
Performance Analysis of Weakly-Consistent
Scenario-Aware Dataflow Graphs

Marc Geilen1, Joachim Falk2, Christian Haubelt3, Twan Basten1,4, Bart Theelen4 and Sander Stuijk1

1 Electrical Engineering
Eindhoven Univ. of Technology

Eindhoven, The Netherlands

2 Computer Science
Univ. of Erlangen-Nuremberg

Erlangen, Germany

3 Comp. Science and Electr. Eng.
Univ. of Rostock

Rostock, Germany

4 Embedded Systems Innovation
by TNO

Eindhoven, The Netherlands

Abstract—The timed dataflow model of computation is a useful
performance analysis tool for Electronic System Level Design
automation and embedded software synthesis. Its determinism
gives it strong analysability properties. It is expressive enough
to cover a large class of applications and platforms. The trend
however, in both embedded applications and their platforms is
to become more dynamic, reaching the limits of what the model
can express and analyse with tight performance guarantees.
Scenario-aware dataflow (SADF) allows more dynamism to be
expressed, introducing a controlled amount of non-determinism
into the model to represent different scenarios of behaviour.
We investigate so-called weakly consistent graphs in which the
scenario changes are not tightly coupled with periods of repetitive
behaviour of the static dataflow behaviour in scenarios as in
previous methods. We define the semantics of such graphs in
terms of (max,+)-algebra and we introduce a method to analyse
throughput using a generalisation of (max,+)-automata. An
extended version of this paper can be found in [15].

Index Terms—performance analysis, synchronous dataflow,
(max,+)-algebra

I. INTRODUCTION

To develop concurrent embedded software applications and
the platforms on which they execute, it is important to be able
to efficiently assess whether or not performance requirements
will be met. The parallel tasks and resource arbitrations create
synchronization dependencies between tasks and time delays
for processing arbitration. Such behavior is captured well
by performance models that build upon the (max,+)-semi-
ring [1], such as Network Calculus [5], Real-Time Calcu-
lus [27], timed Petri-nets [8], [22], max-plus automata [13],
and the timed dataflow models. An important feature of timed
dataflow models for performance analysis is their determinacy.
In the most restricted dataflow models, such as timed Syn-
chronous Dataflow (SDF) [19], [23], dependencies must be
independent of input data, while some more dynamic models
(for instance Dynamic Dataflow [7]) allow such dependencies.
The growing challenge is that the static structures of data de-
pendencies and regular execution times with limited variation
are becoming more and more exceptional as both applications
and platforms are becoming more dynamic. Applications are
becoming more dynamic, for instance, because of complex
data reduction schemes, which introduce strong data-content
dependencies. Hand-held devices need to support a wide range
and diversity of communication protocols. More and more is

This work was supported in part by projects CA505 BENEFIC

handled in software by software-defined radio implementa-
tions. For MP3 compression, different parts of the audio, called
frames, may be encoded using different methods. These meth-
ods cannot be accurately captured in a static dataflow model.
Besides the application, also the platforms are becoming more
dynamic. They need to dynamically handle various use-case
scenarios of applications and use dynamic QoS management
to match available resources with applications.

To deal with the increasing amounts of dynamic be-
haviour in applications and platforms, there is a growing need
for performance models that can deal with more dynamic
behaviour and can still provide tight performance guaran-
tees. The Scenario-Aware Dataflow (SADF) timed dataflow
model [14], [16], [24], [26] tries to maintain as much as
possible of the determinacy of dataflow behaviour, while
introducing the possibility for non-deterministic variations
in the form of scenarios. In MP3 decoding for instance,
there are five individual coding schemes for audio frames.
Each of these schemes can be represented accurately by a
static dataflow graph, while the types of frames may occur
non-deterministically in arbitrary orders. The SADF model
and analysis techniques exploit the determinacy in behaviour
within a single scenario, while allowing for non-deterministic
selection of the scenarios that occur. A crucial aspect is
the concurrency among scenarios. Concurrent implementations
of streaming applications are often pipelined. For the MP3
decoder this means that different frames in different scenarios
may simultaneously be decoded. Yet, the analysis of scenario
behaviours can be separately and sequentially handled, despite
their overlap in time.

