A Hyperbolic Bound for the Rate Monotonic
Algorithm. In: IEEE Proceedings of the Euromicro Conference on Real-Time Systems, pp. 59–66, Delft, The
Nederlands, June 2001.

21

[6] Giorgio C. Buttazzo.Hard Real-Time Computing Systems: Predictable SchedulingAlgorithms and Applica-
tions. Kluwer Academic Publishers, 1997.

[7] Samarjit Chakraborty, Simon Kunzli, and Lothar Thiele.A general framework for analysing system prop-
erties in platform-based embedded system designs. In:Proc. of the conference on Design, Automation and
Test in Europe. IEEE Computer Society, Washington, DC, USA, 2003.

[8] Bruce Powell Douglass.Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,USA, 1995.

[10] Marc G.W. Geilen.Formal Techniques for Verification of Complex Real-Time Systems. PhD thesis, Eind-
hoven University of Technology, 2002.

[11] M. Gries, J. Janneck, and M. Naedele. Reusing design experience for petri nets through patterns. In:Proc.
of High Performance Computing 1999, 1999.

[12] Matthias Gries. Methods for evaluating and covering the design space during early design development.
Integration, 38 (2): pp. 131–183, 2004.

[13] Gilles Kahn. The semantics of simple language for parallel programming. In:Proc. of IFIP Congress, 1974.

[14] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pietervan der Wolf. An approach for quantitative analysis
of application-specific dataflow architectures. In:Proceedings of the IEEE ASAP, 1997.

[15] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and Computation,
94 (1): pp. 1–28, 1991.

[16] Paul Lieverse, Pieter van der Wolf, Kees Vissers, and EdDeprettere. A methodology for architecture explo-
ration of heterogeneous signal processing systems.VLSI Signal Processing Systems, 29 (3): pp. 197–207,
2001.

[17] C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real time environ-
ment.Journal of the Association for Computing Machinery, 20 (1), 1973.

[18] Sorin Manolache.Analysis and Optimisation of Real-Time Systems with Stochastic Behaviour. PhD thesis,
Linkpings University, 2005.

[19] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[20] OMG. Unified Modeling Language (UML) - Version 1.5. OMG document formal/2003-03-01, Needham
MA, 2003.

[21] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse,Pieter van der Wolf, and Ed F. Deprettere. Exploring
embedded-systems architectures with Artemis.Computer, 34 (11): pp. 57–63, 2001.

[22] POOSL. http://www.es.ele.tue.nl/poosl.

[23] Bart D. Theelen.Performance Modelling for System-Level Design. PhD thesis, Eindhoven University of
Technology, 2004.

22

[24] Piet H.A. van der Putten and Jeroen P.M. Voeten.Specification of Reactive Hardware/Software Systems. PhD
thesis, Eindhoven University of Technology, 1997.

[25] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. System architecture evaluation using
Modular Performance Analysis - A case study. Accepted for publication in the STTT Journal.

23

