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Abstract—Cyber-physical systems interact with their physical
environment. In this interaction, non-functional aspects, most
notably timing, are essential to correct operation. In modern
systems, dynamism is introduced in many different ways. The
additional complexity threatens timely development and reliable
operation. Applications often have different modes of operation
with different resource requirements and different levels of
required quality-of-service. Moreover, multiple applications in
dynamically changing combinations share a platform and its
resources. To preserve efficient development of such systems,
dynamism needs to be taken into account as a primary concern,
not as a verification or tuning effort after the design is done.
This requires a model-driven design approach in which timing
of interaction with the physical environment is taken into consid-
eration; formal models capture applications and their platforms
in the physical environment. Moreover, platforms with resources
and resource arbitration are needed that allow for predictable
and reliable behavior to be realized. Run-time management is
further required to deal with dynamic use-cases and dynamic
trade-offs encountered at run-time. In this paper, we present
a model-driven approach that combines model-based design and
synthesis with development of platforms that support predictable,
repeatable, composable realizations and a run-time management
approach to deal with dynamic use-cases at run-time. A formal,
compositional model is used to exploit Pareto-optimal trade-offs
in the system use. The approach is illustrated with dataflow mod-
els with dynamic application scenarios, a predictable platform
architecture and run-time resource management that determines
optimal trade-offs through an efficient knapsack heuristic.

I. INTRODUCTION

Cyber-physical systems (CPS) are computer systems that
are inherently involved in a continuous interaction with their
physical environment. Requirements for such systems are to a
large degree extra-functional and in particular timing is very
important. The integrated CPS is often designed or developed
from a model that includes both the computer system to be
developed and the physical environment that is to be controlled
or interacted with. Such models could be made for instance in
Matlab or Simulink. Timing behavior and requirements can be
established from the models, but need to be reliably realized
in the developed system.

Model-based design approaches intend to realize an au-
tomated trajectory from a model in some formalism to an
implementation that conforms to the model, in terms of its
functional behavior, its interface or its timing behavior. Since
systems can be large and consist of separate, interacting
components, such strategies would need to be compositional
in the sense that individual components can be developed
or synthesized separately, according to their own model or
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definition and the developed components can be combined to
form the overall system in such a way that the composition
works and the behaviors of the component remain respected.
This is challenging, because generally the components may
have undesirable or unpredictable interactions through shared
resources. Most platforms are designed such that these interac-
tions do not impact functional behavior, but timing behavior
is often more susceptible to unpredictable interactions. The
nature and impact of the interactions are often hard to predict
and only manifest themselves in the final realization or after
deployment of the product in the field.

Hardware/software platforms can be designed to alleviate
these problems, but this is challenging as this may lead
to shared resource arbitration schemes with low utilization
and an increase in the amount of resources required and
hence increasing system cost. It is obviously important to
get this trade-off right. Different aspects of timing behavior
may be targeted. Some approaches focus on the ability to
provide guaranteed worst-case behavior, for instance response
times, on platform resources, so as to be able to statically
guarantee worst-case system behavior irrespective of how
and with what other applications resources may be shared.
This is often called predictability [1], which may also cover
other aspects than the worst-case behavior. Another aspect,
often called composability [2], intends to realize platforms
that guarantee freedom of any interaction whatsoever from
other applications that may be sharing the same resources.
An important benefit of this approach being that applications
can be verified independently from one another and the
combination of application on a shared platform is guaranteed
not to introduce new unforeseen errors. Repeatability [3],
[4] refers to platform properties that guarantee that different
executions of the same system, provided with the same input,
will provide the same output. This also facilitates verification
and testing. Another approach to repeatability which involves
the platform, although it extends beyond only the platform,
enforces a certain degree of conformance between model time
and physical time [4].