Analysis methods for the Synchronous Dataflow model,
based on spectral analysis techniques in the linear algebra on
the (max,+)-semi-ring have been introduced [14], [16] to the
analysis of a particular subset of SADF models that are called
strongly consistent, which means that every individual scenario
behaviour corresponds to a complete iteration of an SDF
graph. For the analysis of the combination of non-deterministic
sequences of scenarios which are modelled as SDF behaviour,
the theory of (max,+)-automata [13] has been used [16].

The contribution of this paper is to generalise the perfor-
mance analysis approach of [16] to the case of [26], where
scenarios may occur at a finer granularity than complete
SDF iterations. This class is called weakly consistent SADFs,
as opposed to the strongly consistent case, in which every

scenario corresponds to a full iteration. For weakly consistent
graphs, this is not necessarily the case, although in the long
run, they need still be consistent to guarantee boundedness and
deadlock freedom. This generalization is important because it
allows us to use non-determinism to model dataflow graphs
that are not globally synchronous. This is observed for instance
in the MP3 example in this paper where the file reading
front-end operates asynchronously from the sound decoding
back-end. We introduce methods to determine the worst-case
throughput of a weakly consistent SADF and a compact state-
space from which latency type of properties can be determined.
The generalization also makes the FSM based SADF model a
proper generalisation of the CSDF [4] model.

II. RELATED WORK

Dataflow models of computation range from very static
through more dynamic and (partially analysable) models,
to very dynamic, but also very hard to analyse mod-
els [24]. The static models include (homogeneous, cyclo-
static) synchronous dataflow [4], [20], [23] and Computa-
tion Graphs [18]. Heterochronous Dataflow (HDF) [17] in-
troduces dynamism by combining a finite state automaton
with synchronous dataflow graphs in the individual states.
The model is restricted to executing complete iterations per
state transition of the automaton and the model does not
have a timed version for performance analysis. Parameterised
Synchronous Dataflow (PSDF) [2] considers a static structure
of a dataflow graph, where one or more of the port rates are
parameters. It is possible to find parameterized schedules and
appropriate buffer sizes, but the possibilities for expressing
dynamism are limited. In the variable rate dataflow model
(VRDF) [29] communication rates may vary arbitrarily and
are not necessarily constant over a complete iteration. Analysis
methods for this model are restricted to (conservative) buffer
sizing under throughput constraints. More dynamic variations
on dataflow models have been defined, but they introduce
serious difficulties in the analysis. Examples include Dynamic
dataflow (DDF) and Boolean Dataflow (BDF) [6], which are
models with data dependent firing rules. Their buffer sizing
and throughput analysis problems are undecidable.

An appropriate semantic domain for timed synchronous
dataflow behaviour is (max,+)-linear algebra [1]. Spectral
analysis in this linear algebra is intimately related to through-
put and latency analysis. (max,+)-automata [13] combine
(max,+)-linear behaviour with non-deterministic choice. We
use this combination to model scenario non-determinism.

We show how our analysis problem is ultimately mapped
on a Maximum Cycle Ratio (MCR) problem on a directed
multigraph, derived from a (max,+)-automaton. A generali-
sation of cycle ratio analysis is provided by spectral analysis
of (max,+)-linear systems [9], [11]. Spectral analysis gives
not only the cycle mean (eigenvalue), but also an eigenvector,
which relates to the relative firing times of actors, or latency.
A good overview and comparison of cycle mean, cycle ratio
and spectral analysis methods can be found in [10].

In this paper we use synchronous dataflow graphs in the
individual scenarios. However, we do not consider only com-
plete iterations [16], [17], but allow partial repetition vectors.

A special case of grouping firings results from clustering
of SDF actors [3], [12], [21]. The result can be a quasi-
statically scheduled system, in which the clustered actors can
be modelled as scenarios of a weakly-consistent SADF. Hence,
the proposed analysis can also be applied to such systems.
Another work exploring this aspect is [28], which considers
a modular implementation of SDF, where firings of an SDF
iteration are grouped together. These may be individually
scheduled depending on the presence of input data.

