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Abstract— This work contributes to throughput calculation 

for real-time multiprocessor applications experiencing dynamic 

workload variations. We focus on a method to predict the 

system throughput when processing an arbitrarily long data 

frame given the meta-characteristics of the workload in that 

frame. This is useful for different purposes, such as resource 

allocation or dynamic voltage scaling in embedded systems. 

An accurate enough analysis is not trivial when two factors 

are combined: parallelism and dynamic workload variations. 

In earlier work, two analysis methods showed good accuracy 

for several application examples, but no comparative 

experiments were carried out. In this work, we contribute to the 

theoretical basis of the previous methods. Based on these 

observations, we remove a potential problem in a common 

subroutine and propose a new analysis method. We compare 

the methods experimentally. The new method provides a 

significant reduction of the throughput prediction error, up to 

12 %. 

I. INTRODUCTION 

In modern embedded systems, scalable multiprocessors 

play an increasingly important role. Multiple cores that are 

coupled to each other via busses, memories and switches 

pose challenging problems for programming these systems. 

One of the major challenges is predicting the performance, in 

order to meet the real-time constraints. For many streaming 

applications in the multimedia and communication domains, 

this problem means predicting the throughput, and this is the 

problem we address in this paper. 

The main application of throughput prediction is timing 

constraint verification of different implementation choices. 

The examples of this process are resource allocation [3] and 

the management of limited system resources, e.g., quality 

scaling [10] and dynamic voltage scaling. 

A throughput prediction method should analyze arbitrarily 

long execution runs with a finite overhead. For ensuring 

good quality, it should give conservative but tight 

estimations. It should be preferably based on an analytical 

method so that the results are reliable. 

Such a method is difficult to realize when two factors are 

combined: multiprocessor parallelism and dynamic workload 

variations. To handle the parallelism with the above 

mentioned requirements, a so-called steady-state of the 

system should be detected and analyzed, which is done in 

many performance analysis approaches, e.g. [14]. However, 

these techniques typically assume that the system has static 

characteristics which never change and the same steady state 

is preserved forever. However, such assumptions do not fit to 

the dynamic workload situation, which prescribes us to use 

multiple (temporary) steady states and the transitions 

between them. 

The only throughput analysis methods known to us that 

satisfy the requirements are introduced in [7] and [13]. The 

methods focus on the synchronous dataflow (SDF) model of 

computation [11], which, as argued in Section II, fits the 

modeling of multiprocessor systems very well. The above 

mentioned methods show an excellent throughput prediction 

accuracy for several multiprocessor application examples. 

In this paper, we contribute a few new components to 

these methods, which leads to a method with a significantly 

improved prediction accuracy. First, we give background 

information by explaining the SDF model in Section II and 

the relevant previous work in Section III. In Section IV, we 

show that an important performance metric, the delay caused 

by transitions between steady states, can be calculated in 

polynomial time. There we also formulate an important 

proposition that is used to derive our new method in Section 

V. In Section VI, we perform experimental evaluation to 

compare the methods, using a set of synthetic benchmarks 

and a real benchmark. Section VII summarizes the 

conclusions and looks at future work.  

II. SYNCHRONOUS DATAFLOW GRAPHS 

The SDF model of computation [11] is represented by 

SDF graphs. An example is shown in Figure 1. An SDF 

graph is a directed graph, in which the nodes are called 

actors. They model the processing, scheduling and 

communication tasks. Every actor is connected to the graph 

edges by inputs and outputs. Every input and output has a 

data rate. In Figure 1 all rates are 1. Such graphs are called 

homogeneous SDF graphs (HSDF). 

The edges of the graph are (potentially unbouded) queues 

for sending tokens between the actors. Some edges carry 

initial tokens. For the sake of this paper, we assume every 

initial token has an index. In Figure 1, the indices of the 

initial tokens are enclosed in braces. The tokens are dynamic 

data items, consumed and produced by actors in the course 

of execution.  

Execution of every actor is a sequence of firings. An actor 

starts a new firing at the first moment when it has on each 

input a number of tokens at least the rate of the input. In this 

case, the actor is said to be enabled for firing. These tokens 

are consumed by the actor at the beginning of actor firing. 

For example, the first firing of actor A in Figure 1 is initially 

enabled because it can consume a token at each input. After 

the start of an actor firing, the firing is completed only after 

an interval called the actor firing time. In Figure 1, the firing 

times are constant (0.5 and 1.5) but in Section III.C we also 

represent firing time variations in our analysis model. At the 

firing completion, each output produces new tokens. The 

amount of tokens produced is equal to the output’s rate.  

