

Predicting the Throughput of Multiprocessor
Applications under Dynamic Workload

Peter Poplavko, Marc Geilen, and Twan Basten

This report is an extended version of the following publication. It adds the proofs omitted from the publication.
If you want to cite this report, please refer to the paper instead.

P. Poplavko, M. Geilen, and T. Basten, “Predicting the Throughput of Multiprocessor Applications under
Dynamic Workload”. Proc. ICCD-2010, the 28

th
 International Conference on Computer Design. IEEE, CS

Press, 2010.

ES Reports
ISSN 1574-9517

ESR-2010-02
3 August 2010

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2010 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

Abstract— This work contributes to throughput calculation

for real-time multiprocessor applications experiencing dynamic

workload variations. We focus on a method to predict the

system throughput when processing an arbitrarily long data

frame given the meta-characteristics of the workload in that

frame. This is useful for different purposes, such as resource

allocation or dynamic voltage scaling in embedded systems.

An accurate enough analysis is not trivial when two factors

are combined: parallelism and dynamic workload variations.

In earlier work, two analysis methods showed good accuracy

for several application examples, but no comparative

experiments were carried out. In this work, we contribute to the

theoretical basis of the previous methods. Based on these

observations, we remove a potential problem in a common

subroutine and propose a new analysis method. We compare

the methods experimentally. The new method provides a

significant reduction of the throughput prediction error, up to

12 %.

I. INTRODUCTION

In modern embedded systems, scalable multiprocessors

play an increasingly important role. Multiple cores that are

coupled to each other via busses, memories and switches

pose challenging problems for programming these systems.

One of the major challenges is predicting the performance, in

order to meet the real-time constraints. For many streaming

applications in the multimedia and communication domains,

this problem means predicting the throughput, and this is the

problem we address in this paper.

The main application of throughput prediction is timing

constraint verification of different implementation choices.

The examples of this process are resource allocation [3] and

the management of limited system resources, e.g., quality

scaling [10] and dynamic voltage scaling.

A throughput prediction method should analyze arbitrarily

long execution runs with a finite overhead. For ensuring

good quality, it should give conservative but tight

estimations. It should be preferably based on an analytical

method so that the results are reliable.

Such a method is difficult to realize when two factors are

combined: multiprocessor parallelism and dynamic workload

variations. To handle the parallelism with the above

mentioned requirements, a so-called steady-state of the

system should be detected and analyzed, which is done in

many performance analysis approaches, e.g. [14]. However,

these techniques typically assume that the system has static

characteristics which never change and the same steady state

is preserved forever. However, such assumptions do not fit to

the dynamic workload situation, which prescribes us to use

multiple (temporary) steady states and the transitions

between them.

The only throughput analysis methods known to us that

satisfy the requirements are introduced in [7] and [13]. The

methods focus on the synchronous dataflow (SDF) model of

computation [11], which, as argued in Section II, fits the

modeling of multiprocessor systems very well. The above

mentioned methods show an excellent throughput prediction

accuracy for several multiprocessor application examples.

In this paper, we contribute a few new components to

these methods, which leads to a method with a significantly

improved prediction accuracy. First, we give background

information by explaining the SDF model in Section II and

the relevant previous work in Section III. In Section IV, we

show that an important performance metric, the delay caused

by transitions between steady states, can be calculated in

polynomial time. There we also formulate an important

proposition that is used to derive our new method in Section

V. In Section VI, we perform experimental evaluation to

compare the methods, using a set of synthetic benchmarks

and a real benchmark. Section VII summarizes the

conclusions and looks at future work.

II. SYNCHRONOUS DATAFLOW GRAPHS

The SDF model of computation [11] is represented by

SDF graphs. An example is shown in Figure 1. An SDF

graph is a directed graph, in which the nodes are called

actors. They model the processing, scheduling and

communication tasks. Every actor is connected to the graph

edges by inputs and outputs. Every input and output has a

data rate. In Figure 1 all rates are 1. Such graphs are called

homogeneous SDF graphs (HSDF).

The edges of the graph are (potentially unbouded) queues

for sending tokens between the actors. Some edges carry

initial tokens. For the sake of this paper, we assume every

initial token has an index. In Figure 1, the indices of the

initial tokens are enclosed in braces. The tokens are dynamic

data items, consumed and produced by actors in the course

of execution.

Execution of every actor is a sequence of firings. An actor

starts a new firing at the first moment when it has on each

input a number of tokens at least the rate of the input. In this

case, the actor is said to be enabled for firing. These tokens

are consumed by the actor at the beginning of actor firing.

For example, the first firing of actor A in Figure 1 is initially

enabled because it can consume a token at each input. After

the start of an actor firing, the firing is completed only after

an interval called the actor firing time. In Figure 1, the firing

times are constant (0.5 and 1.5) but in Section III.C we also

represent firing time variations in our analysis model. At the

firing completion, each output produces new tokens. The

amount of tokens produced is equal to the output’s rate.