III. PRELIMINARIES

We assume the reader is familiar with SDF and its
(max,+)-algebra semantics. A more detailed introduction to
the preliminaries can be found in [15].

A. Scenario-Aware Dataflow Graphs
Scenario Aware Dataflow graphs [26] are a variant of

dataflow models that try to occupy a sweet spot in the trade-
off between analysability and expressiveness [24], in particular
to express more dynamic behaviour. It combines Synchronous
Dataflow behaviour with finite state-automata. It allows the
FSM transitions to occur not only at the borders of complete
iterations of the SDF behaviours, but also at intermediary
stages. An important element of the timed model is that
even though the FSM transitions occur in-between pieces of
deterministic dataflow behavior, this does not mean that such
pieces cannot overlap in time. They can be pipelined.

An important strength of the (timed) synchronous dataflow
model is its determinism. An important goal of the SADF
model is to avoid loss of the benefits of the deterministic
behaviour within scenarios for efficient analysis.

The semantics of SADF can be captured by a combination
of classical FSM semantics and (max,+)-based semantics
of the scenarios of determinate synchronous dataflow be-
haviour. The combination of state machines and (max,+)-
matrix multiplication is called a (max,+)-automaton and is
briefly introduced in the next subsection.

B. (max,+)-automata
A (max,+)-automaton [13], is a tuple A = (Σ,M,M),

of a finite set Σ of scenarios, a mapping M, which assigns
to every scenario σ ∈ Σ a (max,+)-matrix M(σ) and a
morphism M on finite sequences of scenarios, mapping such
sequences to a (max,+)-matrix such that

M(σ1 . . . σk) = M(σk) . . .M(σ1).

For a given sequence of scenarios, the automaton defines the
completion time as follows:

A(σ1 . . . σk) = ||M(σ1 . . . σk)0|| = ||M(σk) . . .M(σ1)0||.

Then, M(σ̄)0 captures the production times of the tokens
of the SADF after the sequence σ̄ of scenarios. The time
when the final token is produced is captured by taking the
(max,+)-norm (maximum entry) of the resulting vector. We
are often interested in the worst-case throughput for any
possible sequence of scenarios. Gaubert shows [13] how this
maximum growth rate (minimum throughput) can be computed
as the maximum cycle mean of the equivalent timed event

graph [1] of the matrix M = maxσ∈Σ M(σ). It also shows
how, given an infinite regular sub language of Σ∗, the set of
all finite scenario sequences, the maximum growth rate can be
determined using a classical product automaton construction.

For this paper, we will need to generalize this concept. In
particular, instead of studying the average growth rate per step
of the automaton, we will study the ratio of the growth rate
relative to another quantity expressed as the sum of a certain
benefit or reward per scenario. This amounts to application of
the generalised spectral problem [9] to (max,+)-automata.
In this case, the worst-case throughput can be determined as
an MCR of the automaton where edges have two labellings,
delays and rewards. We also associate non-square matrices
M(σ) with scenarios. We assume that we use a specification
of legal scenario sequences that is consistent with the matrix
sizes, i.e., such that the morphism M is well-defined.

IV. A SEMANTIC MODEL OF WEAKLY
CONSISTENT SADF

In strongly consistent SADF, every transition of the FSM
corresponds to a full iteration of the SDF graph for the
particular scenario. It is therefore a piece of behaviour that can
be repeated forever. Moreover, switches between scenarios are
possible in such states, because the initial states are identical.
State in this case refers to the tokens present in the graph, as
the graph’s actors and channels may be different in different
scenarios, but the initial tokens are found in all scenarios.
Specifically ‘state’ of those tokens refers to time stamps
indicating the time of their availability to be used (consumed).

We generalize the model to allow for edges of the FSM to
correspond to arbitrary (fixed) collections of firings. In contrast
with the strongly consistent case, the starting and ending state
of a scenario graph are not necessarily the same. Such weakly
consistent graphs can still be fully and precisely characterised
by a (max,+)-matrix, which is not necessarily square.