An SDF graph iteration is a minimal non-empty set of 

firings such that in the end every edge has the same number 

of tokens as initially. For HSDF graphs, every actor fires 

exactly once per iteration, but in general different actors fire 

A B 
(1) (2) 

(3)    (4)    

Fig. 1.  An SDF example 
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a different number of times, see [12] for details. Any SDF 

execution that does not deadlock and that does not build up 

an unbounded number of tokens in any of its edges is 

composed of such iterations.  

To explain and analyze the graph’s behavior, with every 

initial token j in iteration n (n > 0) we associate release times 

x n,j. Time x n,j is defined as the moment when another token 

shifts into the place represented by the token index j in 

iteration n. For illustration purposes, we also use capture 

time i.e. the moment of time when the token departs from 

place j in iteration n. 

Consider Figure 2(b) a few pages ahead. It illustrates the 

execution of an SDF graph of Figure 1 using a Gantt chart, 

where ‘resources’ correspond to the four initial tokens. The 

‘tasks’ that occupy the ‘resources’ are the periods of time 

between the token capture and release times in subsequent 

graph iterations. The odd iterations are shown with white 

tasks, the even ones with grey. This figure illustrates that 

different iterations may interleave with each other in time. 

The SDF model of computation turns out to be very useful 

to model not only the application, but also the multiprocessor 

mapping, RTOS scheduling and communication. In the 

literature, a broad research has been carried out on this 

subject. A pioneering work in this direction assumes bus-

based multiprocessors [5]. HSDF models for dedicated FIFO 

connections and on-chip networks were proposed in [4], for 

TDMA schedulers in [6] and for the general class of latency-

rate schedulers in [16]. Because these models are 

compositional, the interplay of all these components can be 

captured in one SDF model, which can act as an input for our 

performance analysis approach. 

III. PREDICTING THE THROUGHPUT BY SCENARIOS 

A. Parameter Function  

A major timing metric of a multiprocessor application is 

the time required to process a given number of subsequent 

data samples, referred to as a frame. In terms of SDF graphs, 

it is the time required to perform a given set of subsequent 

iterations. We refer to this time as frame execution time, 

denoted ∆N, where N is the number of graph iterations in the 

frame. The reciprocal value, N/∆N, is equal to the throughput. 

Therefore, we consider execution time prediction to be 

synonymous of throughput prediction. 

In our work, we use a scenario-based performance 

analysis approach. A scenario is a set of application 

execution behaviors with similar resource usage [8]. Goal of 

the scenario-based execution time prediction is to estimate 

the frame execution time by a linear equation of the form: 

∆N ≤ α(0)+Σiα(i)F(i). The right-hand part of this inequality is 

the parameter function. Note that the ‘≤ ’ sign indicates it is 

a conservative estimate, in line with our requirements. The 

α(i) are constant scenario coefficients, i.e., the constant 

contributions of a parameter to the execution time, and the 

F(i) are parameters, typically variables counting the number 

of invocations of the scenario. The parameters are chosen to 

be implementation-independent meta-characteristics of the 

workload that are assumed to be given. For example, the I 

and P blocks in video coding algorithms can act as scenarios, 

the total counts of I and P blocks in a video frame can act as 

parameters and the conservative processor cycle counts to 

process I and P blocks can be used to derive coefficients. 

The main purpose of a performance analysis method is to 

calculate the optimal coefficients such that the estimation is 

conservative and the error (i.e. the difference between the 

parameter function and the execution time) is minimized. 

This is the central problem of this paper. Throughout this 

paper, we use small Greek letters for the values that act as 

scenario coefficients. 

In the remainder of this section, we show a state-of the-art 

([7, 13]) derivation of SDF frame execution time in terms of 

a parameter function. We use it as a basis for our 

contributions presented in Sections III and IV. 

B. Analyzing a Single SDF Scenario  

In the context of SDF graphs, one defines a scenario as a 

mode of graph execution where the same set of firing times 

of all actors is constantly repeated at every graph iteration. 

This definition is convenient, because a graph iteration often 

corresponds to the realization of different processing stages 

for the same data sample. If one can distinguish a finite set of 

possible data sample types (e.g. I-block and P-block in an 

earlier example) this immediately corresponds to a set of 

scenarios, because the processing times for the same type can 

be approximated by constant processing times [9]. If the 

types cannot be distinguished manually, [9] proposes a 

general approach to distinguish them automatically. 

One can apply well-known analytical tools to characterize 

the graph’s timing behavior as long as a graph stays in the 

same scenario. In the rest of this subsection, we briefly 

summarize the tools that are relevant for our purposes. 