An SDF graph iteration is a minimal non-empty set of

firings such that in the end every edge has the same number

of tokens as initially. For HSDF graphs, every actor fires

exactly once per iteration, but in general different actors fire

A B
(1) (2)

(3) (4)

Fig. 1. An SDF example

1

1

1

1

1

1

1

1

0.5 1.0

a different number of times, see [12] for details. Any SDF

execution that does not deadlock and that does not build up

an unbounded number of tokens in any of its edges is

composed of such iterations.

To explain and analyze the graph’s behavior, with every

initial token j in iteration n (n > 0) we associate release times

x n,j. Time x n,j is defined as the moment when another token

shifts into the place represented by the token index j in

iteration n. For illustration purposes, we also use capture

time i.e. the moment of time when the token departs from

place j in iteration n.

Consider Figure 2(b) a few pages ahead. It illustrates the

execution of an SDF graph of Figure 1 using a Gantt chart,

where ‘resources’ correspond to the four initial tokens. The

‘tasks’ that occupy the ‘resources’ are the periods of time

between the token capture and release times in subsequent

graph iterations. The odd iterations are shown with white

tasks, the even ones with grey. This figure illustrates that

different iterations may interleave with each other in time.

The SDF model of computation turns out to be very useful

to model not only the application, but also the multiprocessor

mapping, RTOS scheduling and communication. In the

literature, a broad research has been carried out on this

subject. A pioneering work in this direction assumes bus-

based multiprocessors [5]. HSDF models for dedicated FIFO

connections and on-chip networks were proposed in [4], for

TDMA schedulers in [6] and for the general class of latency-

rate schedulers in [16]. Because these models are

compositional, the interplay of all these components can be

captured in one SDF model, which can act as an input for our

performance analysis approach.

III. PREDICTING THE THROUGHPUT BY SCENARIOS

A. Parameter Function

A major timing metric of a multiprocessor application is

the time required to process a given number of subsequent

data samples, referred to as a frame. In terms of SDF graphs,

it is the time required to perform a given set of subsequent

iterations. We refer to this time as frame execution time,

denoted ∆N, where N is the number of graph iterations in the

frame. The reciprocal value, N/∆N, is equal to the throughput.

Therefore, we consider execution time prediction to be

synonymous of throughput prediction.

In our work, we use a scenario-based performance

analysis approach. A scenario is a set of application

execution behaviors with similar resource usage [8]. Goal of

the scenario-based execution time prediction is to estimate

the frame execution time by a linear equation of the form:

∆N ≤ α(0)+Σiα(i)F(i). The right-hand part of this inequality is

the parameter function. Note that the ‘≤ ’ sign indicates it is

a conservative estimate, in line with our requirements. The

α(i) are constant scenario coefficients, i.e., the constant

contributions of a parameter to the execution time, and the

F(i) are parameters, typically variables counting the number

of invocations of the scenario. The parameters are chosen to

be implementation-independent meta-characteristics of the

workload that are assumed to be given. For example, the I

and P blocks in video coding algorithms can act as scenarios,

the total counts of I and P blocks in a video frame can act as

parameters and the conservative processor cycle counts to

process I and P blocks can be used to derive coefficients.

The main purpose of a performance analysis method is to

calculate the optimal coefficients such that the estimation is

conservative and the error (i.e. the difference between the

parameter function and the execution time) is minimized.

This is the central problem of this paper. Throughout this

paper, we use small Greek letters for the values that act as

scenario coefficients.

In the remainder of this section, we show a state-of the-art

([7, 13]) derivation of SDF frame execution time in terms of

a parameter function. We use it as a basis for our

contributions presented in Sections III and IV.

B. Analyzing a Single SDF Scenario

In the context of SDF graphs, one defines a scenario as a

mode of graph execution where the same set of firing times

of all actors is constantly repeated at every graph iteration.

This definition is convenient, because a graph iteration often

corresponds to the realization of different processing stages

for the same data sample. If one can distinguish a finite set of

possible data sample types (e.g. I-block and P-block in an

earlier example) this immediately corresponds to a set of

scenarios, because the processing times for the same type can

be approximated by constant processing times [9]. If the

types cannot be distinguished manually, [9] proposes a

general approach to distinguish them automatically.

One can apply well-known analytical tools to characterize

the graph’s timing behavior as long as a graph stays in the

same scenario. In the rest of this subsection, we briefly

summarize the tools that are relevant for our purposes.

To express the mathematical relationship between the

token release times in different iterations, the so-called max-

plus matrix algebra [2] is traditionally applied. The major

difference from the ‘usual’ algebra is that for matrix

products, addition is replaced by the max operation and

multiplication is replaced by addition. For example,









=









++

++
=








⋅








4.9

3.5

)3.02.0 ,0.44.5max(

)3.00.5 ,0.41.0max(

3.0

0.4

2.04.5

0.51.0

Adding (or subtracting) a constant to a vector or matrix is

short-hand notation for increasing (or decreasing) every

element, e.g. if a = [5.0; 1.5; 7.0] then

2.1 + a = [7.1; 3.6; 9.1]. The norm ||·|| is the maximal

element, e.g. || a || = 7.0. The normalization operator

subtracts the norm from the vector: a
norm

= a − || a ||.