A challenge to getting predictable/repeatable/composable
systems is the fact that modern systems have a tendency of
becoming more and more dynamic in their behavior. Advanced
compression schemes and multi-resolution displays in digital
media lead to huge differences in workload among differ-
ent media streams, but also within a single media stream.
Highly optimized wireless transceivers and cognitive radio
in software-defined-radio systems switch between different
modes depending on conditions of the wireless channel. High
performance feedback-control systems operate at different
sampling frequencies and switch between different modes of



operation. Consumer equipment needs to support download-
able and upgradeable applications. With such dynamism, sys-
tems cannot be designed for the worst-case and need to support
scalability and trade-offs between quality of operation and
resource usage. Run-time resource management is required for
sharing of the resources and to exploit the available trade-offs
in application configurations to efficiently use the platform.

This paper presents and illustrates a model-driven approach
to the design and development of stream-based CPSs. It is
based on the use of predictable, repeatable and composable
platforms and exploits a run-time management approach to
dynamically handle run-time use-cases. Stream-based applica-
tions and their platform mappings are formally modeled by
a dynamic extension of timed synchronous dataflow, while
Pareto-optimal trade-offs within applications, their quality-of-
service and their resource usage are captured in a formal,
compositional model of trade-offs. The approach is illus-
trated using a software-defined radio implementation of a
WLAN transceiver with dynamic application scenarios on
a predictable platform architecture under control of a run-
time management system. Run-time optimal configurations are
determined using an efficient heuristic for multi-dimensional,
multiple-choice knapsack problems.

The paper proceeds as follows. The following section gives
some pointers to related work. Section III then gives an
overview of our approach. Section IV discusses the temporal
model we use as a conservative abstraction. We discuss
the targeted hardware and software platforms in Section V.
Section VI discusses how run-time dynamics and use cases
can be handled. Section VII concludes.

II. RELATED WORK

We describe a model-based design approach where the mod-
eling pertains in particular to timing and performance. Some
other works share this idea. The Ptides project [4] proposes
a design approach and hardware / software architecture in
which cyber-physical systems can be realized composably and
repeatably by strictly adhering to the timing behavior of the
semantic model in the implementation and prohibiting any
impact of implementation related timing aspects on the func-
tional behavior. Combined with static analysis, a repeatable
and composable system can be made. BIP [5] is a formal
component based lapproach in which formal models specify
the interface behavior of components. Rigorous verification
that checks whether the specified interfaces are respected make
the component based design approach composable. Giotto [6]
is a specification language that uses the time-trigged [2] per-
spective to rigorously define the timing behavior of software
components. Static execution time and schedulability analysis
ensure that specified timing behavior is met.

Real-Time Calculus (RTC) [7] and Timed Dataflow [8]
are models that are often used for performance analysis of
stream-based applications and platforms. In RTC, application
requirements are specified in terms of arrival density of events
or workloads and resources are described in terms of the
amount of service they deliver to an application in a given
time interval. Timed dataflow actors are used both to describe
application tasks as well as the temporal behavior of the
resources onto which the tasks are mapped.

[9], [10] describe predictable design flows using dataflow
models to represent resource allocations. [9] uses constraint
solving to find solutions that satisfy requirements, [10] is
based on SAT solving techniques. Both approaches determine
throughput optimal mappings using static, single-rate models.
[11] describes an approach which is similar to ours in the
models that are used and platforms that are considered. The
models are more static and no run-time reconfiguration is used.

Architectural concepts to support composable and pre-
dictable realizations are discussed, among others in [2], [12],
[13]. The Time-Triggered Architecture [2] is a scheduling
and arbitration architecture that is used for scheduling and
arbitration of networks as well as processing resources. Comp-
SOC [12] is a platform that focuses on composable realiza-
tions. It combines solutions for composable use of on-chip
networking, processor scheduling and external memory access
control. The PRET project [13] focuses primarily on building
repeatable processor and memory architectures. Repeatability
is primarily achieved through the use of composability in
processor sharing, scheduling, interrupts, caches, and accesses
to shared external memory.

Some works share our use of compositional trade-offs in
design and run-time phases. [14] explores system-level trade-
offs at design-time. [15] explores trade-offs between time
and memory usage for memory architectures for data storage
and transfer. For run-time trade-offs, [16], [17], [18] present
heuristics for run-time configuration selection for multiple
applications with design-time evaluated resource-usage trade-
offs on shared resources.