To express the mathematical relationship between the 

token release times in different iterations, the so-called max-

plus matrix algebra [2] is traditionally applied. The major 

difference from the ‘usual’ algebra is that for matrix 

products, addition is replaced by the max operation and 

multiplication is replaced by addition. For example, 
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Adding (or subtracting) a constant to a vector or matrix is 

short-hand notation for increasing (or decreasing) every 

element, e.g. if a  = [5.0; 1.5; 7.0] then 

2.1 + a  = [7.1; 3.6; 9.1]. The norm ||·|| is the maximal 

element, e.g. || a || = 7.0. The normalization operator 

subtracts the norm from the vector: a
norm 

= a − || a ||. 

The state of the graph is represented by a state vector nx , 

where n is the iteration index. It is a column-vector with R 

elements, where R is the number of initial tokens in the 

graph. The i-th element {xn}i is the release time of token i in 



iteration k, so {xn}i = xn,i.  

The state vector in iteration n+1 can be obtained from the 

state vector in iteration n by 1+nx = G⋅
nx , where G is an RxR 

matrix that characterizes the graph in the given scenario and 

can be calculated by an algorithm given in [7]. For HSDF 

graphs, the matrix element at row i column j gets the value of 

the longest (in terms of the total of firing times) token-free 

graph path from initial token j to initial token i. If there are 

no such paths, value –∞ is assumed. For example, in 

Figure 1, the longest path from token 2 to token 1 is 0.0, so 

G12 = 0.0. There are no token-free paths from token 3 to 

token 1, so G13 = –∞. 

An important property of a max-plus matrix is the solution 

of the eigenvalue equation:  G⋅ x = x  + λ, where x  is a max-

plus eigenvector and λ is the max-plus eigenvalue of matrix 

G. The eigenvalue represents the average interval between 

iterations in steady state. The meaning of an eigenvector is a 

periodic schedule. Indeed, if the state vector is equal to an 

eigenvector, then after one iteration the state vector is the 

same except for an addition of λ, and after two iterations it is 

the same plus twice the λ, and so on. 

Not only the eigenvector leads to a periodic execution of 

the SDF graph. According to a well-known theorem ([2 

§3.7]), for any initial vector r start, there exist T and W such 

that for any n>0 we have G
T+n

 ⋅ r start = WwnT  start λ+⋅−+ rG , 

which means that the graph executes in a W-periodic regime, 

the λ being the average iteration interval over the W 

iterations in the period. We refer to the smallest such T as the 

transient iteration count, because it reflects the number of 

‘transient’ iterations of the graph before it enters the periodic 

regime, i.e. the ‘steady state’. 

The eigenvalue and an eigenvector for an SDF graph can 

be calculated using efficient algorithms in [7].   

C. Analyzing Multiple Scenarios  

In general, an SDF scenario model for a given application 

consists of a finite set of scenarios indexed by s =1..S, 

corresponding to different data sample types processed by 

the application. Because the scenarios have different actor 

firing times, every scenario is characterized by a distinct 

matrix G(s) which has a distinct eigenvalue λ(s). 

It is convenient to split the processing of a frame into 

intervals p = 1..P, where every interval is a maximal range of 

subsequent graph iterations with the same scenario sp. Every 

iteration n belongs to a certain interval p(n). For example, 

suppose that the number of iterations in a frame is 10, and 

the scenario index s progresses as {1, 3, 3, 3, 3, 1, 1, 2, 2, 2}. 

Then there are four intervals, and s1=1, s2=3, s3=1, s4=2. 

The evolution of the graph state vector in a frame is 

expressed by: 

1+nx = G(sp(n) )⋅ nx , n = 0..N-1 (1) 

where without lost of generality we assume 0x =[0; …;0]
T
. 

The frame execution time can be written as:  

∆N = || Nx || (2) 

[7] introduces a so-called reference schedule method, 

which estimates the frame execution time as the sum of 

contributions of all intervals, whereby the contribution of 

arbitrary interval p is expressed in the form: 

∆
~

(I) = τ  + λ·I  (3) 

where λ = λ(sp), I is the iteration count of interval p and τ   is 

called the transition delay, because it reflects the transient 

effect of the transition from previous scenario sp–1 (or from 

the initial state) to the steady state of the current scenario. 

The term λ·I reflects the throughput of the SDF graph in the 

steady state. 