The state of the graph is represented by a state vector nx ,

where n is the iteration index. It is a column-vector with R

elements, where R is the number of initial tokens in the

graph. The i-th element {xn}i is the release time of token i in

iteration k, so {xn}i = xn,i.

The state vector in iteration n+1 can be obtained from the

state vector in iteration n by 1+nx = G⋅
nx , where G is an RxR

matrix that characterizes the graph in the given scenario and

can be calculated by an algorithm given in [7]. For HSDF

graphs, the matrix element at row i column j gets the value of

the longest (in terms of the total of firing times) token-free

graph path from initial token j to initial token i. If there are

no such paths, value –∞ is assumed. For example, in

Figure 1, the longest path from token 2 to token 1 is 0.0, so

G12 = 0.0. There are no token-free paths from token 3 to

token 1, so G13 = –∞.

An important property of a max-plus matrix is the solution

of the eigenvalue equation: G⋅ x = x + λ, where x is a max-

plus eigenvector and λ is the max-plus eigenvalue of matrix

G. The eigenvalue represents the average interval between

iterations in steady state. The meaning of an eigenvector is a

periodic schedule. Indeed, if the state vector is equal to an

eigenvector, then after one iteration the state vector is the

same except for an addition of λ, and after two iterations it is

the same plus twice the λ, and so on.

Not only the eigenvector leads to a periodic execution of

the SDF graph. According to a well-known theorem ([2

§3.7]), for any initial vector r start, there exist T and W such

that for any n>0 we have G
T+n

 ⋅ r start = WwnT start λ+⋅−+ rG ,

which means that the graph executes in a W-periodic regime,

the λ being the average iteration interval over the W

iterations in the period. We refer to the smallest such T as the

transient iteration count, because it reflects the number of

‘transient’ iterations of the graph before it enters the periodic

regime, i.e. the ‘steady state’.

The eigenvalue and an eigenvector for an SDF graph can

be calculated using efficient algorithms in [7].

C. Analyzing Multiple Scenarios

In general, an SDF scenario model for a given application

consists of a finite set of scenarios indexed by s =1..S,

corresponding to different data sample types processed by

the application. Because the scenarios have different actor

firing times, every scenario is characterized by a distinct

matrix G(s) which has a distinct eigenvalue λ(s).

It is convenient to split the processing of a frame into

intervals p = 1..P, where every interval is a maximal range of

subsequent graph iterations with the same scenario sp. Every

iteration n belongs to a certain interval p(n). For example,

suppose that the number of iterations in a frame is 10, and

the scenario index s progresses as {1, 3, 3, 3, 3, 1, 1, 2, 2, 2}.

Then there are four intervals, and s1=1, s2=3, s3=1, s4=2.

The evolution of the graph state vector in a frame is

expressed by:

1+nx = G(sp(n))⋅ nx , n = 0..N-1 (1)

where without lost of generality we assume 0x =[0; …;0]
T
.

The frame execution time can be written as:

∆N = || Nx || (2)

[7] introduces a so-called reference schedule method,

which estimates the frame execution time as the sum of

contributions of all intervals, whereby the contribution of

arbitrary interval p is expressed in the form:

∆
~

(I) = τ + λ·I (3)

where λ = λ(sp), I is the iteration count of interval p and τ is

called the transition delay, because it reflects the transient

effect of the transition from previous scenario sp–1 (or from

the initial state) to the steady state of the current scenario.

The term λ·I reflects the throughput of the SDF graph in the

steady state.

[7] defines the transition delay τ such that starting from a

certain state r start after any number of iterations in scenario

sp the final state vector x is separated from a certain target

state r end by at most time ∆
~

(I), i.e.

|| endrx − || ≤ ∆
~

(I) = τ + λ·I. Let us look for minimal such τ,

to make bound ∆
~

 as tight as possible. Observing that

τ ≥ || I⋅−− λendrx || and x = G
I

r start, where G = G(sp) we

see that the minimal τ is a function τgen defined as:

τgen(r start, G, r end) = n
n

Tn
λ−−⋅

=
endstart

..1
max rrG (4)

where T is the transient iteration count. In this expression we

have made use of the W-periodic regime theorem.

Vectors r start and r end are called the start schedule and

the end schedule. According to [7], both vectors are

normalized, r start estimates the normalized state vector
norm

nx before the start of the interval and r end estimates this

vector after the completion of the interval. Due to max-plus

normalization, any schedule should satisfy:

|| r end || = 0 (5)

The start schedules are implied from the end schedules.

r start is equal to r end of the previous interval except for the

first interval, where r start =[0.0; 0.0; …; 0.0]
T
.

In the reference schedule method, one can choose

arbitrary r end, and the r start are implied from the r end .