V. EXAMPLE

We establish the (max,+)-automaton model of the running
example graph shown in Fig. 1. The initial state is k with
an edge to itself labelled with the scenario α, which has one
firing of P and one firing of Q in ‘mode’ a. This combination
of firings has no net effect on the distribution of the (three)
tokens. The starting state is defined by the two tokens 1 and
2 in the figure, with time stamps t1 and t2. This is captured
in a (max,+)-vector [t1 t2]T . P needs to fire before Qa (a
firing of actor Q in mode a, in which it takes 2 time units
to execute and produces 0 tokens on the edge from Q to R)
and consumes both tokens. Hence, its earliest starting time
is max(t1, t2). The firing takes 2 time units and completes
at time max(t1, t2) + 2, which in (max,+)-sum-of-product
form is equal to max(t1 +2, t2 +2), or in vector inner-product
notation: [2 2] · [t1 t2]T . This is the time stamp of the new
token produced at position 1. Next, Qa fires and consumes the
token just produced by P on the edge from P to Q. Its firing
takes also 2 units of time and completes at max(t1 +4, t2 +4),
or: [4 4] · [t1 t2]T . At this time the token at position 2 is
reproduced. Combining the two symbolic states into a matrix-
vector equation, we get the following relation between the

Fig. 1. An example weakly-consistent SADF.

starting state vector and the end state vector.[
t′1
t′2

]
=

[
2 2
4 4

] [
t1
t2

]
Another edge, from state k to state l, is labeled with

scenario β consisting of the firings {P,Qb}. This produces
an additional token on position 3 on the edge from Q to R.
We obtain the following matrix vector equation. t′1

t′2
t′3
t′4

 =

 2 2 −∞
5 5 −∞
5 5 −∞
−∞ −∞ 0

 t1
t2
t4

After this, a firing Rc will take place in scenario γ, moving

from state l to m. This consumes tokens 3 and 4 and produces

token 4, according to t′4 = [2 2]

[
t3
t4

]
. Token 3 disappears

in this process and tokens 1 and 2 remain untouched.
From state m, an arbitrary number of scenarios ‘δ’ are

possible, a single firing of Rd, each of which involves only
token 4, according to t′4 = t4 + 3.

At some point1, a transition ε is taken, back to state k. It is
labelled with an empty set of firings and therefore leaves all
tokens at rest. The matrix representation is an identity matrix.

VI. MODEL AND SEMANTICS

A weakly consistent SADF graph is defined by a tuple
(Σ, G,ρ, i, f, π,A). It has a finite set Σ of scenarios and
every scenario σ ∈ Σ has an associated SDF graph G(σ)
and a partial repetition vector ρ(σ), which maps every actor
of G(σ) to a non-negative number specifying how often the
actor fires in the scenario. The graph G(σ) has a collection
of i(σ) ∈ IN initial tokens, which are indexed 0 ≤ n < i(σ).
After execution of the partial repetition vector, the graph G(σ)
has a collection of f(σ) ∈ IN ‘final’ tokens, which are indexed
0 ≤ n < f(σ). We use the (max,+)-semantics of the SDF
graphs [1] to associate with every graph G(σ), a (max,+)-
matrix M(G(σ)) ∈ (IR−∞)f(σ)×i(σ), or in short M(σ). The
FSM A is a tuple (Q, q0, δ) with a set Q of states, an initial
state q0 and a labelled transition relation δ ⊆ Q × Σ × Q.
The scenario labels in the edges must be consistent in the
sense that for any state q ∈ Q, any incoming edge labelled
with scenario σ1 and outgoing edge labelled with scenario σ2,
f(σ1) = i(σ2). We denote this number of tokens for a state
q: n(q). A accepts the sequence σ̄ of scenarios if and only

1Note that we could add Büchi acceptance conditions to the automaton to
enforce that progress is made eventually. However, such requirements typically
have no impact on the worst-case performance.

if σ̄ is in the language L(A) of the FSM, i.e., there exists a
sequence q̄ of states such that q̄(0) = q0 and for every n ≥ 0,
there exists an edge (q̄(n), σ̄(n), q̄(n+ 1)) ∈ δ.

With sequence σ̄, we associate the timing behaviour, a
sequence of (max,+)-vectors, such that t0 = 0 and for all
n ≥ 0, tn+1 = M(σ̄(n))tn. We can now clearly recognise
the structure of a (max,+)-automaton.