[7] defines the transition delay τ  such that starting from a 

certain state r start after any number of iterations in scenario 

sp the final state vector x  is separated from a certain target 

state r end by at most time ∆
~

(I), i.e. 

|| endrx − || ≤ ∆
~

(I) = τ + λ·I. Let us look for minimal such τ, 

to make bound ∆
~

 as tight as possible. Observing that 

τ ≥ || I⋅−− λendrx || and x  = G
I 

r start, where G = G(sp) we 

see that the minimal τ  is a function τgen defined as: 

τgen( r start, G, r end) = n
n

Tn
λ−−⋅

=
endstart

..1
max rrG    (4) 

where T is the transient iteration count. In this expression we 

have made use of the W-periodic regime theorem. 

Vectors r start and r end are called the start schedule and 

the end schedule. According to [7], both vectors are 

normalized, r start estimates the normalized state vector 
norm

nx  before the start of the interval and r end estimates this 

vector after the completion of the interval. Due to max-plus 

normalization, any schedule should satisfy: 

|| r end || = 0 (5) 

The start schedules are implied from the end schedules. 

r start is equal to r end of the previous interval except for the 

first interval, where r start =[0.0; 0.0; …; 0.0]
T
. 

In the reference schedule method, one can choose 

arbitrary r end, and the r start are implied from the r end . 

However, the accuracy of the reference schedule method is 

sensitive to the correct choice of the r end . Although [7] 

suggests the possibility of different r end for different 

intervals, the method assumes that the r end are the same and 

referred to as r ind. Notation ‘ind’ refers to a schedule that is 

independent of the scenario it is applied to. r ind is calculated 

as an eigenvector of matrix Gall , where Gall  = 

( ))()(max
..1

ss
Ss

λ−
=

G . We call this method the scenario-

independent reference schedule method. Summing up 

Equality (3) for all intervals, we get the parameter function 

that estimates the frame execution time in this method [7]: 

N∆ ≤ τ ind-ini + ( )∑ +
s

sLssJs )()()()( indτλ  (6) 

where τind-ini=τgen(
T

]0 ...  ;0[ ,G(s1), r ind); τind(s) = 

τgen( r ind, G(s), r ind);  J(s) is the total count of iterations in 



scenario s;  L(s) is the total number of intervals of scenario s 

except for the first interval. τ ind(s) and λ(s) are scenario 

coefficients, and J(s) and L(s) are scenario parameters. 

The method that we propose in Section V uses the 

reference schedule methodology too, but we calculate the 

schedules differently. 

D. Reference Schedule: a Discussion 

In this section, we illustrate the reference schedule method 

using the Gantt charts to see what is different in our method 

introduced later. First we need to add some useful notations. 

Let r end (p) be the end schedule of interval p. Observe that 

the reference schedule methodology estimates the state 

vector at the completion of interval p as the sum of ∆
~

(p) for 

all the intervals up to that point plus vector r end (p). We use 

notation y (p) for that estimate. 

Using vectors y (p), we can imagine the working of the 

method as follows. Let us add to the SDF graph a virtual 

‘scheduler’ engine that can interfere with the SDF graph 

execution between the graph iterations. After a token has 

been released, the scheduler can hold it, delaying its capture 

time a certain scheduled time. Suppose that the scheduler 

only interferes at the end of the scenario intervals, and holds 

the tokens until the times specified in y (p). Such a 

scheduler models the operation of a reference schedule 

method. Note that in reality such a scheduler is not used and 

actors fire as soon as they are enabled. Due to monotonicity 

of the behaviour of an SDF graph, the behavior of the model 

with this hypothetical scheduler is a conservative upper 

bound of the real behavior. 

For example, Figures 2(a) and (b) show Gantt charts for 

the graph in Figure 1, as already explained before in Section 

III. Two scenarios are assumed, and their firing times are 

given in the table in the figure. It is assumed that the graph 

alternatingly switches between the two scenarios. The 

diagrams for vectors y (p) are plotted with bold lines, 

dashed for the odd p and dotted for the even p.  

In Figure 2(a), all the y (p) diagrams have the same shape, 

which corresponds to the independent reference schedule 

r ind = [–1.5; 0.0; –0.5; 0.0]
T
. This turns out to be an 

inefficient solution, because the virtual scheduler delays 

token 3 by 1.0 at every transition from scenario 1 to scenario 

2. In Figure 2(b) we see the graph execution with two 

specific schedules: r end(1) = [–1.5; 0.0; –1.5; 0.0]
T
 for the 

odd intervals and r end (2) = [–0.5; 0.0; –0.5; 0.0]
T
  for the 

even ones. The execution coincides with the self-timed 

execution, leading to a zero estimation error. This is due to 

the fact that, in this example, the shapes of the specific 

schedules ideally match the shapes of the token release at the 

end of the scenario intervals. Because these shapes are 

essentially different for the two scenarios, no scenario-

independent schedule would match both of them well. 