However, the accuracy of the reference schedule method is

sensitive to the correct choice of the r end . Although [7]

suggests the possibility of different r end for different

intervals, the method assumes that the r end are the same and

referred to as r ind. Notation ‘ind’ refers to a schedule that is

independent of the scenario it is applied to. r ind is calculated

as an eigenvector of matrix Gall , where Gall =

())()(max
..1

ss
Ss

λ−
=

G . We call this method the scenario-

independent reference schedule method. Summing up

Equality (3) for all intervals, we get the parameter function

that estimates the frame execution time in this method [7]:

N∆ ≤ τ ind-ini + ()∑ +
s

sLssJs)()()()(indτλ (6)

where τind-ini=τgen(
T

]0 ... ;0[,G(s1), r ind); τind(s) =

τgen(r ind, G(s), r ind); J(s) is the total count of iterations in

scenario s; L(s) is the total number of intervals of scenario s

except for the first interval. τ ind(s) and λ(s) are scenario

coefficients, and J(s) and L(s) are scenario parameters.

The method that we propose in Section V uses the

reference schedule methodology too, but we calculate the

schedules differently.

D. Reference Schedule: a Discussion

In this section, we illustrate the reference schedule method

using the Gantt charts to see what is different in our method

introduced later. First we need to add some useful notations.

Let r end (p) be the end schedule of interval p. Observe that

the reference schedule methodology estimates the state

vector at the completion of interval p as the sum of ∆
~

(p) for

all the intervals up to that point plus vector r end (p). We use

notation y (p) for that estimate.

Using vectors y (p), we can imagine the working of the

method as follows. Let us add to the SDF graph a virtual

‘scheduler’ engine that can interfere with the SDF graph

execution between the graph iterations. After a token has

been released, the scheduler can hold it, delaying its capture

time a certain scheduled time. Suppose that the scheduler

only interferes at the end of the scenario intervals, and holds

the tokens until the times specified in y (p). Such a

scheduler models the operation of a reference schedule

method. Note that in reality such a scheduler is not used and

actors fire as soon as they are enabled. Due to monotonicity

of the behaviour of an SDF graph, the behavior of the model

with this hypothetical scheduler is a conservative upper

bound of the real behavior.

For example, Figures 2(a) and (b) show Gantt charts for

the graph in Figure 1, as already explained before in Section

III. Two scenarios are assumed, and their firing times are

given in the table in the figure. It is assumed that the graph

alternatingly switches between the two scenarios. The

diagrams for vectors y (p) are plotted with bold lines,

dashed for the odd p and dotted for the even p.

In Figure 2(a), all the y (p) diagrams have the same shape,

which corresponds to the independent reference schedule

r ind = [–1.5; 0.0; –0.5; 0.0]
T
. This turns out to be an

inefficient solution, because the virtual scheduler delays

token 3 by 1.0 at every transition from scenario 1 to scenario

2. In Figure 2(b) we see the graph execution with two

specific schedules: r end(1) = [–1.5; 0.0; –1.5; 0.0]
T
 for the

odd intervals and r end (2) = [–0.5; 0.0; –0.5; 0.0]
T
 for the

even ones. The execution coincides with the self-timed

execution, leading to a zero estimation error. This is due to

the fact that, in this example, the shapes of the specific

schedules ideally match the shapes of the token release at the

end of the scenario intervals. Because these shapes are

essentially different for the two scenarios, no scenario-

independent schedule would match both of them well.

Our method introduced in Section V exploits different

schedules for different intervals to overcome this poblem.

IV. TRANSITION DELAY CALCULATION

A. Improved Calculation of Transition Delay

Equality (4) is used to calculate the transition delays in the

two previous throughput prediction methods of [13, 7]. We

need to calculate transition delays in the new method as well.

In the previous work, this equality was applied directly and

thus algorithmic complexity depends on transient iteration

count T. This creates a potential threat for the performance

of the throughput prediction, because T can become

uncontrollably large. In this subsection, we remove this

potential problem based on the following proposition.

Proposition 1. Transient iteration count T in the definition

of τgen (Equality (4)) can be replaced by min(R,T), where R is

the number of rows/columns of matrix G. •

Proof. For convenience, we start from the variant of

Equality (4) where T is replaced by +∞. This replacement is

valid because, due to W-periodic regime, the argument of

‘max’ is a periodic sequence whose first period is fully

contained in the first T iterations.

 n
n

n
λ−−⋅

∞=
endstart

..1
max rrG =

 { using max-plus algebra property: A⋅⋅⋅⋅ v – c = (A – c) ⋅⋅⋅⋅ v }

 () endstart
..1

max rrG −⋅−
∞=

n
n

n
λ =

 { An – cn = (A – c) n}

 () endstart
..1

max rrG −⋅−
∞=

n

n
λ =

1.0 2.0 3.0 4.0 5.0

1

2

3

4

(a) Independent reference schedule leads to poor results due to

the same shape of y for all scenario transitions

time

actor firing times (Fig. 1)

 s=1 s=2

A 0.5 1.5

B 1.5 0.5

y (1) y (2) y (3)…– same shape = same ref. schedule

alternating scenarios:

s1 = s3 = s5 =…= 1

s2 = s4 = s6 =…= 2

(b) Specific reference schedule

capture time
initial

tokens

1.0 2.0 3.0 4.0 5.0

1

2

3

4

time

y (1) y (2)