III. OVERVIEW OF THE APPROACH

In this section, we give an overview of the elements needed
in an approach for predictable embedded data processing.
The individual elements are discussed in more detail in the
following sections.

The central concept for dealing with dynamic behavior is
a scenario [19]. Dynamic behaviors within an application are
divided in a limited number of so-called scenarios. Behaviors
within a single scenario are similar in their resource usage,
such that a corresponding static resource allocation can be
made. To exploit this allocation, it is required that the behav-
ioral scenarios are detectable or predictable and the platform
may allocate the appropriate resources. For a wireless radio
transceiver scenarios could be the different MIMO configura-
tions used, or, at a smaller time granularity, synchronization,
header processing, receiving payload, etcetera.

To describe the applications, we use a dataflow based model,
where an application is divided in concurrent actors, which
synchronize and communicate with each other. Beside the
functional behavior of the actors, actors are annotated with
their worst-case execution times (which may depend on the
mapping when different mappings are possible). A dynamic,
but statically analyzable extension of the synchronous dataflow
model has been developed to support dynamism in the form
of scenarios: Scenario-Aware Data Flow (SADF) [20], [21].
SADF is introduced in more detail in Section IV.

The annotation with worst-case execution time allows the
prediction of lower bounds on the performance of the appli-
cation for a given mapping and thus supports the mapping



Fig. 1. Scenario FSM of WLAN receiver

process to find one or more mappings per scenario which
guarantee that the required performance is met. In order to
achieve this, timed dataflow models are used that conser-
vatively represent the timing behavior of the architectural
components of the platform; those models are composed with
the timed dataflow models of the application itself and used
together to evaluate the performance.

To support the above approach to predictability, it is required
that the platform hardware/software architecture supports the
generation of conservative timed dataflow models per ap-
plication, despite the fact that platform resources will be
shared at run-time with other applications. Such predictable
platforms are discussed in Section V. We use a tile-based
chip multiprocessor system, where the tiles are connected by a
network-on-chip. Time-division multiplexing (TDM) based re-
source arbitration of the various resources makes the platform
predictable and composable. External memory may be used
as long as it is done through a predictable memory interface
which permits a timed-dataflow conservative abstraction.

An automated design-flow produces different configurations
in which the different scenarios of the application can be
mapped so as to provide flexibility at run-time for combining
multiple applications on the platform. Moreover, in case the
application allows it, configurations may provide trade-offs
between quality-of-service levels of the application versus
resources required to provide the service. A run-time quality
and resource management can use the predefined configura-
tions and their quality and resource trade-offs to determine
optimal configurations for the dynamic use cases arising at
run-time. A formal, compositional model for computing trade-
offs, called Pareto Algebra [22], is used for this. This run-time
management is the subject of Section VI.

IV. MODELING APPLICATIONS WITH
SCENARIO-AWARE DATAFLOW

Applications consist of concurrent tasks that are mapped
onto different processing resources of the platform, general
purpose processors, DSPs, vector processors and so on. For
some tasks, different mapping options may be feasible. The
application behavior is partitioned into a set of scenarios and
the individual scenarios are characterized in terms of their
worst-case execution times and resource requirements. The
result of this process is an application model called Scenario-
Aware Data Flow (SADF) [20].

An SADF model consists of a set of scenarios of behavior
and specifies in what order scenarios may occur. This order is
specified by means of a finite state machine. The states of the
state machine are labeled with scenarios (there can be different
states labeled with the same scenario) and any (infinite) path
through the state machine represents a possible sequence of

scenarios. Figure 1 shows such a finite state machine (FSM)
for the WLAN receiver model from [23] (in fact it over-
approximates the possible scenarios, as explained below, but
this model is conservative and tight enough). The reception
of a data packet consists of four phases: synchronization,
header processing, payload processing and a CRC check and
transmission of acknowledgement. These phases are traversed
in the given order, where multiple synchronization attempts
may be needed to detect the start of a packet and the payload
may consist of an arbitrary number of OFDM symbols (in
the model, which over-approximates the real situation, in
which it is limited to 256). The packet ends with CRC and
acknowledgement. Synchronization may be lost at any time
causing a return to the synchronization phase.