Our method introduced in Section V exploits different 

schedules for different intervals to overcome this poblem.  

IV. TRANSITION DELAY CALCULATION 

A. Improved Calculation of Transition Delay  

Equality (4) is used to calculate the transition delays in the 

two previous throughput prediction methods of [13, 7]. We 

need to calculate transition delays in the new method as well. 

In the previous work, this equality was applied directly and 

thus algorithmic complexity depends on transient iteration 

count T. This creates a potential threat for the performance 

of the throughput prediction, because T can become 

uncontrollably large. In this subsection, we remove this 

potential problem based on the following proposition. 

Proposition 1. Transient iteration count T in the definition 

of τgen (Equality (4)) can be replaced by min(R,T), where R is 

the number of rows/columns of matrix G. • 

Proof.  For convenience, we start from the variant of 

Equality (4) where T is replaced by +∞. This replacement is 

valid because, due to W-periodic regime, the argument of 

‘max’ is a periodic sequence whose first period is fully 

contained in the first T iterations. 

 n
n

n
λ−−⋅

∞=
endstart

..1
max rrG  = 

  { using max-plus algebra property: A⋅⋅⋅⋅ v  – c = (A – c) ⋅⋅⋅⋅ v }  

 ( ) endstart
..1

max rrG −⋅−
∞=

n
n

n
λ =  

  { An – cn = (A – c) n} 

 ( ) endstart
..1

max rrG −⋅−
∞=

n

n
λ =  
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(a)  Independent reference schedule leads to poor results due to 

the same shape of y for all scenario transitions  
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..1
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n

n
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 ( )( ) endstart
..1

max rrG −




 ⋅−

∞=

n

n
λ = 

  {max(A⋅⋅⋅⋅ v ,B⋅⋅⋅⋅ v )=max(A,B)⋅⋅⋅⋅ v } 

 endstart
..1

)(max rrG −⋅




 −

∞=

n

n
λ . 

In the max-plus algebra, the expression n

n
A

∞= ..1
max  has 

notation A
+
 and is called the transitive closure. A

+
 is in fact 

the matrix of longest paths between all pairs of nodes of the 

precedence graph of matrix A. The elements of matrix A
+
 are 

finite only if the precedence graph of matrix A has no 

positive cycles. In that case, any path longer than the number 

of nodes must include a cycle and can be decomposed into a 

path of length at most the number of nodes plus a number of 

non-positive cycles. In this case we have A
+
= n

Rn
A

..1
max

=
, i.e. 

we can limit n by R for an R×R matrix [2 §1.2.1].  

Let us show that this property applies to matrix )( λ−G . 

Since λ is the eigenvalue of G, it is obvious that the 

eigenvalue of this matrix is equal to 0. A theorem in [2 

§3.2.4] states that the eigenvalue is equal to the maximal 

ratio of the total weight of a cycle in the precedence graph 

and the number of edges in that cycle. Because the 

eigenvalue of matrix )( λ−G  is 0, the maximal cycle weight 

is also 0. Consequently, this matrix has no positive cycles. 

Therefore, in the last expression in the chain of 

expressions above we can use the 1..R range in the max 

operator instead on the infinite range. This statement implies 

that the whole chain of equalities above may use the 1..R 

range. By Equality (4), the 1..T range is also acceptable. So 

one can select the most favorable range, i.e. 1..min(R,T).  •••• 

Example (adapted from [2 §3.7]). Let G = 





0.1000.100

0.00.99
. 

Suppose r start= r end=[0; …;0]
T
. The argument of the max 

operator in Eq. (4) evolves for n = 1..100 as [−1.0; 0.0]
T
; 

[−2.0; 0.0]
T
; …[−100.0; 0.0]

T
 and for n≥100 it stays 

constant, so T = 100. From this, we may conclude that we 

have τgen = 0.0. Proposition 1 gives us the possibility to 

reach this conclusion after 2 iterations instead of 100. •••• 

We can write: 

τgen( r start, G, r end) = endstart

~
rrG −⋅+  (7.1) 

where: 

λ−= GG
~

 (7.2) 

The transitive closure operator ‘
+
’ for a given matrix can 

be calculated by an O(R
3
) all-pair longest path algorithm. 

Note that [1] also employs a transitive closure to calculate a 

bound on a time difference between events. However, [1] 

applies it to the ‘steady-state’ part of the model exploration, 

not to the ‘transient’ part. 