Fig. 2. An SDF simulation demonstrating the superiority of a

specific reference schedules over independent schedules

y (3)…– different shapes

release time

initial

tokens

 {max(|| a ||,|| b ||) = || max(a , b)||}

 ()()endstart
..1

max rrG −⋅−
∞=

n

n
λ =

 {max(a – v , b – v)=max(a , b)– v }

 ()() endstart
..1

max rrG −




 ⋅−

∞=

n

n
λ =

 {max(A⋅⋅⋅⋅ v ,B⋅⋅⋅⋅ v)=max(A,B)⋅⋅⋅⋅ v }

 endstart
..1

)(max rrG −⋅




 −

∞=

n

n
λ .

In the max-plus algebra, the expression n

n
A

∞= ..1
max has

notation A
+
 and is called the transitive closure. A

+
 is in fact

the matrix of longest paths between all pairs of nodes of the

precedence graph of matrix A. The elements of matrix A
+
 are

finite only if the precedence graph of matrix A has no

positive cycles. In that case, any path longer than the number

of nodes must include a cycle and can be decomposed into a

path of length at most the number of nodes plus a number of

non-positive cycles. In this case we have A
+
= n

Rn
A

..1
max

=
, i.e.

we can limit n by R for an R×R matrix [2 §1.2.1].

Let us show that this property applies to matrix)(λ−G .

Since λ is the eigenvalue of G, it is obvious that the

eigenvalue of this matrix is equal to 0. A theorem in [2

§3.2.4] states that the eigenvalue is equal to the maximal

ratio of the total weight of a cycle in the precedence graph

and the number of edges in that cycle. Because the

eigenvalue of matrix)(λ−G is 0, the maximal cycle weight

is also 0. Consequently, this matrix has no positive cycles.

Therefore, in the last expression in the chain of

expressions above we can use the 1..R range in the max

operator instead on the infinite range. This statement implies

that the whole chain of equalities above may use the 1..R

range. By Equality (4), the 1..T range is also acceptable. So

one can select the most favorable range, i.e. 1..min(R,T). ••••

Example (adapted from [2 §3.7]). Let G = 





0.1000.100

0.00.99
.

Suppose r start= r end=[0; …;0]
T
. The argument of the max

operator in Eq. (4) evolves for n = 1..100 as [−1.0; 0.0]
T
;

[−2.0; 0.0]
T
; …[−100.0; 0.0]

T
 and for n≥100 it stays

constant, so T = 100. From this, we may conclude that we

have τgen = 0.0. Proposition 1 gives us the possibility to

reach this conclusion after 2 iterations instead of 100. ••••

We can write:

τgen(r start, G, r end) = endstart

~
rrG −⋅+ (7.1)

where:

λ−= GG
~

 (7.2)

The transitive closure operator ‘
+
’ for a given matrix can

be calculated by an O(R
3
) all-pair longest path algorithm.

Note that [1] also employs a transitive closure to calculate a

bound on a time difference between events. However, [1]

applies it to the ‘steady-state’ part of the model exploration,

not to the ‘transient’ part.

B. Reference Schedule with Minimal Delay

Recall that Equality (3) gives an upper-bound on the

execution time of a given interval Ip. Suppose that we fix

r start and would like to find such an r end that this upper

bound is minimized. This would certainly serve our intention

to have an execution time estimate that is as tight as possible,

if we were focusing on the execution time of one interval

separately from the other intervals.

Observe that at the right-hand part of Equality (3), the

only part that depends on r end is τgen(r start,G(sp), r end). Then

our problem of minimizing the estimate for a single scenario

interval is solved by the following proposition.

Proposition 2. For the given matrix G and start schedule

r start and given the constraint || r end|| = 0 (as in Equality (5)),

the minimum transition delay is reached only for an end

schedule that satisfies the following criterion:

r end-min ≤ r end ≤ [0.0; 0.0; …; 0.0]
T
, where:

r end-min= ()norm

start

~
rG ⋅

+ (8)

••••

Proof. Using || r end || = 0 and Equality (7.1), we have:

τgen (r start, G, r end) = endstart

~
rrG −⋅+ + || r end ||

Using the triangle inequality of the max-plus algebra vector

norm: || a ||+|| b ||≥|| a + b ||, we see that:

τgen (r start, G, r end) ≥ start

~
rG ⋅+ . So we have a lower bound

on τ gen, let us denote it τ gen-min.

For notational convenience, let e = [0.0; 0.0; …;

0.0]
T
denote the vector of zeros. We have to prove that

τ gen-min is reached exclusively for r end-min ≤ r end ≤ e .

Substituting r end = r end-min or r end = e into (7.1), we see

that τ gen-min is reached for both these arguments. For the end

schedules in between these boundaries, we have

τ gen = τ gen-min because τ gen is a monotonically non-increasing

function of any element in r end.

Let us consider other values of r end. The requirement

r end ≤ e follows automatically from constraint || r end || = 0.

