SPaC: A Symbolic Pareto Calculator*

Hamid Shojaei, Twan Basten, Marc Geilen, Phillip Stanley-Marbell
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
{h.shojaei,a.a.basten,m.c.w.geilen,p.stanley-marbell}@tue.nl

ABSTRACT

The compositional computation of Pareto points in multi-dimen-
sional optimization problems is an important means to efficiently
explore the optimization space. This paper presents a symbolic
Pareto calculator, SPaC, for the algebraic computation of multi-
dimensional trade-offs. SPaC uses BDDs as a representation for
solution sets and operations on them. The tool can be used in
multi-criteria optimization and design-space exploration of em-
bedded systems. The paper describes the design and implemen-
tation of Pareto algebra operations, and it shows that BDDs can
be used effectively in Pareto optimization.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]:
Realtime and embedded systems; I.1.1 [Symbolic and Al-
gebraic Manipulation]: Expressions and Their Represen-
tation— Representations

General Terms

Algorithms, Design, Experimentation

1. INTRODUCTION

Multi-dimensional optimization has always been among
the most challenging issues in embedded system design. Pa-
reto algebra [8] is a method to compositionally specify and
compute trade-offs in multi-dimensional optimization prob-
lems. The method helps to alleviate phase coupling or design-
closure problems in a design trajectory or can be used for
combined off-line/run-time Quality-of-Service management
[8, 10]. In Pareto algebra, each parameter, quality metric, or
other aspect of interest of a particular system is considered
as a quantity and different options for realizing the system
are considered as the system configurations. A minimal set
of configurations which are Pareto optimal with respect to
others is referred to as a Pareto minimal set. A dominance
relation is used to find optimal configurations of the system.

In [7], a Pareto calculator is proposed for compositional
computation of Pareto points based on Pareto algebra. The

*This work was supported in part by the EC through FP7
IST project 216224, MNEMEE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’08, October 19-24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

tool uses set data structures to store quantities and con-
figurations explicitly. A Pareto algebra implementation in-
volves working with many structures that contain sets and
relations. For example, a Pareto space consists of a set of
quantities, a set of configurations, a dominance relation per
quantity, a dominance relation on the space, and a Pareto
minimal set. Representing such sets and relations explicitly
is often inefficient and sometimes infeasible. In addition, a
Pareto algebra operation such as a Cartesian product results
in an exponential increase in the size of the representation.
It is therefore desirable to exploit regularity in the sets to
obtain a more compact representation.

Binary Decision Diagrams (BDDs) [4] are well known as
a means to efficiently, symbolically, represent sets and re-
lations [5]. Therefore, we developed SPaC, a BDD-based
symbolic Pareto calculator. BDDs have been used for many
purposes including symbolic model checking [11], to repre-
sent the alphabet of automata in the tool MONA [9], in
the RELVIEW system [3], an interactive manipulator of bi-
nary relations with a graphical user interface, in the GBDD
package [1] to represent states and transition relations of
infinite-state automata in a regular model-checking frame-
work, and in Jedd [12] to provide a language extension to
Java that supports a convenient way of programming with
BDDs. The mentioned tools all use BDDs as an abstraction
for sets and relations. Most are designed around binary re-
lations. Much of the complexity of our work stems from the
need to represent multi-dimensional configurations. GBDD
and Jedd support n-ary relations. Building upon the BDD
representations and notations for sets and relations of [4,
5], we combine ideas from GBDD and Jedd to represent
multi-dimensional configurations, and extend the approach
to support non-integer values. We then instead of relational
operations, provide an abstraction level on top of BDDs to
have full support for Pareto algebra operations. Our main
contributions are efficient BDD representations of the var-
ious Pareto algebra concepts and a symbolic algorithm for
computing the set of Pareto configurations from a configu-
ration set. As BDDs have been in use for some time, there
exist several excellent libraries providing efficient representa-
tions, algorithms, and memory management techniques for
BDDs, including the C-based CUDD [13] package, which we
use in our tool.

The paper is organized as follows. An overview of Pareto
algebra is provided in the next section. Section 3 presents
the proposed design and symbolic implementation of the Pa-
reto calculator and our proposed symbolic minimization al-
gorithm. Section 4 discusses memory usage and time com-
plexity of our algorithms. Some experimental results are
presented in Section 5. Section 6 concludes.