B. Reference Schedule with Minimal Delay 

Recall that Equality (3) gives an upper-bound on the 

execution time of a given interval Ip. Suppose that we fix 

r start and would like to find such an r end that this upper 

bound is minimized. This would certainly serve our intention 

to have an execution time estimate that is as tight as possible, 

if we were focusing on the execution time of one interval 

separately from the other intervals. 

Observe that at the right-hand part of Equality (3), the 

only part that depends on r end is τgen( r start,G(sp), r end). Then 

our problem of minimizing the estimate for a single scenario 

interval is solved by the following proposition. 

Proposition 2. For the given matrix G and start schedule 

r start and given the constraint || r end|| = 0 (as in Equality (5)), 

the minimum transition delay is reached only for an end 

schedule that satisfies the following criterion: 

r end-min ≤ r end  ≤ [0.0; 0.0; …; 0.0]
T
, where: 

r end-min= ( )norm

start

~
rG ⋅

+  (8) 

•••• 

Proof. Using || r end || = 0 and Equality (7.1), we have: 

τgen ( r start, G, r end) = endstart

~
rrG −⋅+ + || r  end || 

Using the triangle inequality of the max-plus algebra vector 

norm: || a ||+|| b ||≥|| a + b ||, we see that:  

τgen ( r start, G, r end) ≥ start

~
rG ⋅+ .  So we have a lower bound 

on τ gen, let us denote it τ gen-min. 

For notational convenience, let e = [0.0; 0.0; …; 

0.0]
T
denote the vector of zeros. We have to prove that 

τ gen-min is reached exclusively for r end-min ≤ r end  ≤ e . 

Substituting r end = r end-min or r end = e  into (7.1), we see 

that τ gen-min is reached for both these arguments. For the end 

schedules in between these boundaries, we have 

τ gen = τ gen-min because τ gen is a monotonically non-increasing 

function of any element in r end. 

Let us consider other values of r end. The requirement 

r end ≤ e  follows automatically from constraint || r end || = 0. 

If the relation r end ≥ r end -min is not satisfied then we have 

r end = r end-min − d  where || d || > 0. Substituting this value 

of r end into (7.1), we get τgen = τ gen-min+|| d ||, which for 

positive || d || means a non-optimal value. This proves that 

under the given constraint the minimal delay is achieved only 

if the criterion of this proposition is satisfied. •••• 

 We use this proposition to derive a new method. 

V. THE SUPERMATRIX METHOD  

A. Scenario-specific Reference Schedule  

We propose a method with an improved accuracy w. r. t. 

the scenario-independent reference schedule method at the 

expense of an increased analysis cost; the method uses  



scenario-specific reference schedules as explained below. 

A scenario-specific schedule is an end schedule that 

depends on the interval’s scenario; we use notation r spec(s) 

for it. The schedule can be potentially adjusted to its scenario 

in such a way that it would yield a better accuracy than the 

scenario-independent method – recall Figure 2.  

In this method, r start = 0x  for p=1 and r start = r spec(sp–1) 

for p>1. The end schedule r end is r spec(sp) for every p. 

Using these schedules and summing up the execution time 

estimates of all intervals, we have: 

N∆ ≤ τ spec-ini +∑
s

sJs )()(λ + ∑
≠tsts

tsKts
;,

spec ),(),(τ  (9) 

where: τspec-ini = τgen( 0 , G(s1), r spec(s1)) is the initial delay; 

Scenario coefficient τspec(s, t) = τgen( r spec(s), G(t), r spec(t)) is 

the delay of the transition from scenario s to scenario t; 

scenario parameter K(s,t) is the total number of transitions 

from s to t. Parameter J(s) and coefficient λ(s) have the same 

meaning as in Eq. (6). Note that Eq. (9) has more scenario 

parameters than Eq. (6). This is necessary to make use of the 

scenario-specific schedules to achieve better accuracy. 

B. The Minimal-error Coefficient Optimization Problem 

Note that the first term in (9) is insignificant and the 

second one cannot be influenced. Therefore, to minimize the 

prediction error we are focusing on the third term. 

The optimization problem we are considering now is as 

follows. The problem instance consists of the parameter 

values { K(s,t) } and the set of the scenario matrices 

{ G(s) }. We have to fill the set of scenario-specific 

reference schedules with vector values { r spec(s)} such that 

the scenario coefficients τspec(s,t) induced by these schedules 

yield the minimal contribution in the third term of Eq. (9). 

Note that this is a particular case of the minimal-error 

coefficient optimization problem mentioned in Section III.A. 