If the relation r end ≥ r end -min is not satisfied then we have

r end = r end-min − d where || d || > 0. Substituting this value

of r end into (7.1), we get τgen = τ gen-min+|| d ||, which for

positive || d || means a non-optimal value. This proves that

under the given constraint the minimal delay is achieved only

if the criterion of this proposition is satisfied. ••••

 We use this proposition to derive a new method.

V. THE SUPERMATRIX METHOD

A. Scenario-specific Reference Schedule

We propose a method with an improved accuracy w. r. t.

the scenario-independent reference schedule method at the

expense of an increased analysis cost; the method uses

scenario-specific reference schedules as explained below.

A scenario-specific schedule is an end schedule that

depends on the interval’s scenario; we use notation r spec(s)

for it. The schedule can be potentially adjusted to its scenario

in such a way that it would yield a better accuracy than the

scenario-independent method – recall Figure 2.

In this method, r start = 0x for p=1 and r start = r spec(sp–1)

for p>1. The end schedule r end is r spec(sp) for every p.

Using these schedules and summing up the execution time

estimates of all intervals, we have:

N∆ ≤ τ spec-ini +∑
s

sJs)()(λ + ∑
≠tsts

tsKts
;,

spec),(),(τ (9)

where: τspec-ini = τgen(0 , G(s1), r spec(s1)) is the initial delay;

Scenario coefficient τspec(s, t) = τgen(r spec(s), G(t), r spec(t)) is

the delay of the transition from scenario s to scenario t;

scenario parameter K(s,t) is the total number of transitions

from s to t. Parameter J(s) and coefficient λ(s) have the same

meaning as in Eq. (6). Note that Eq. (9) has more scenario

parameters than Eq. (6). This is necessary to make use of the

scenario-specific schedules to achieve better accuracy.

B. The Minimal-error Coefficient Optimization Problem

Note that the first term in (9) is insignificant and the

second one cannot be influenced. Therefore, to minimize the

prediction error we are focusing on the third term.

The optimization problem we are considering now is as

follows. The problem instance consists of the parameter

values { K(s,t) } and the set of the scenario matrices

{ G(s) }. We have to fill the set of scenario-specific

reference schedules with vector values { r spec(s)} such that

the scenario coefficients τspec(s,t) induced by these schedules

yield the minimal contribution in the third term of Eq. (9).

Note that this is a particular case of the minimal-error

coefficient optimization problem mentioned in Section III.A.

Similar to [7], in the solution method proposed in the next

section we only use the scenario matrices { G(s) } and not

the frame specific parameter values, which will only become

available at run-time. This approach enables the reuse of the

calculated coefficients τspec(s,t) for multiple frames,

independently of the { K(s,t) }. For many applications,

{ G(s) } are known at design time [7], which means that

using our method one can calculate the reference schedules

at design time as well.

C. A Method to Calculate the Reference Schedules

Our method introduced here is a heuristic solution for the

problem introduced above. For the reason that becomes

apparent later, we call this method the supermatrix method.

Consider an arbitrary interval. Suppose that that interval is

in scenario t. Similar to Section IV.B, consider the problem

of minimizing the transition delay in that interval. The

difference is, however, that instead of one start schedule we

have a set of possible start schedules: r start∈ { r spec(s) | for

scenarios s such that s ≠ t }.

In this heuristic approach, we define the end schedule

r spec(t) as the optimal schedule for an aggregate start

schedule r start-aggr(t), representing a certain weighed

combination of the possible start schedules:

r start-aggr(t) =))()((max spec
 ,

sws
tss

+
≠

r (10)

where w(s) is the weight determining the degree of influence

of scenario s in the aggregate schedule. Substituting the start

schedule from Eq. (10) to Eq. (8), we have:

r spec(t) = ()(tz)
norm

 (11)

where:

)(tz = ⋅+)(
~

tG r start-aggr(t) + c, (12)

c can be selected arbitrarily, but below we will choose the

only possible value leading to feasible solutions.

In Eq. (10), we choose to use the weights w(s) = ||)(sz ||.

We do this because this allows us to solve the resulting set of

equations analytically, by a known method. With these

weights we transform Equalities (10 −12) to a system of

equations equivalent to the eigenvector equation where

constant c is the eigenvalue:

t = 1..S:)(tz = ⋅+)(
~

tG))((max
 ,

s
tss

z
≠

+ c (13)

To make it more obvious that eigenvector methodology

can be re-applied here, we rewrite Eq. (13) in matrix form:

SUPz = GSUP SUPz + c (14)

where SUPz is a concatenated vector of size SR:

SUPz =[)1(Tz)2(Tz …)(STz]
T
; and GSUP is a concatenated

SR×SR matrix composed of R×R block submatrices, shown

in Figure 3. This matrix consists of ‘super-rows’ filled with

matrices)(
~

t+G everywhere except at the ‘super-diagonal’,

where matrix ΕΕΕΕ is filled. The latter is an R×R matrix whose

elements are all –∞. We refer to GSUP as the supermatrix.