The throughput constraint for the graph is that the source
produces 1 OFDM symbol every 4.0µs, which must be timely
handled by the application. The Sync, Header and Payload
scenarios each process 1 symbol, but the CRC scenario does
not process any new input. To capture this in the SADF
model, the scenarios are labeled with the amount of progress
made, called the scenario reward [24]. Hence the reward is 1
(symbol) for all scenarios except CRC, which is extra work
to be done at the end of the packet, not related to any new
input, for which the reward is 0. The throughput of the graph
is then defined as the worst-case amount of progress or reward
per time unit. Besides throughput constraints, there are latency
constraints on the transmission of the acknowledgement in the
CRC scenario, but we ignore that aspect for this paper.

For worst-case analysis to guarantee predictable behavior,
we need to analyze all possible scenario sequences. For
average performance analysis, the transitions of the scenario
state machine can be annotated with probabilities, effectively
turning it into a Markov Chain. In that case, scenario se-
quences are also provided with a likelihood of occurrence.

The behavior inside individual scenarios may be complex
and exhibit complex dependencies on other scenarios. It is
specified by static dataflow models, such as an SDF or CSDF
model. An example is shown in Figure 2, which shows the
dataflow graph of the Payload scenario. (For the moment
we ignore the dashed edges.) The Src actor models the RF
source which periodically produces the data for an OFDM
symbol. The token src captures the dependency on the previous
production from the source. The Shift actor aligns the data
received from Src with the actual start of an OFDM symbol.
The shift token captures the dependency on the update of the
shift value after the previous symbol, which determines the
proper shift to align the OFDM symbols. Token dem pars
represents the availability of the demodulation parameters to
be used by the payload demodulation, modeled by the Pdem
actor. Demodulation is followed by decoding by the Pdec
actor. Actor DOut processes the data contained in the payload.
The Payld actor is an artificial actor whose firing signals the
end of the decoding of the payload, which is a dependency
to following scenarios; DOut may be executed concurrently.
This dependency is recorded in the payload token, which is
used in the CRC scenario model to represent the dependency
of the CRC computation on the decoding of all payload data.

It is important that the tasks that are modeled by actors
in the SADF are annotated with worst-case execution times.



They may have alternative mappings, in which case they have
a timing annotation for each possible mapping option. In this
way, the SADF model provides an abstract timed dataflow
model that is guaranteed to be a conservative abstraction,
formally in the sense of [25], of the application. This means
that given the same (or earlier) timing of the input provided
to the application, the application will produce its outputs
no later than specified by the abstract model. Compared to
traditional static timed dataflow models such as timed SDF or
timed CSDF, the use of scenarios allows one to make tighter
worst-case timing models and still allows for static analysis
of throughput and latency properties.