Similar to [7], in the solution method proposed in the next 

section we only use the scenario matrices { G(s) } and not 

the frame specific parameter values, which will only become 

available at run-time. This approach enables the reuse of the 

calculated coefficients τspec(s,t) for multiple frames, 

independently of the { K(s,t) }. For many applications, 

{ G(s) } are known at design time [7], which means that 

using our method one can calculate the reference schedules 

at design time as well. 

C. A Method to Calculate the Reference Schedules 

Our method introduced here is a heuristic solution for the 

problem introduced above. For the reason that becomes 

apparent later, we call this method the supermatrix method. 

Consider an arbitrary interval. Suppose that that interval is 

in scenario t. Similar to Section IV.B, consider the problem 

of minimizing the transition delay in that interval. The 

difference is, however, that instead of one start schedule we 

have a set of possible start schedules: r start∈ { r spec(s) | for 

scenarios s such that s ≠ t }. 

In this heuristic approach, we define the end schedule 

r spec(t) as the optimal schedule for an aggregate start 

schedule r start-aggr(t), representing a certain weighed 

combination of the possible start schedules: 

r start-aggr(t) = ))()((max spec
 ,

sws
tss

+
≠

r  (10) 

where w(s) is the weight determining the degree of influence 

of scenario s in the aggregate schedule. Substituting the start 

schedule from Eq. (10) to Eq. (8), we have: 

r spec(t) = ( )(tz )
norm

 (11) 

where:  

)(tz  = ⋅+ )(
~

tG r start-aggr(t) + c,  (12) 

c can be selected arbitrarily, but below we will choose the 

only possible value leading to feasible solutions. 

In Eq. (10), we choose to use the weights w(s) = || )(sz ||. 

We do this because this allows us to solve the resulting set of 

equations analytically, by a known method. With these 

weights we transform Equalities (10 −12) to a system of 

equations equivalent to the eigenvector equation where 

constant c is the eigenvalue: 

t = 1..S:   )(tz  = ⋅+ )(
~

tG ))((max
 ,

s
tss

z
≠

+ c (13) 

To make it more obvious that eigenvector methodology 

can be re-applied here, we rewrite Eq. (13) in matrix form: 

SUPz = GSUP SUPz + c (14) 

where SUPz is a concatenated vector of size SR: 

SUPz =[ )1(Tz )2(Tz … )(STz ]
T
; and GSUP is a concatenated 

SR×SR matrix composed of R×R block submatrices, shown 

in Figure 3. This matrix consists of ‘super-rows’ filled with 

matrices )(
~

t+G everywhere except at the ‘super-diagonal’, 

where matrix ΕΕΕΕ is filled. The latter is an R×R matrix whose 

elements are all –∞. We refer to GSUP as the supermatrix. 

Extracting SUPz  as an eigenvector of GSUP and applying 

Equality (11), decomposing  SUPz  into vectors )1(z , )2(z , 

… )(Sz , we obtain all the reference-specific schedules.  

Note that in the case of two scenarios, Eqs (10) transform 

into two equalities in the form of Eq. (8), which means that 

the two reference schedules are optimal end schedules with 

respect to each other. The two schedules in Fig. 2(b) are, in 

fact, obtained from the supermatrix method.  

ΕΕΕΕ 
+

G
~

(1) … 
+

G
~
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+

G
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+
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(2) ΕΕΕΕ … 
+

G
~

(2) 
+

G
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Fig. 3.  Matrix GSUP – the ‘supermatrix’ 



VI. EXPERIMENTAL EVALUATION 

In this section, we compare the accuracy of the 

supermatrix method experimentally with the independent 

reference schedule method of [7] and the minimum overlap 

method of [13]. We use a set of random benchmarks as well 

as a real application. 

To generate the SDF graphs randomly and produce the 

input for the experiments we used the random SDF graph 

generator of the open-source SDF3 tool [15]. In all 

experiments, the generated graphs had 10 actors and 15 

edges on average. In addition, we implemented a random 

generator of SDF scenarios and frames. In the generated 

frames, all the actors in the generated graph had different 

firing times in different scenarios. The number of scenarios 

was set to S = 8, the ratio between max and min actor firing 

time was in most cases 5 and below. The frame iteration 

count was set to 30. Note that neither the firing time ratio nor 

the frame iteration count were found to have a significant 

impact on the prediction quality and overhead. To make the 

prediction problem complex enough, we set the frequency of 

scenario transitions to at least 70%  of iterations, 

For every generated graph, the generator produced 

multiple frames. In order to verify that the methods are not 

too sensitive to the changes in the input data; at every frame, 

a set of scenarios with slightly different actor firing times 

was offered to them. Therefore, every prediction method had 

to recalculate the scenario coefficients for every frame 

(although in practice this can be done once, at design time).  