Extracting SUPz as an eigenvector of GSUP and applying

Equality (11), decomposing SUPz into vectors)1(z ,)2(z ,

…)(Sz , we obtain all the reference-specific schedules.

Note that in the case of two scenarios, Eqs (10) transform

into two equalities in the form of Eq. (8), which means that

the two reference schedules are optimal end schedules with

respect to each other. The two schedules in Fig. 2(b) are, in

fact, obtained from the supermatrix method.

ΕΕΕΕ
+

G
~

(1) …
+

G
~

(1)
+

G
~

(1)

+
G
~

(2) ΕΕΕΕ …
+

G
~

(2)
+

G
~

(2)

… … … … …

+
G
~

(S–1)
+

G
~

(S–1) … ΕΕΕΕ
+

G
~

(S–1)

+
G
~

(S)
+

G
~

(S) …
+

G
~

(S) ΕΕΕΕ

Fig. 3. Matrix GSUP – the ‘supermatrix’

VI. EXPERIMENTAL EVALUATION

In this section, we compare the accuracy of the

supermatrix method experimentally with the independent

reference schedule method of [7] and the minimum overlap

method of [13]. We use a set of random benchmarks as well

as a real application.

To generate the SDF graphs randomly and produce the

input for the experiments we used the random SDF graph

generator of the open-source SDF3 tool [15]. In all

experiments, the generated graphs had 10 actors and 15

edges on average. In addition, we implemented a random

generator of SDF scenarios and frames. In the generated

frames, all the actors in the generated graph had different

firing times in different scenarios. The number of scenarios

was set to S = 8, the ratio between max and min actor firing

time was in most cases 5 and below. The frame iteration

count was set to 30. Note that neither the firing time ratio nor

the frame iteration count were found to have a significant

impact on the prediction quality and overhead. To make the

prediction problem complex enough, we set the frequency of

scenario transitions to at least 70% of iterations,

For every generated graph, the generator produced

multiple frames. In order to verify that the methods are not

too sensitive to the changes in the input data; at every frame,

a set of scenarios with slightly different actor firing times

was offered to them. Therefore, every prediction method had

to recalculate the scenario coefficients for every frame

(although in practice this can be done once, at design time).

We have run experiments on two sets of graphs: for HSDF

and for general SDF graphs. In the HSDF graphs, the total

initial token count R was in the range 4-11. In the SDF

graphs, the generator had to select larger values of R: 18-25

to ensure absence of deadlock, which led to a relatively

larger running time overhead. Every HSDF graph was

evaluated with 50 frames, and every SDF graph was

evaluated for 10 frames. In both cases, the minimal overlap

and the independent schedule took around one minute to

complete (on a 1.2 GHz CPU), whereas the supermatrix

method took ten times longer, which is expected, because it

operated with S = 8 times larger max-plus matrices.

To evaluate the results, we calculate the frame execution

times from simulation and use the result as the reference for

relative execution time prediction error. Tables 1 and 2 show

the results of the accuracy evaluation, where the columns

correspond to different graphs. Rows ovr, ind and sup

correspond to the minimal overlap, independent schedule,

and supermatrix methods. Table 2 misses the minimal

overlap results, as it supports only HSDF graphs.

From the tables, we see that in almost all the cases, the

supermatrix method produced the best results, improving the

accuracy by up to 12%. It also demonstrates more reliable

accuracy, as the error variation among different graphs is

smaller. The minimal overlap method shows in almost all the

cases worse results, although it uses the same meta-

characteristics as the supermatrix method [13].

Figure 4 shows the HSDF graph of a JPEG decoder

mapped to two processor tiles (i.e. multiprocessor segments

with local memory systems), communicating via a network

channel. This example is adapted from a case study in [4],

but assuming a different mapping. The variable-length

decoder (VLD) is scheduled by a round-robin (RR)

scheduler, modeled by actor RRB. All the inverse discrete

transform and scaling operations are mapped to a processor

in a different tile and modeled by a single actor (IDT), which

communicates via a local memory channel to the color

conversion actor (CCV). The TFR, LCC and LCF actor

models the network channel (see [4] for channel modeling).

For JPEG, we introduce scenarios as follows. The firing

time of the VLD actor depends on the decoded bit count and

the DCT coefficient count. We split the dynamic range of the

bit count into sub-ranges of 100 bits and of the coefficient

count – into subranges of 10. A combination of the two types

of subranges is a scenario. This yields around 400 scenarios,

but every image involves only a small subset (typically 7-

12). We have measured the execution time prediction error

for 10 arbitrary images. We used graph simulation with real

VLD firing times as the reference. The results are presented

in Table 3. They confirm the best quality of the supermatrix

method when compared to the two other methods for a

realistic benchmark.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an analytical throughput

prediction method for variable workload in multiprocessors

and potentially other systems whose concurrency can be

modeled by SDF graphs, such as asynchronous circuits. This

method can be used in the design-time resource allocation

for a given workload profile or as a preparatory phase of

run-time resource management to estimate the timing costs in

Table 2. SDF run: average relative error (%) in different graphs

ind 4 18 9 5 7 5 2 14 1 3

sup 1 12 2 3 2 0 0 2 0 0

 Table 3. JPEG run: average relative error (%) for different images

ovp 55 72 51 36 72 50 50 56 40 52

ind 21 20 14 17 27 18 19 23 17 18

sup 14 16 11 15 16 16 15 15 15 13

VLD

0.45

Fig. 4. HSDF model: JPEG decoder mapped to two processing tiles

TFR

0.3
LCC

0.1

LCF

0.1 IDT

0.42

Tile T1 Tile T2 Channel C 1

 - communication actor

 computation actor

 all firing times are in ms; computation actor times are average and assume ARM7 @ 133MHz