Dataflow performance analysis techniques assume an abun-
dance of resources. Processing resources are assumed to be
available whenever an actor can execute and edges have an
infinite storage capacity and they do not cause any delay.
Scheduling decisions or communication delays can be mod-
eled explicitly into the graph. For example, some of the
actors in the WLAN receiver application need to share a
processing resource. We assume the firings of these actors are
ordered using a static-order schedule. In the Payload scenario,
the Shift and Pdem actors need the same embedded vector
processor (EVP). The application has a data dependency from
the Shift actor to the Pdem actor. The schedule needs to
respect the dependency and therefore starts with the Shift
actor. The Pdem actor is fired next on the EVP. This static-
order schedule is modeled in the application graph to ensure
that the performance analysis takes the resource sharing into
account. In this particular example, the static-order schedule
can be modeled by adding two edges to the graph (one from
Shift to Pdem and one in the opposite direction). The resulting
dataflow graph is shown in Figure 2, where the dashed edges
are due to encoding of the schedules. The initial position of
the evp token dictates that the static-order schedule of the EVP
starts with the Shift actor. The token further embodies the
dependency between the use of this processor in the Payload
scenario and the following scenarios in the application; it
ensures that any actor firings from different scenarios cannot
be overlapping on the EVP. Figure 2 shows also the resource
mapping of the Pdec and DOut actors. Both actors are mapped
to a separate processing element (respectively a software codec
(SWC) and a control processor (ARM)). This is modeled
with the self-edges with the swc and arm tokens. The actors
Src, Payld, and Pars model the input/output behavior and
the dependency on availability of demodulation parameters.
These actors merely model synchronization constraints due
to data dependencies and do not need to be mapped to any
processing element. So far we have illustrated how processor
dependencies and static-order schedules can be modeled into
the dataflow graph. Other implementation aspects such as
storage space or communication delays can be modeled in
a similar manner in the dataflow graph. These methods are
beyond the scope of this paper; interested readers are referred
to for example [9], [26], [27].

Figure 3 illustrates an example behavior of the SADF model
of the full WLAN application mapped onto a reconfigurable
platform, as discussed in detail below. The behavior consisting
of three packets with one payload symbol each. In-between

Fig. 2. Dataflow graph of the payload scenario with static-order schedule

packets, reconfigurations are performed, so that packets 1 and
3 are executed in configuration c1 and packet 2 in configuration
c2. In the semantics of the SADF model, each scenario
behavior determines time stamps of the tokens in the model
using the dataflow graph of the scenario. The top part of the
graph shows in horizontal rows, the tokens in the model. src to
dem pars represent the availability of the data dependencies
and the last three, evp, swc and arm represent the tokens that
were added to model the resource mapping. Their time stamps
indicate when the resource becomes available to commence
with the next scenario. The tokens that together represent the
completion of a particular scenario are linked (and shown in
the color of that scenario using the scenario color coding of
Figure 5 that gives the scenario FSM of the WLAN receiver
including reconfigurations). The bottom part of the figure
shows the behavior of the SADF model in the form of a
Gantt chart. The first row shows the OFDM symbols being
received from the radio, each 4µs long and immediately after
each other. After the symbol has been received the processing
starts and the next three rows show the computation activity of
the three computational resources, the EVP, the SWC and the
ARM respectively. The purple activities in the EVP represent
the time needed for adjusting the operating frequency of the
EVP for reconfiguration. From the chart we can observe that
during reconfiguration, the processing of packets lags behind.
If reconfigurations are not too frequent, the application can
catch up and still make the throughput constraint. Note in
particular that the subsequent scenarios may overlap in time,
and that despite that, they can be nicely individually modeled
in the SADF model.

V. EXECUTION PLATFORMS

Applications in cyber-physical systems often have timing
requirements. An implementation satisfying the requirements
can be derived using a design flow that uses a model-based
design approach. Such a design flow takes as input a dataflow
model of the application and it determines a resource alloca-
tion which ensures that the timing requirements of the applica-
tion are met. A flow can only provide these timing guarantees
when the target hardware platform provides certain features.
In order to provide a predictable timing behavior, the platform
should provide timing guarantees on the response times of
all hardware components, schedulers and arbiters. It should
also guarantee some bound on the time needed to execute a



Fig. 3. Execution trace of then WLAN receiver with reconfigurations
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Fig. 4. Tile-based multiprocessor platform