-1
oo o

{(1,0.8,2,0.8)
05 ° (1,0.8,4,0.4)
0.4 ° (1,0.8,6,0.2)
0.3 ° (1,0.8,8,0.1)
(3,05,2,0.8)
135§ KCycles (3,0.5,4,0.4)
(b) Pareto Points Video Application (3,0.5,6,0.2)
KCrales” (3,05,8,0.1)
- V. (H) (5,0.42,0.8)
(5,0.4,4,0.4)
(5,0.4,6,0.2)
(5,0.4,8,0.1)
0.4 e (8,0.3,2,0.8)
(8,0.3,4,0.4)
3;3 ® . (8,0.3,6,0.2)
74 6 § rower (8,0.3,8,0.1)}

(c) Pareto Points Handheld Platform (dy VxH

f KCycles' 2KCycles

3 y

(a) Wireless Multimedia System

Constraint(D): ® Pareto Points

Dominated Configurations
fic)=1/c

PSNR'
08| e

{(1,0.82,08)

Prod (1,0.8,4,0.4)

Cons (1,0.860.2) 0.5
(1,0.8,80.1) 04 .
(305602 H0.3 °
(3,0.5,80.1)
(5,0.4,6,0.2)
(5,0.4,80.1) 246 85,
(8,0.380.1)}

(f)Abstract(1,4) and Min

(e)ProdCons(V,H,KCycles,KCycles ' f)

Figure 1: Computing Pareto points of a video decoder running on a handheld.

2. PARETO ALGEBRA

This section provides an overview of Pareto algebra [8].
We briefly define all concepts and operations for multi-di-
mensional optimization in this algebra. We use a small case
study in which an MPEG-4 stream is sent from a media
center through a wireless connection to a PDA taken from [7]
(Fig. 1.a) as a running example. The goal is to find optimal
trade-offs between video quality and power consumption of
the video decoder mapped onto the PDA.

A quantity is a parameter, quality metric, or any other
quantified aspect of a system. It is represented as a set @
with partial order <¢g. The subscript is dropped when clear
from the context. If <¢ is total, the quantity is basic; if <g
is the identity, the quantity is unordered. In examples, we
always enforce that less is better. In Fig. 1.b, PSNR™! and
KCycles are two basic quantities with total order <.

A configuration space S is the Cartesian product Q1 X Q2 X
...XQy of a finite number n of quantities and a configuration
¢ = (c1,c2,...,cn) is an element of such a space.

A dominance relation < C S? defines configurations that
are preferred over others. If ¢1,¢2 € S, then ¢ =< & iff for
every quantity Qr of S, ¢1(Qx) =@, C2(Qr). If &1 <X €2, then
¢1 dominates €2, expressing that ¢; is in all aspects at least
as good as ¢2. Dominance is reflexive, i.e., a configuration
dominates itself. The irreflexive strict dominance relation
is denoted <. A configuration is a Pareto point of a con-
figuration set iff it is not strictly dominated by any other
configuration. Configuration set C is Pareto minimal iff it
contains only Pareto points, i.e., for any ¢1,¢2 € C, ¢1 4 Ca.
Fig. 1.b and 1.c show the Pareto minimal configuration sets
of the video application and the PDA in our example.

A crucial observation is that, by allowing partially ordered
quantities, quantities, configuration sets, and configuration
spaces become essentially the same concepts. Pareto algebra
exploits this to define operations on configuration sets that
can be used to compute or reason about Pareto points of
composite systems. Let C and C; be configuration sets of
space S1 = Q1 X Q2 X ... X @, and C2 a configuration set
of space S2 = Qm+1 X ... X Qm4n. Let k € {1,...,m}. Let
c-d=(c1,...,Cm,d1,...,dyn) for ¢ = (c1,...,cm) € C1 and
d= (dl,...,dn) € Cs.

e min(C) C S is the set of Pareto points of C: min(C) =
{eeC|~(F eC:d <e)}.

e C1 X C2 C 81 X 87 is the (free) product of C1 and Ca.

e CUC; C &y is the set of alternatives of C and C;.