For synchronous dataflow analysis, it is common to quantify
throughput by measuring the number of iterations per time
unit. In our case, it depends on the model how much actual,
‘real-world’ progress is made per scenario. We therefore
assume that we explicitly quantify the amount of progress
per scenario. For instance, for the example graph, we may
be primarily interested in the number of firings of actor R.
In this case the progress is 1 for scenarios γ and δ and 0 for
any other scenario. In general, we define a reward function
π : Σ → IR≥0, which quantifies the amount of progress per
scenario σ as π(σ). The throughput obtained from a scenario
sequence σ̄ can hence be defined as follows.

τ(σ̄) = lim
k→∞

sup

∑k−1
n=0 π(σ̄(n))

||tk||
I.e., throughput is defined as the average amount of progress
made per unit of time. The primary analysis question we
answer in this paper is to determine the worst-case throughput
of an SADF graph:

τ = inf
σ̄∈L(A)

τ(σ̄).

We can define an explicit state space semantics of the model.
The states of the state-space consist of pairs (q, t) consisting
of a state q ∈ Q of the FSM and a normalized vector t.
The initial state is (q0,0). The transitions of the state-space
are constructed as follows. For a state (q, t), consider every
outgoing edge (q, σ, q′) of q in the FSM. Then the state-space
has a labelled transition

((q, t), ||u|| − ||t||, π(σ), (q′,unorm)) ,

where u = M(σ)t. The transitions are decorated with two
labels, the amount of time progress and the progress reward.

VII. ANALYSIS

To determine the infimum of the throughput values for
all possible scenario sequences on the graph, we need to
find the worst-case scenario sequence. Progress of time is
measured as the (max,+)-norm of the state vectors tk, the
maximum element of the vector. Since tk+1 = M(σ̄(k))tk,
every element of tk+1 is determined by some element of tk
and offset by the corresponding dependency in the matrix. This
element in tk can in turn be traced back to a single element
in tk−1 and so forth back to t0. In other words, to study the
relation between time progress and scenario sequences, we
need not look at complete vectors, but we can concentrate on
individual elements (initial / final tokens) and their individual
dependencies as expressed by the entries in the matrices.

Fig. 2 shows a structure which encodes these dependencies
for the example of Fig. 1. The nodes in this graph represent
the initial/final tokens (horizontally) in each of the states of

,0

Fig. 2. (max,+)-automaton of the example graph.

the FSM (vertically). For every edge of the FSM, we take the
matrix M(σ), with σ the label of the edge, and for every finite
(non −∞) element in the matrix we draw an edge between the
corresponding initial/final tokens and label it with the value of
that element and with the reward π(σ) of σ. For clarity we
have labeled it with the scenario σ itself in the figure. The
precise definition of the (max,+)-automaton corresponding
to the SADF graph is as follows.

Definition 1: For a given SADFG graph (Σ, G,ρ, i, f, π,A),
the analysis (max,+)-automaton is defined in the form of a
graph (R, ε) with vertices R and edges ε, as follows.
• R = {(q, i) | q ∈ Q, 1 ≤ i ≤ n(q)}
• ε = {((q1, i),M(σ)i,j , π(σ), (q2, j)) | (q1, σ, q2) ∈
δ, 1 ≤ i ≤ n(q1), 1 ≤ j ≤ n(q2)}

The worst case throughput of the graph can be determined
from a maximum cycle ratio analysis of the corresponding
(max,+)-automaton, i.e., find the cycle in the graph with the
worst-case ratio of total reward over time progress.

Theorem 1: Let G = (Σ, G,ρ, i, f, π,A) be an SADF
graph and (R, ε) be the corresponding (max,+)-automaton
graph, then inf σ̄∈L(A) τ(σ̄) = MCR(R, ε) is the worst-case
throughput of G.