- variable-delay actor

Table 1. HSDF run: average relative error (%) in different graphs.

ovp 49 18 0 10 41 0 13 9 41 11 19

ind 6 1 1 1 10 0 2 7 6 5 0

sup 1 0 1 0 3 0 2 2 4 1 0

different possible run-time application scenarios. We also

removed an important potential problem for the overall

methodology by giving an algorithm with better and more

robust complexity for calculating a common metric, the

transition delay.

The proposed method, called the supermatrix method,

follows an approach that is able to analyze arbitrarily long

application runs with a constant overhead. The experiments

demonstrate that the method outperforms the other

comparable methods in terms of accuracy, but has a

considerably higher overhead. Its practical usage is therefore

limited to the scenarios whose metrics can be adequately

analyzed at design time, but this assumption is realistic in

many practical cases.

In future work, we will refine and evaluate the new

method for the extended model of computation that allows a

different SDF structure and rates in different scenarios [7].

We will also investigate the possibility of a method with a

smaller overhead and similar quality.

REFERENCES

[1] T. Amon, H. Hulgaard S. M. Burns and G. Borriello, "Algorithm for

Exact Bounds on the Time Separation of Events in Concurrent

Systems", in proc ICCD Conf., pp. 166-173, 1993.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat.

Synchronization and Linearity. New York: Wiley, 1992.

[3] M. Bereković, H. J. Stolberg, and P. Pirsch, “Multicore System-On-

Chip Architecture for MPEG-4 Streaming Video”, in IEEE Trans.

Circuits and Systems for Video Technology, vol. 12, no. 8,

pp. 688-699, 2002.

[4] P. Poplavko, et al, “Task-level Timing Models for Guaranteed

Performance in Multiprocessor Networks-on-Chip”, in Proc.

CASES‘03, pp. 63-72. ACM 2003..

[5] N. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharrya,

“Intermediate Representations for Design Automation of

Multiprocessor DSP Systems”, in Design Automation for Embedded

Systems, vol. 7, pp. 307-323, Kluwer Academic Publishers, 2002.

[6] M. Bekooij, et al, “Chapter 15. Dataflow Analysis for Real-time

Embedded Multiprocessor System Design,” in Dynamic and Robust

Streaming in and between Connected Consumer-Electronic Devices,

Philips Research Book Series, vol. 3, Springer, pp. 81-108, 2005.

[7] M.C.W. Geilen, “Synchronous Dataflow Scenarios”, ACM Trans.

Embedded Computing Systems. 2010.

[8] S. V. Gheorghita et al, “A System Scenario based Approach to

Dynamic Embedded Systems”, in ACM Transactions on Design

Automation of Electronic Systems, vol. 14, no. 1, 45 pages, Jan. 2009.

[9] S. V. Gheorghita, T. Basten, and H. Corporaal, “Scenario Selection

and Prediction for DVS-Aware Scheduling of Multimedia

Applications”, in Journal of Signal Processing Systems, vol. 50, no.

2, pp. 137-161, Springer, 2008.

[10] Y. Huang, S. Chakraborty, and Y. Wang. “Using Offline Bitstream

Analysis for Power-aware Video Decoding in Portable Devices”, in

proc. ACMM-2005, pp. 299-302, ACM, 2005.

[11] E. A. Lee, and D. G. Messerschmitt, “Static Scheduling of

Synchronous Data Flow Programs for Digital Signal Processing,” in

IEEE Transactions on Computers, vol. 36, no. 1, pp. 24-35, 1987.

[12] T. M. Parks, “Bounded Scheduling of Process Networks”. PhD

Dissertation, EECS Department, University of California, 1995.

[13] P. Poplavko, T. Basten, and J. van Meerbergen, “Execution-time

Prediction for Dynamic Streaming Applications with Task-level

Parallelism”, in proc. DSD-2007, pp.228-235.

[14] K. Richter, M. Jersak, and R. Ernst, “A Formal Approach to MP-SoC

Performance Verification”, in IEEE Computer, vol. 36, no. 4, pp. 60-

67, 2003.

[15] S. Stuijk, M.C.W. Geilen and T. Basten. “SDF3: SDF For Free”, in

proc ACSD-2006, pp. 276-278.

[16] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modeling Run-

time Arbitration by Latency-rate Servers in Dataflow Graphs”, in

proc. SCOPES-2007, pp. 11-22, ACM.