e CNCy C &; is the Ci-constraint of C.

e C | k={(c1, - Ck1,Chkt1y---rCm) | (c1,...,Cm) €
C}g81lk:Q1X...XQk_lXQk_HX...XQmiS
the k-abstraction of C.

e Join(C1,C2,Q)=(C1 x C2) N D, where S; and Sz both
include unordered quantity) and constraint D is de-
fined by D= {51 . 52‘51 € 81,62 € 82761(62) = EQ(Q)}

° PI‘OdCOnS(Cl, Q1,CQ, QQ, f):(Cl X Cz) ND, where Q1
is a designated quantity (the producer quantity) of Sy
and Q2 (consumer quantity) of Sz, and D = {¢;-¢2]¢1 €
81,82 € 82,02(Q2) =2 f(ar(Q1))} with f: Q1 — Q2 a

monotonically decreasing function.

Fig. 1 illustrates the compositional computation of Pa-
reto optimal system configurations (video-quality vs. power
trade-offs) from Pareto optimal configurations of system com-
ponents (the video decoder and handheld). Constraint D
enforces that processor cycles required by the video decoder
should be at most the cycles provided by the handheld.

3. IMPLEMENTING PARETO ALGEBRA

Bryant [5] describes how to represent sets and relations
with BDDs and how to implement operations such as union
and intersection. We rephrase these concepts in order to
describe the symbolic Pareto algebra implementation. We
follow the notation of [4], with the difference that we take
the (equivalent) view that BDDs are sets of Boolean words
rather than functions from Boolean variables to Booleans.
We first describe how quantities, configurations, and domi-
nance relations are represented in BDDs, and then discuss
how the Pareto algebra operations are performed at the
BDD level.

3.1 BDD Representations of Pareto concepts

Two basic concepts to be implemented are the quantity
and configuration concepts. An important observation is
that Pareto algebra supports arbitrary types, such as (sub-
sets of) integers, reals, or enumerated types. To support ar-
bitrary types we exploit the fact that concrete configuration
sets are always finite. Therefore, our first design decision
is to represent quantities and their values only if they are
observed during the algebraic calculations. To this end, each
time a new configuration set is observed or created, we first
create new quantities as needed and map all the observed
quantity values to consecutive subranges of integers. These

ANSd

L& ::@c i‘.@ @

(a) vmeo Appucanon
KCyc\es

(v

oo0

{‘@w
_J
{'91
f@
(T

(c) Configurations at BDD Level

(d) Product(VxH)

(e) ProdCons(V,H, KCycles, Kcycles,f)

(j) Pareto Minimal

(9) Self-Product (h) Dominance Relation (i) Dominated Confs

Figure 2: The symbolic computation of Pareto points of the video decoder running on the handheld.

integers are then encoded in terms of BDDs, storing the
mapping function so it is possible to reconstruct the actual
quantity values whenever needed. Our current implemen-
tation does not support the dynamic addition of values to
already encoded quantities. We consider an extension allow-
ing dynamic addition of quantity values an interesting topic
for future work. As a second design decision, we decide to
allocate a fived number of bits per quantity, log, n bits for a
quantity with n values.

Consider the example of Fig. 2.a. Both the PSNR™!
KCycles quantities can be coded with two bits. Values 0.3
and 0.5 of this quantity are mapped to integers 0 and 2,
respectively, and binary codes 00 and 10, respectively.

A specific configuration in a Pareto space can now be rep-
resented by a Boolean word. For example, configuration
(0.3,8) of the video decoder of Fig. 2.a is represented by
Boolean word 0011. A configuration set is then easily rep-
resented as a BDD. For example, the BDD shown in the
top part of Fig. 2.c captures the fact that (0.3,8) is a Pareto
point of the video decoder via the S0S2S6S8 path, where the
dashed lines denote a 0 edge and the solid lines a 1 edge.