Note that the graph (Fig. 2) has cycles of zero reward
(α self-loops) and hence the worst-case throughput is zero.
Indeed, actor Q may never produce any output to R in which
case, R will never fire. In a refined model we may limit the
number of firings of Q in mode a to two, before it must fire in
mode b. And similarly we bound the number of firings of actor
R in mode d to three. This can be modeled by introducing
extra states in the FSM that count the number of firings. The
analysis of the refined model is shown in [15]. The worst-
case throughput is shown to be 1

13 . Note that the behavior of
this example is characteristic for the asynchronous file reader
front-end of the MP3 example. After a predictable number of
reads it must have data available for decoding.

VIII. EXPERIMENTAL EVALUATION

We have implemented the worst-case throughput analysis
method in the SDF3 tool set [25] as an extension to the avail-
able scenario-aware dataflow analysis. To get the performance
analysis results, a maximum cycle ratio analysis is performed

on the (max,+)-automaton using the algorithm of Young et
al. [30]. We have used the tool to analyse an MP3 decoder
model with a file reader frond-end [15]. Weak consistency is
needed for this model to be able to express the asynchronous
operation of the file reader and the decompression of the
MP3 decoding. The specification consists of seven dataflow
graphs for the five coding scheme scenarios and two additional
file processing scenarios. The graphs of the frame decoding
scenarios are fairly large (up to 25 actors). The specified
FSM has 65 states. The (max,+)-matrices extracted from
the scenario dataflow graphs are 3 by 3 matrices, where the
rows/columns represent one of the three processors on which
the decoder is presumably mapped. The determinate behaviour
of the large scenario dataflow graphs, with many firings, can
thus be very compactly represented. The (max,+)-automaton
that is constructed from the FSM and the matrices has 195
nodes (one for every combination of the three initial tokens
and one of the 65 FSM states) and it has 2745 edges. The
computation time on a standard PC is around 45ms. As a
result we also get a critical scenario sequence from a critical
cycle of the MCR analysis.

IX. CONCLUSION

We introduced an exact analysis method for a class
of dynamic dataflow graphs, called weakly consistent
scenario-aware dataflow in which the behaviour may non-
deterministically vary according to scenarios of behaviour,
yet within these scenarios behaviour is deterministic and
follows the synchronous dataflow paradigm which provides
us with powerful analysis techniques. We have generalized the
(max,+)semantics of SADF to allow non-consistent scenario
behavior to (a generalisation of) (max,+)-automata and ex-
ploit existing spectral analysis techniques in (max,+)-algebra
for performance analysis. We have implemented the techniques
in a tool for performance analysis of dataflow models and we
see that it can effectively analyse a model of an MP3 decoder.

REFERENCES

[1] F. Baccelli, G. Cohen, G. Olsder, and J.P.Quadrat, Synchronization and
Linearity. John Wiley & Sons, 1992.

[2] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow model-
ing for DSP systems,” IEEE Trans. Signal Processing, vol. 49, no. 10,
pp. 2408–2421, October 2001.

[3] S. S. Bhattacharyya, P. Murthy, and E. Lee, “APGAN and RPMC:
Complementary Heuristics for Translating DSP Block Diagrams into
Efficient Software Implementations,” Journal of Design Automation for
Embedded Systems, Jan. 1997.

[4] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
dataflow,” IEEE Trans. Signal Processing, vol. 44, no. 2, pp. 397–408,
February 1996.

[5] J. L. Boudec and P. Thiran, Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, ser. Lecture Notes in Computer
Science. Springer, 2003, vol. 2050.

[6] J. Buck and E. A. Lee, Advanced Topics in Dataflow Computing and
Multithreading. IEEE Computer Society Press, 1994, ch. The Token
Flow Model.

[7] J. T. Buck, “A dynamic dataflow model suitable for efficient mixed
hardware and software implementations of dsp applications,” in Proc. of
the 3rd international workshop on Hardware/software co-design, 1994,
pp. 165–172.

[8] J. Campos, G. Chiola, J. Colom, and M. Silva, “Properties and per-
formance bounds for timed marked graphs,” Circuits and Systems I:
Fundamental Theory and Applications, IEEE Trans., vol. 39, no. 5, pp.
386 –401, May 1992.

[9] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Gettrick, and J.-P.
Quadrat, “Numerical computation of spectral elements in max-plus
algebra,” in Proc. of the IFAC Conference on System Structure and
Control, Nantes, July 1998.