code segment (an actor of the dataflow graph) on a processor
even when this processor is shared with actors from different
applications. Several such predictable platforms have been
proposed in recent years (e.g., MAMPS [28], CompSOC [12],
PRET [13]). The precision-timed (PRET) platform focuses on
the design of a processing element and memory controller
that provide a predictable timing behavior. The MAMPS
and CompSOC platform integrate many processing elements
and memories into a predictable multiprocessor platform that
can be used to implement streaming applications. These last
two platforms follow the tile-based multiprocessor platform
template described in [29]. In this template multiple tiles are
connected through a network interface (NI) to an interconnec-
tion network that provides point-to-point connections between
tiles. These connections can, for example, be implemented
through a network-on-chip or using direct hardwired FIFO
connections. The MAMPS and CompSOC platform support
several different types of tile. Figure 4 shows a platform in-
stance that contains several of the tile types supported by these
platforms. Tile 1 and 2 show simple tile architectures with a
processing element (PE) connected to a network interface (NI),
local data and instruction memories (DMEM and IMEM), and
some optional peripherals (e.g., I/O or timers). Tile 3 shows
a similar tile which has been extended with a communication
assist (CA) to handle the sending and receiving of data inside

the tile. The CA decouples the communication in a tile from
the computation taking place on its processing element. This
reduces the worst-case response time of the actors on the
PE. Tile 4 shows a tile in which a hardware IP block (an
accelerator) is directly connected to the interconnect using
only a network interface. Tile 5 contains a shared (possibly
external) memory (MEM) that can be accessed through a
memory controller (MC), which should ensure that memory
accesses are handled predictably. It should provide bounds
on the time to perform individual load/store operations. Such
memory controllers are described for instance in [30], [31].

Multiple applications may be running simultaneously on a
cyber-physical system. A system could for example be running
two software defined radios concurrently. All applications that
share resources in the platform can be given real-time guaran-
tees if the platform provides a predictable timing behavior.
The maximal interference from one application on another
could is then analyzed and taken into account. However,
when an application requires a repeatable timing behavior,
independent of other applications, the platform should provide
complete temporal isolation between applications. The Comp-
SOC platform addresses this by providing a composable (and
predictable) platform [12]. The platform preempts tasks after
a fixed period of time. In addition, it delays the completion of
a task on a resource until the end of a time slice to prevent
tasks that finish early from affecting when the following task
is scheduled. Finally, it uses a composable scheduler, such
as time-division multiplexing (TDM), where the presence or
absence of scheduling requests from one application cannot
affect when other applications are scheduled. The components
needed to make the platform composable should by them-
selves be predictable and composable. A composable platform
requires that shared resources support preemption. Adding
support for preemption on stream processors such as VLIWs,
SIMDs, or other processors with a distributed internal state
may be very costly in terms of hardware. Some platforms re-
quire such processors for computational and energy efficiency;
these resources can then not be shared between applications.

The model-based design flow presented in [32] can be used
to implement an application modeled with an SADF graph,
onto the MAMPS and CompSOC platforms. The design flow
analyzes the resource requirements of an application (e.g.,
buffer sizes needed to meet the timing constraints) and it
binds and schedules the actors and edges of the graph onto



Fig. 5. Scenario FSM of WLAN configurations

the resources in the platform. Whenever the design flow takes
a design decision, it is modeled into the dataflow graph, as
described in the previous section. By analyzing the timing
behavior of the resulting resource-aware graph, using dataflow
timing analysis techniques, the design flow is able to validate
whether the timing constraints of the application are met under
the (partial) resource allocation. The design flow generates a
set of resource allocations, called configurations, that provide
a trade-off in their resource requirements.

At design time, different mapping options can be explored
per scenario behavior. Different options can exploit trade-
offs between the resources that are being used and/or the
quality-of-service of the application. These different options
can be selected at design time, but can also be used at run-
time to allow for more flexibility in run-time use cases and
for dynamic optimization of resource usage, quality or power
consumption. The options are evaluated in terms of different
criteria and Pareto optimal configurations are kept.

Switching between different configurations at run-time may
require additional operations that may incur a certain overhead.
This overhead needs to be taken into account at design time
in order to guarantee that performance requirements can still
be met under reconfiguration. Figure 5 shows how this can
be modeled with SADF for the WLAN case. First of all
we see that the application scenarios have been refined with
the system scenarios of being able to run the application in
two different configurations, called c1 and c2. The config-
urations represent different clock speeds at which the EVP
may be run. In c1, the it runs at 300MHz, in c2 at 175MHz.
Reconfiguration of the EVP clock frequency takes a fixed
amount of time. This gives in the model essentially two copies
of the scenario state machine, one for each configuration.
Switches between configurations are possible, but can only be
initiated in-between packets. Moreover, these switches incur
overhead which needs to be modeled explicitly; hence there
are two separate scenarios that model the switch from one
configuration to the next.