We refer to the bit positions corresponding to a given
quantity in the Boolean encoding of configurations as a do-
main. The top BDD in Fig. 2.c has two domains, 01 cor-
responding to quantity PSNR™! and 23 corresponding to
KClycles. Since the number of quantities can vary dynam-
ically during computations, as a third decision, we decide
to represent the universe of all quantities by an unbounded
Boolean word. New quantities can be added by assigning a
new domain to them. We exploit the fact that such an ad-
dition does not affect already existing BDDs. For example,
when observing quantities KCycles™ and Power from Fig.
2.b, we allocate domains 45 and 67 to them. This does not
affect the BDD representation of the video configurations,
and the encoding of the platform configurations (bottom
part of Fig. 2.c) is independent of the domains 01 and 23
corresponding to the video quantities.

It remains to choose a representation for (strict) domi-
nance relations on quantities and configuration spaces. Any
relation can be represented as a set of pairs. Thus, a dom-
inance relation can be represented by pairs of dominating-
dominated configuration pairs. To encode a dominance re-
lation on a set encoded with n bits, we select a domain
in our unbounded Boolean word of 2n bits. The first n
domain bits can be reused. For example, to represent the

dominance relation on the video decoder configuration space
given that domain bits 0-7 are allocated as discussed above,
we may select domain 0189. The dominance relation then
is a BDD over this domain. Fig. 2.h shows an example
of the strict dominance relation in the 2-d PSNR™! and
Power space. The BDD has domain 016710111617. The
path S0S256513520523S25 encodes that configuration 0011
(0.3,8) strictly dominates both 1011 (0.5,8) and 1111 (0.8,8).

3.2 Symbolic Pareto algebra operations

Before discussing the symbolic implementations of the Pa-
reto operations of Sec. 2, we observe that for some of these
operations, the domain assignment must be the same for all
operands. This requires a Renaming operation on BDDs,
which takes a BDD and constructs a new BDD with the
same configurations, but under a different domain assign-
ment. This operation is implemented using an operation
called Swap Variables in the CUDD package that we use.

The first two Pareto algebraic operations that we discuss,
Alternative and Constraint, correspond to standard set
union and intersection operations. BDDs are in essence
sets of words, and union and intersection are provided in
CUDD. They are implemented using recursive procedures
on the operand BDDs. The reader interested in the detailed
BDD implementations is referred to [13].

To implement a free product in BDDs, we must first
carefully set up the domain assignment. The domains of the
two operands must be disjoint, in order to avoid that quan-
tities present in both operands are identified in the product
result. Such a domain assignment can be obtained via an ap-
propriate renaming. Then, the product itself corresponds to
a BDD intersection. Since the domains of the two operands
are disjoint, the domain bits of one operand take arbitrary
values from the viewpoint of the other operand. Set inter-
section then gives the desired result. In fact, for configu-
ration sets C1 C S; and C2 C 8o (with &1 and S» spaces),
the implementation uses the following identity: C1 x Co =
(C1 x S2) N (S1 x C2). The product of configurations of the
video decoder and handheld configurations is shown in Fig.
2.d. As can be seen, a product boils down to merging the
1-terminal node of the first operand with the root node of
the second operand.

Abstraction removes a quantity from a configuration set.
In terms of our BDD representation, this means that the
domain bits of the abstracted quantity may take arbitrary

Algorithm 1 Producer-Consumer Algorithm

Algorithm 2 Symbolic Minimization Algorithm

: PRODUCERCONSUMER(Cp, Qp, Cc, Qc, f)
set PIntValues = ExtractValues(Cp, Qp);
set CIntValues = ExtractValues(Ce, Qc);
BddBinaryRelation PC(DOMAIN(Qp), DOMAIN(Qc));
PC = empty;
for all i, € PIntValues do
for all i, € CIntValues do
if map(ic) <X f(map(ip)) then
add (ic,ip) to PC;
end if
end for
: end for
: res = restrict (product(Cy, Cc)) by PC;
. return res;

T O e R N g

values in the resulting configuration set. The operation is
implemented using the existential quantification BDD oper-
ation on all domain bits of the abstracted quantity. In step
5 of Fig. 2, abstraction is applied to remove the KCycles
and KCycles™ ! quantities from the configuration set. Since
removing a quantity from two configurations that differ only
in that quantity makes the configurations equal, abstraction
may reduce the number of configurations in a set.