[10] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio
and mean algorithms,” ACM Trans. Des. Autom. Electron. Syst., vol. 9,
pp. 385–418, October 2004.

[11] V. Dhingra and S. Gaubert, “How to solve large scale deterministic
games with mean payoff by policy iteration,” in Proc. of the 1st
international conference on Performance evaluation methodologies and
tools, ser. valuetools ’06. New York, NY, USA: ACM, 2006.

[12] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. Bhattacharyya,
“A Generalized Static Data Flow Clustering Algorithm for MPSoC
Scheduling of Multimedia Applications,” in EMSOFT’08: Proc. of the
8th ACM international conference on Embedded software, Oct. 2008.

[13] S. Gaubert, “Performance evaluation of (max, +) automata,” IEEE
Trans. Automatic Control, vol. 40, no. 12, pp. 2014–2025, 1995.

[14] M. Geilen, “Synchronous data flow scenarios,” Trans. Embedded
Computing Systems, vol. 10, no. 2, pp. 16:1–16:31, January 2011.

[15] M. Geilen, J. Falk, C. Haubelt, T. Basten, B. Theelen, and S.Stuijk,
“Performance analysis of weakly-consistent scenario-aware dataflow
graphs,” Eindhoven University of Technology, Tech. Rep. ESR-2011-03,
December 2011.

[16] M. Geilen and S. Stuijk, “Worst-case performance analysis of
synchronous dataflow scenarios,” in International Conference on
Hardware-Software Codesign and System Synthesis, CODES+ISSS 10,
Proc., Scottsdale, Az, USA, 24-29 October, 2010, 2010, pp. 125–134.

[17] A. Girault, B. Lee, and E. Lee, “Hierarchical finite state machines with
multiple concurrency models,” IEEE Trans. Computer-aided Design of
Integrated Circuits and Systems, vol. 18, no. 6, pp. 742–760, June
1999.

[18] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinancy, termination, queueing,” SIAM Jounal of
Applied Mathematics, vol. 14, no. 6, pp. 1390–1411, Nov. 1966.

[19] E. Lee and D. Messerschmitt, “Synchronous data flow,” IEEE
Proceedings, vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[20] E. A. Lee and E. Matsikoudis, The Semantics of Dataflow with Firing.
Cambridge University Press, 2007, chapter from ”From Semantics to
Computer Science: Essays in memory of Gilles Kahn”.

[21] S. Meijer, H. Nikolov, and T. Stefanov, “Throughput modeling
to evaluate process merging transformations in polyhedral process
networks,” in DATE, 2010, pp. 747–752.

[22] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[23] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization. New York, NY, USA: Marcel
Dekker, Inc., 2009.

[24] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-
aware dataflow: Modeling, analysis and implementation of dynamic
applications,” in Proc. of International Conference on Embedded
Computer Systems (SAMOS), 2011, 2011, pp. 404–411.

[25] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in
Application of Concurrency to System Design, 6th International
Conference, ACSD 2006, Proc.. IEEE Computer Society Press, Los
Alamitos, CA, USA, June 2006, pp. 276–278.

[26] B. D. Theelen, M. Geilen, T. Basten, J. Voeten, S. V. Gheorghita, and
S. Stuijk, “A scenario-aware data flow model for combined long-run
average and worst-case performance analysis,” in MEMOCODE, 2006,
pp. 185–194.

[27] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in International Symposium on
Circuits and Systems ISCAS 2000, vol. 4, Geneva, Switzerland, Mar.
2000, pp. 101–104.

[28] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee,
“Compositionality in synchronous data flow: Modular code generation
from hierarchical sdf graphs,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2010-52, May 2010.

[29] M. H. Wiggers, M. J. Bekooij, and G. J. Smit, “Buffer capacity
computation for throughput constrained streaming applications with
data-dependent inter-task communication,” in Proc. the 14th IEEE
Real-Time and Embedded Technology and Applications Symposium,
RTAS’08, April 2008, pp. 183–194.

[30] N. E. Young, R. Tarjan, and J. Orlin, “Faster parametric shortest
path and minimum balance algorithms,” Networks, vol. 21, no. 2, pp.
205–221, 1991.