VI. RUN-TIME MANAGEMENT

Using the kinds of platforms and conservative application
modeling techniques of the previous sections, we can explore

Fig. 6. Run-time manager

different application mapping opportunities and find Pareto
optimal mappings. For static systems this would allow one
to select a single optimal configuration to be implemented.
Many modern systems however show dynamicity at run-time,
use cases of simultaneously running applications may change,
modes of applications may change, the available resources
may change. Such dynamic systems need to be able to adapt at
run-time to changes and select, instantiate and enforce optimal
configurations.

We discuss an approach for a run-time management sys-
tem that preserves predictable behavior and combines run-
time analysis and decision making with design-time mapping
and profiling. Figure 6 illustrates the run-time management
infrastructure. The use of the platform services is controlled
by a resource manager that allocates resources to running
applications. The resource arbiters, implemented on the plat-
form resources, ensure that the actual resource sharing is
predictable and that allocated budgets cannot be violated. The
resource manager sets resource allocations according to at
design-time pre-determined configurations per application. It
also manages reconfigurations when an application changes its
current configuration.

On top of the resource manager sits a component called
Quality Manager in Figure 6. The quality manager is where
any ‘intelligence’ in the selection of configurations takes
place. It responds to changes such as the user starting a
new application and takes decisions on the configurations
that applications will be running, based on information about
available resources, resource requirements of the application
configurations, quality scalability and trade-offs applications
may have. An application may allow for trade-offs between
the use of different resources, such as different processors, or
trade-offs between processing and memory usage or through
DVFS between energy consumption and resource utilization.
Applications may also be able to trade off quality for resource
usage, for instance, a video decoder may trade-off occasional
deadline misses for a lower energy consumption.

The configurations determined at design-time are optimal
trade-offs between the various criteria of resource usage, en-
ergy usage and quality. We use Pareto optimality as a criterion
for selection interesting configurations. The configurations
are determined on a per-application basis and need to be
combined at run-time to investigate system-wide trade-offs.
In order to support compositional reasoning about trade-offs



Fig. 7. Pareto-optimal configurations

we developed a calculus of trade-offs. After introducing this
calculus, we illustrate how it can be used by the quality
manager to determine optimal system configurations by using
a fast Knapsack algorithm.

In Section V we saw how the platform may support two
different configurations for the receiver and how the reconfig-
uration process itself can be conservatively modeled, leading
to the extended SADF model of Figure 5. The configurations
represent different trade-offs between clock speeds/energy and
utilization of the EVP processor. A higher clock speed is nec-
essary if the WLAN receiver must be activated simultaneously
with other receivers. The graph is guaranteed to conservatively
capture both execution and reconfiguration of the receiver. As
illustrated with Figure 3, temporal analysis of the graph shows
that throughput requirements are met within both configura-
tions, but not when the receiver switches configuration after
every frame. This knowledge can be encoded in the quality
manager to prevent switching too frequently.

At design time multiple optimal configurations are deter-
mined for applications and their individual scenarios. Pareto
optimality is used to determine which configuration may
potentially be useful to exploit at run-time. A configuration
is Pareto optimal among a given set of possible configurations
if there is no other configuration that bests it in all of the
optimization criteria considered. Figure 7 shows a fictitious
illustrative example. The circles represent six different config-
urations which form trade-offs between processor utilization,
energy usage and memory. For each of these optimization cri-
teria smaller is better and all six are Pareto optimal. It assumes
that the process can be run at two different clock speeds, where
the black circles are configurations at a lower clock speed
ck1, resulting in a higher utilization of the processor, and the
white circles are configurations at a higher clock speed ck2.
Energy/utilization can be traded for memory.