Our implementation of the Join operation slightly gen-
eralizes the definition given in Section 2, taken from [8, 7].
The original join operation matches on a single quantity,
and the configurations in the end result have two identical
entries for the matching quantities. Our implementation al-
lows to match on more than one quantity, and the default
implementation abstracts away one copy of any two match-
ing quantities. Optionally, both copies can be kept. We use
renaming to assign the quantities being matched in the two
configuration sets to the same domains, and the remaining
quantities to disjoint domains. Then, join reduces to an in-
tersection. Since the quantities being compared are mapped
to the same domains, the set intersection will find exactly
those pairs from the two sets where these quantities match,
keeping one copy of the value in the end result. If desirable,
an extra copy of matching quantity values can be added.

The producer-consumer operation uses a monotonically
decreasing function that needs the actual values of quantities
to relate the producer quantity to the consumer quantity.
Since we map the original quantity values to consecutive in-
tegers to store them into BDDs, special measures need to
be taken. Algorithm 1 shows our implementation of the
producer-consumer operation. The algorithm extracts inte-
ger encodings of the producer and consumer quantities from
the configuration sets and stores them in two separate sets.
The loop then maps the integers to the actual values to ap-
ply the producer-consumer matching function. The integer
representation of each matching pair is stored into the PC
binary relation BDD. Step 3 of Fig. 2 shows the PC relation
in our example. The last step of the algorithm constructs
the product of the configuration sets, restricting it by the PC
BDD (a constraint/intersection operation, step 4 in Fig. 2).

3.3 Symbolic Minimization

It remains to discuss a symbolic minimization algorithm.
The minimization operation extracts the Pareto configura-
tions from a particular configuration set. The Pareto cal-
culator of [7] implements the well-known quadratic Simple
Cull algorithm, which looks at the configurations one by
one and maintains a set of Pareto points among the points

: SYMBOLICMINIMIZATION(C, S)

1 dominance = GetDomSpace(S);

. identity = IdentityRelation(S);

1 strictdominance = dominance — identity;

Cp = Product(C, O);

Cp = MapDomain(Cy, strictdominance);

: dominatedset = strictdominance A Cyp;

: for allQ € S do
dominatedset =

: end for

: dominatedset = MapDomain(dominatedset, S);

: return C — dominatedset;

Abstract(dominatedset, Q);

PO OXND TS WY

observed so far. The calculator also implements a Divide-
and-Conquer algorithm that splits the set of configurations
into two halves, minimizes these sets separately and merges
the results. This algorithm is known to have optimal com-
plexity, but it has a high overhead because of the complex
recursion. The Simple Cull algorithm therefore often outper-
forms the Divide-and-Conquer algorithm. In this section, we
propose a new symbolic approach to find the Pareto points
of a configuration set.

Let C be a configuration set of space § = Q1 X Q2 X ... X
Qn. Set min(C) C S is the set of Pareto points of C that we
want to determine. From the definitions given in Sec. 2, we
can make the following derivation, explained in more detail
below.

min(C) = {e€C|~(3¢ €C:& #£ene 2s)} (
=C\{cecCc|(3FdecCc:d #£end <50} (
=C\{ceS|(FeS:decnd #cAnd <58} (3
=C\{ceS| (T es:decnd £eA (

(Vk,1 <k <n:2(Q) Zq, &Qx)))}

The first equality in the derivation simply applies the def-
inition of minimization, writing strict dominance in terms of
dominance. The second step states that the Pareto points
can be obtained from C by removing all dominated config-
urations. The third step shows that & and & can be taken
from the entire configuration space S when moving the re-
quirement that dominating configurations should be from C
into the predicate of the existential quantification. The fi-
nal step shows that the dominance relation on the space can
be computed from the dominance relations of the quantities
via a universal quantification. Since all operations in these
equations are Boolean operations that are straightforwardly
implemented on BDDs, the equations provide the basis for
a symbolic minimization algorithm, given as Algorithm 2.

The algorithm takes as input a configuration set C' and
its space S. It returns min(C). In line 2, the dominance
relation =g is computed. According to Eqn. (4), this can be
done via simple and operations on the dominance relations of
the quantities in S, which are computed separately from the
specified partial orders. Since dominance relations on quan-
tities and spaces may be reusable for other operations, one
can trade off processing effort with memory requirements by
storing dominance relations for later use.