We have run experiments on two sets of graphs: for HSDF 

and for general SDF graphs. In the HSDF graphs, the total 

initial token count R was in the range 4-11. In the SDF 

graphs, the generator had to select larger values of R: 18-25 

to ensure absence of deadlock, which led to a relatively 

larger running time overhead. Every HSDF graph was 

evaluated with 50 frames, and every SDF graph was 

evaluated for 10 frames. In both cases, the minimal overlap 

and the independent schedule took around one minute to 

complete (on a 1.2 GHz CPU), whereas the supermatrix 

method took ten times longer, which is expected, because it 

operated with S = 8 times larger max-plus matrices.  

To evaluate the results, we calculate the frame execution 

times from simulation and use the result as the reference for 

relative execution time prediction error. Tables 1 and 2 show 

the results of the accuracy evaluation, where the columns 

correspond to different graphs. Rows ovr, ind and sup 

correspond to the minimal overlap, independent schedule, 

and supermatrix methods. Table 2 misses the minimal 

overlap results, as it supports only HSDF graphs.  

From the tables, we see that in almost all the cases, the 

supermatrix method produced the best results, improving the 

accuracy by up to 12%. It also demonstrates more reliable 

accuracy, as the error variation among different graphs is 

smaller. The minimal overlap method shows in almost all the 

cases worse results, although it uses the same meta-

characteristics as the supermatrix method [13].  

Figure 4 shows the HSDF graph of a JPEG decoder 

mapped to two processor tiles (i.e. multiprocessor segments 

with local memory systems), communicating via a network 

channel. This example is adapted from a case study in [4], 

but assuming a different mapping. The variable-length 

decoder (VLD) is scheduled by a round-robin (RR) 

scheduler, modeled by actor RRB. All the inverse discrete 

transform and scaling operations are mapped to a processor 

in a different tile and modeled by a single actor (IDT), which 

communicates via a local memory channel to the color 

conversion actor (CCV). The TFR, LCC and LCF actor 

models the network channel (see [4] for channel modeling). 

For JPEG, we introduce scenarios as follows. The firing 

time of the VLD actor depends on the decoded bit count and 

the DCT coefficient count. We split the dynamic range of the 

bit count into sub-ranges of 100 bits and of the coefficient 

count – into subranges of 10. A combination of the two types 

of subranges is a scenario. This yields around 400 scenarios, 

but every image involves only a small subset (typically 7-

12). We have measured the execution time prediction error 

for 10 arbitrary images. We used graph simulation with real 

VLD firing times as the reference. The results are presented 

in Table 3. They confirm the best quality of the supermatrix 

method when compared to the two other methods for a 

realistic benchmark. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented an analytical throughput 

prediction method for variable workload in multiprocessors 

and potentially other systems whose concurrency can be 

modeled by SDF graphs, such as asynchronous circuits. This 

method can be used in the design-time resource allocation 

for a given workload profile or as a preparatory phase of   

run-time resource management to estimate the timing costs in 

Table 2.  SDF run: average relative error (%) in different graphs 

ind 4 18 9 5 7 5 2 14 1 3 

sup 1 12 2 3 2 0 0 2 0 0 

 Table 3.  JPEG run: average relative error (%) for different images 

ovp 55  72 51 36 72 50 50 56 40 52 

ind 21  20 14 17 27 18 19 23 17 18 

sup 14  16 11 15 16 16 15 15 15 13 
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Fig. 4.  HSDF model: JPEG decoder mapped to two processing tiles 
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Table 1.  HSDF run: average relative error (%) in different graphs. 

ovp 49 18 0 10 41 0 13 9 41 11 19 

ind 6 1 1 1 10 0 2 7 6 5 0 

sup 1 0 1 0 3 0 2 2 4 1 0 

 



different possible run-time application scenarios. We also 

removed an important potential problem for the overall 

methodology by giving an algorithm with better and more 

robust complexity for calculating a common metric, the 

transition delay. 

The proposed method, called the supermatrix method, 

follows an approach that is able to analyze arbitrarily long 

application runs with a constant overhead. The experiments 

demonstrate that the method outperforms the other 

comparable methods in terms of accuracy, but has a 

considerably higher overhead. Its practical usage is therefore 

limited to the scenarios whose metrics can be adequately 

analyzed at design time, but this assumption is realistic in 

many practical cases. 

In future work, we will refine and evaluate the new 

method for the extended model of computation that allows a 

different SDF structure and rates in different scenarios [7]. 

We will also investigate the possibility of a method with a 

smaller overhead and similar quality. 
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