We assume that the quality manager has for each application
scenario a table with the possible configurations and their
properties. At run-time, the manager needs to find a compatible
selection of the configurations from each of the applications.
Resource utilization cannot exceed the total resource availabil-
ity for each of the resources being managed. Other constraints
may apply, for instance that if voltage and frequency of a
processor may be scaled, then all applications that have tasks
mapped to the processor need to agree on the clock frequency
being used. From the individual application trade-offs, the
quality manager needs to compose the remaining overall

Fig. 8. Pareto-Algebra-based computation of configurations

system trade-offs and make a decision about which config-
urations to instantiate. To compute system trade-offs from
configurations we use a generic framework for compositional
calculation of system-level Pareto optimal configurations from
the Pareto points of components supporting various kinds of
composition. The framework is called Pareto Algebra [22].

Figure 8 illustrates how trade-offs can be compositionally
computed by the quality manager. On the left side, it shows
two applications with their configurations as in Figure 7, but
here only two dimensions are shown; the third dimension,
the number of processors used in the configuration is shown
as a number next to the configuration, together with the
clock frequency used. For the sake of the example, both
applications are chosen to have identical configurations. At
run-time, additional constraints may be enforced on individual
applications, for instance on the available memory to be used
and on the available processors. The dashed line illustrates a
memory constraint which makes all configurations to the right
of the line infeasible in the particular run-time situation. If
this were the only application and the goal is to minimize
energy, then the open circle configuration would be selected.
Now, for both applications, the two sets of configurations
need to be combined. The steps can be easily expressed
in Pareto Algebra operations, join, constrain and minimize.
We take as a starting point the join of the configurations
of both applications on the clock frequency. This operation
is similar to a join in relational databases and it considers
all combinations of configurations from both applications that
agree on the clock frequency used. Since the applications will
be sharing the processors, we assume they cannot operate
at different frequencies. Subsequently, we annotate the new
combined configurations to determine how many processors
they use, how much memory and how much energy. On
the aggregated data we apply the constraints of memory and
available processors to prune any combination that exceeds
the available memory or processors. This discards the light
blue combined configurations, which use too many processors.
We now have a collection of feasible configurations, but not
all of them need to be Pareto optimal. Therefore, we apply
minimization to determine which combined configurations are
optimal. Ultimately, from the remaining Pareto points, one
configuration is chosen. The most energy-efficient one, for



instance, is the open circle configuration.
The approach is compositional and incremental. In a use

case where at some time we have running applications and a
new application needs to be added, we have al the optimal
configurations of the aggregated running applications and we
only need to perform the additional step of adding the new
application. Nevertheless, combining configurations of many
applications can potentially lead to an exponential growth of
the number of available options. In fact, the problem is very
much akin to the well-known Multi-dimensional Multiple-
choice Knapsack Problem (MMKP) [33], which is known to be
NP Complete. Work has been done to realize fast heuristics for
run-time configuration selection [17], [16], [18]. [18] describes
a heuristic based on the Pareto Algebraic model. The run-
time composition of system-level Pareto-optimal configura-
tions from components trade-offs using Pareto-Algebra is a
very generic approach. It fits in a design pattern that applies
to very different domains [34].

VII. CONCLUSIONS

We have discussed our approach to the model-driven, pre-
dictable development of cyber-physical systems. It combines
an automated design flow based on a performance-conservative
timed dataflow model with run-time resource and quality
management to handle different use-case scenarios. In order
to handle dynamic behavior of modern applications, the timed
dataflow model exploits scenarios in the Scenario-Aware Data
Flow model. We use predictable hardware/software platforms
to be able to make realizations with guaranteed performance.
This places constraints on platform components and arbitration
schemes that can be used and creates new challenges to
improve efficiency while maintaining predictability. The ap-
proach is based on flexible configurations that allow available
trade-offs to be effectively and efficiently exploited by run-
time quality and resource management when dealing with
dynamic use-cases.
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