In line 3, the identity relation on S is computed, which is
implemented using a standard equality function in CUDD.
As before, this identity relation can be stored for later reuse.
Line 4 removes the identity from the dominance relation,
yielding the strict dominance used in the definition of the
Pareto minimal set (the ‘¢’ # ¢ A ¢ =<s & part in the above

equations). Fig. 2.h shows the strict dominance relation on
the 2-d PSNR™! and Power space in our running example.

The computed relation is the strict dominance relation
on the entire configuration space. We need to restrict this
relation to the configuration set. By taking a self-product
of the configuration set (C? = C x C, line 5, step 6 in Fig.
2.), renaming the domain of the result to the domain of the
dominance relation (line 6), and taking the intersection with
the strict dominance relation on S (line 7 in Alg. 2, step 7
in Fig. 2), the strict dominance relation on C' is obtained.

The strict dominance relation on C' is used to initialize
variable dominatedset. The last step in our minimization
algorithm, based on Eqn. (2) above, is to remove the set of
strictly dominated configurations from the set of configura-
tions C (where the set of strictly dominated configurations is
defined by the second operand of the setminus (\) operation
in Eqn. (2)). Observe that the top half of the BDD repre-
senting a strict dominance relation contains configurations
that strictly dominate some other configuration, whereas the
bottom half contains precisely all strictly dominated con-
figurations. In the example of Fig. 2.h, domain bits 0167
represent the strictly dominating configurations and domain
bits 1011 16 17 represent strictly dominated configurations.
Note that these two sets are not necessarily disjoint. Some
configurations can be in both sets, so the dominating con-
figurations are not necessarily all Pareto points. However,
as shown by Eqn. (2), the set of Pareto points can be ob-
tained by removing strictly dominated configurations from
the configuration set. Algorithm 2 abstracts away all quan-
tities corresponding to the top part of the strict-dominance
BDD (lines 8-10, step 8 in Fig. 2). Note that these domains
are simply those of the configuration space. It then replaces
the domain of the resulting set of strictly dominated points
with the domain of the configuration space (line 11). Finally,
the strictly dominated configurations are removed from the
main configuration set, and the algorithm returns the result
(line 12, step 9 in Fig. 2).

4. MEMORY USAGE AND COMPLEXITY

An important property of BDD implementations is that
some operations can be performed in constant time and most
of the operations have time complexity proportional to the
sizes of the BDDs being operated on [4, 5], and hence are
quite efficient as long as the BDDs do not grow too large.

Interestingly, configuration sets that contain only a few
or most of the configurations from a space, can typically
be represented efficiently. When BDDs of configuration sets
are small, also relations on those sets can typically be repre-
sented compactly. In general, the BDD size depends heavily
on the number of configurations and the number of values
per quantity. Our experiments indicate that the number of
nodes in the BDD representation of a configuration set is
usually less than the number of configurations for large sets.
Furthermore, the memory required for a BDD node is quite
small compared to the memory needed for an explicit repre-
sentation of a configuration. So the SPaC tool usually works
more efficiently, especially on large sets, in terms of memory
usage when compared to a non-symbolic implementation.
The next section gives some numerical results.

We use standard BDD operations to implement symbolic
Pareto operations. Hence, most Pareto operations inherit
time complexity from BDD operations. Berghammer et al.
[3] gives a complete description of the complexity of the BDD

operations. The complexity is dominated by the size of the
BDD and the number of domain bits needed, which in the
current context depend on the number of configurations in
configuration sets and the number of dimensions (quantities)
of those sets. The two exceptions are the producer-consumer
and minimization operations. The producer-consumer op-
eration uses, in addition to standard BDD operations, de-
coding to convert a BDD to integer values, and mapping to
map integers to the actual values. The time for decoding
and mapping depends heavily on the number of actual val-
ues in the producer and consumer quantities. This results
in a time complexity proportional to the number of actual
values of the producer and consumer quantities. The time
complexity of minimization is dominated by the required en-
coding of the dominance relation on the configuration space
at hand, which means that the worst case time complex-
ity depends on the number of configurations in the space,
which in turn depends on the number of values in all of the
constituent quantities.

S. EXPERIMENTAL RESULTS

To compare SPaC to a non-symbolic implementation, as
described in [7], we conducted experiments on randomly gen-
erated configuration sets. We applied operations on 2-d and
4-d sets of various sizes, considering ten randomly generated
sets for each size. Table 1 shows the average run-times in
seconds on a 2 GHz laptop with 2 GB main memory, run-
ning Windows XP. The S columns report results for SPaC
and the NS columns for the non-symbolic Pareto calculator.

The third column of Table 1 reports the time needed to
encode a configuration space into BDDs, which includes the
mapping of quantity values to integers. The fourth column
reports the decoding time needed to convert a BDD back to
the explicit representation. It turns out that encoding and
decoding are among the most time consuming operations in
SPaC. However, encoding and decoding are one-time oper-
ations (see Fig. 2) and the required time can be amortized
over all algebraic operations performed in between.

The fifth column reports the memory required for repre-
senting a configuration set, before applying any operation,
showing that SPaC is efficient in memory. The reported
numbers include the memory needed for storing the map-
ping of the original quantity values to integers.

The last six columns report execution times for various
Pareto algebra operations. For binary operations, both the
operands are of the reported size. The non-symbolic prod-
uct operation yields a set with a size proportional to the size
of the operands, which is exponential in the number of con-
figuration sets of which the product is computed. Hence,
it cannot always be completed because the memory is ex-
ceeded (reported as EM in Table 1). The most time con-
suming Pareto algebra operations in SPaC are minimization
and producer-consumer. The minimization times include the
time needed to encode dominance relations on quantities.
This time is not needed in the non-symbolic case when the
dominance relation is inherited from the order in built-in
types like the integers or reals (which is the case for all our
experiments). This explains why non-symbolic minimization
requires less time than SPaC in our experiments. Note, how-
ever, that in algebraic computations involving multiple op-
erations, it may sometimes be possible to reuse the encoded
dominance relations. The times reported for the producer-
consumer operation include the required decoding, which is

Table 1: Experimental results (Execution times in seconds; memory in MB)

Enc | Dec Mem Alternative | Abstract Product Join ProdCons Min
Confs | Dims S S NS S NS S NS S NS S NS S NS S NS S
100 2 0.01 | 0.01 2 0.3 | 0.03 0.01 0.03 0.01 | 1.2 0.01 | 02 0.01] 19 4 0.03 0.06
100 4 0.03 | 0.01 9 0.8 | 0.06 0.02 0.05 001 | 1.8 0.01 | 0.3 0.01]| 14 3 0.04 0.07
1000 2 1 0.1 7 5 0.1 0.03 0.1 0.01 | 105 0.03 | 04 0.02] 14 19 0.07 1
1000 4 2 0.4 15 23 0.3 0.04 0.2 0.01 | 182 0.04 1 0.03 | 16 34 0.1 2
10000 2 7 0.5 11 4 0.5 0.04 04 001 | EM 0.09 | 55 0.07| 14 20 0.5 17
10000 4 9 10 44 12 0.7 0.06 09 007 |EM 02 | 66 0.12] 16 33 1 71
100000 2 67 9 60 8 4.5 0.11 2 0.02 | EM 0.17 | 78 0.1 18 20 3 94
100000 4 94 119 | 150 20 9.1 5 7.1 07 | EM 0.7 96 0.5 20 33 15 200

why the non-symbolic implementation slightly outperforms
the symbolic one.

Table 1 does not report results on the constraint opera-
tion. The symbolic and non-symbolic implementation of this
operation cannot be compared directly. SPaC implements
the constraint operation in its generic form as a set inter-
section, whereas the non-symbolic implementation typically
applies some specific predicate to a given configuration set.

The experimental results indicate that the relative perfor-
mance of the symbolic and non-symbolic implementations
will depend on the application scenario. Consider for exam-
ple the MPEG-4 streaming scenario of [8], which elaborates
the scenario illustrated in Fig. 1; an MPEG-4 video stream
is streamed from a media center over a wireless connection
to a handheld device. In the compositional trade-off com-
putation, two producer-consumer operations and three mini-
mization operations are performed. Hence, the non-symbolic
implementation is expected to work faster than the symbolic
one in this case. Another interesting application for Pareto
algebra is the multi-dimensional multiple-choice knapsack
problem (MMKP) of [2]. MMKP extends the classical 0-1
knapsack problem. Items are divided into groups and each
item has a value and a multi-dimensional resource cost. We
need to choose exactly one item per group, maximizing the
total value of the selected items, without exceeding the re-
source constraints in any dimension. MMKP can be solved
straightforwardly using Pareto algebra. This solution re-
quires many product operations, no producer-consumer op-
erations and only one minimization. Therefore, we expect
that the symbolic implementation may perform well.

It seems worthwhile to consider a hybrid implementation
of Pareto algebra that uses a combination of symbolic and
non-symbolic implementations of the operations. Some op-
erations are faster symbolically and others non-symbolically,
and the symbolic and non-symbolic implementations of con-
straint operations may complement each other well. Fur-
thermore, the symbolic implementation is in general more
memory efficient, which might be particularly relevant for
operations that are expensive in memory, such as explicit
free product operations.

We consider the development of a hybrid Pareto algebra
implementation and an elaborate experimental evaluation
of the symbolic, the non-symbolic, and the hybrid versions
in relevant application scenarios such as the streaming and
MMKP scenarios as an important topic for future work.

6. CONCLUSION AND FUTURE WORK

This paper presents SPaC, a symbolic implementation of
Pareto algebra. It allows the compositional computation
of trade-offs, applicable in, for example, multi-dimensional
embedded-system design-space exploration. The experimen-

tal results show that BDDs can be applied effectively to Pa-
reto optimization, providing very compact representations of
system configurations and very efficient implementations of
several operations. The results suggest that a hybrid Pareto
algebra implementation combining symbolic and non-sym-
bolic elements is worth investigating.

SPaC maps all quantity values to consecutive integers and
then encodes the integer values into BDDs. In this way,
floating point numbers can also be handled. In some cases
however, the actual values may be needed, requiring a (par-
tial) decoding of the BDD representation. Recently, Taylor
Expansion Diagrams (TEDs) [6] were introduced, which are
particularly suited for supporting algebraic computations on
arbitrary functions without the need for integer encoding. It
is interesting to investigate the use of TEDs to further im-
prove the efficiency of the Pareto calculator.

The Pareto calculator, including the symbolic implemen-
tation, is available at http://www.es.ele.tue.nl/pareto/.

7. REFERENCES

(1] P.A. Abdulla et al. Regular model checking made simple
and efficient. In CONCUR ’02, p. 116-130. Springer, 2002.

[2] M. Akbar et al. Solving the multidimensional multiple-

choice knapsack problem by constructing convex hulls.

Computers and Operations Research, 33(5):1259-1273, 2006.

R. Berghammer, B. Leoniuk, U. Milanese. Implementation

of relational algebra using binary decision diagrams.

ReIMICS 01, p. 241-257, 2002.

R.E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Trans. Comput., 35(8):677-691, 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered

Binary-decision diagrams. ACM Computing Surveys,

24(3):293-318, 1992.

M. Ciesielski et al. Taylor expansion diagrams: A canonical

representation for verification of data flow designs. IEEE

Trans. Comput., 55(9):1188-1201, 2006.

M. Geilen and T. Basten. A calculator for Pareto points. In

DATE ’07, p. 285-290, 2007.

M. Geilen, T. Basten, B. Theelen, R. Otten. An algebra of

Pareto points. Fundamenta Informaticae, 78(1):35-74,

2007.

J.G. Henriksen et al. Mona: Monadic second-order logic in

practice. In TACAS 95, p. 89—110, 1995.

R. Hoes et al. Analysing QoS trade-offs in wireless sensor

networks. In MSWiM ’07, p. 60-69. ACM, 2007.

J.R. Burch et al. Symbolic Model Checking: 102 States

and Beyond. In LICS ’90, p. 1-33. IEEE CS, 1990.

O. Lhotdk and L. Hendren. Jedd: a bdd-based relational

extension of java. SIGPLAN Not., 39(6):158-169, 2004.

F. Somenzi. Cudd: Cu decision diagram package,

http://vlsi.colorado.edu/ ~fabio/cudd.

3]

(4]

[5]

[6]

[7]

(8]

[9]
(10]
(11]
(12]

(13]

