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ABSTRACT
Scenario-aware dataflow is a formalism to model modern
dynamic embedded applications whose behaviour is heavily
dependent on input data or the operational environment.
Key behavioural aspects are the execution times and energy
consumption of a system’s components. In this paper, we
introduce flexible scenario-aware dataflow : a proper gener-
alisation of previous definitions that allows any execution
time to be specified as discretely or continuously random
or nondeterministic. Additionally, it supports the model-
ling of abstract costs like the energy usage of components.
We give a formal compositional semantics in terms of net-
works of stochastic timed automata. We have implemen-
ted support for analysing performance properties of flexible
scenario-aware dataflow graphs via simulation and model
checking. A number of reduction techniques are applied to
make the underlying state spaces tractable for model check-
ing. We evaluate the scalability and performance of our new
model and implementation on standard benchmarks.

1. INTRODUCTION
Scenario-aware dataflow (SADF [15]) is an extension of

synchronous dataflow (SDF [10]) supporting the description
of variations in data processing (e.g. changes in speed, or dis-
abling of components) according to predefined scenarios. It
also allows data- and scenario-dependent switching between
scenarios. As such, SADF extends the applicability of data-
flow formalisms, which have traditionally seen heavy use in
digital signal processing applications, to the setting of mod-
ern dynamic embedded applications where behaviour may
change drastically depending on changes in input data or
the operational environment. For example, the processing
tasks and times in MPEG video decoding differ significantly
between I-, P- and B-frames. Mapping frame types to sce-
narios would allow this to be encoded naturally in SADF.

Energy usages and execution times of the actors appear-
ing in an SADF graph are key features of the embedded ap-
plications considered, with direct impacts on characteristics
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such as throughput, buffer occupancy, or battery lifetime.
So far, SADF has been considered with execution times (or:
processing delays) either chosen from discrete, finite-support
probability distributions [16], or sampled from the exponen-
tial distribution with certain (scenario-dependent) rates [9,
13]. The latter has been called exponentially-timed SADF,
or eSADF for short.

In this paper, we generalise both notions to flexible SADF,
or xSADF for short. This allows not only execution times
following arbitrary probability distributions (including dis-
crete ones as used in [16] and continuous ones such as the
continuous uniform, normal, or exponential distribution),
but also the nondeterministic choice of delays over given
(sets of) time intervals with hard bounds, and any combin-
ation thereof. We see nondeterminism as a desirable model-
ling feature to enable abstraction and deliberate underspe-
cification. As such, we enable both probabilistic as well as
nondeterministic switching between scenarios. Additionally,
we include in xSADF a way to specify abstract costs such as
the energy consumed by an actor during idle times, during
different processing modes, or for communication as a core
feature. This is inspired by [17] and enables new and im-
portant kinds of properties to be studied, including expected
energy usages or battery lifetime estimations.

To equip xSADF with a formal and hence unambiguous
semantics, we need a formalism that supports the necessary
combination of quantitative aspects: soft and hard real-time
behaviour, discrete and continuous probabilistic decisions,
nondeterministic choices, and costs. We find support for all
of these aspects in the model of stochastic timed automata
(STA [7]). Despite their expressiveness, STA can be seen
as a straightforward generalisation of existing, well-known
formalisms such as timed automata or Markov decision pro-
cesses. Our semantics takes advantage of the fact that STA
support compositional modelling through a standard par-
allel composition operator. The analysis of STA by means
of model checking is challenging, but first techniques and
implementations are available [7].

We have added support for xSADF models to the Modest
Toolset [8]: we implemented the STA semantics of xSADF
as a model transformation from (an extension of) the stand-
ard Sdf 3 [14] format to the toolset’s internal metamodel
for networks of STA. As a result, it is possible today to
create xSADF models in an established format and directly
use the Modest Toolset’s model-checking and simulation
tools for a fully automated analysis.

In this paper, after reviewing the formalisms of STA, SADF
and eSADF (Section 2), we formally define flexible SADF
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and its semantics (Section 3). We report on our implement-
ation of analysis support for xSADF (Section 4), including
an overview of the optimisations and reductions that we ap-
ply in order to make xSADF models tractable for model
checking. Using variations of benchmark case studies from
the literature, we evaluate the performance and scalability
of this implementation (Section 5).

2. PRELIMINARIES
N is {0, 1, . . . }, the set of natural numbers. R+ is the

set of positive, R+
0 the set of non-negative real numbers.

Given some set S, we write 2S to denote its powerset. A
discrete probability distribution over a set S is a function

μ ∈ S → [0, 1] such that support(μ)
def
= {s ∈ S | μ(s) > 0} is

countable and
∑

s∈support(μ) μ(s) = 1. Dist(S) is the set of

all discrete probability distributions over S. We write D(s)
for the Dirac distribution for s, defined by D(s)(s) = 1. The
basic probabilistic formalisms that we consider are Markov
chains and Markov decision processes [12]:

Definition 1. A Markov decision process (MDP) is a triple

〈S, T, sinit 〉 where S is a finite set of states, T ∈ S → 2Dist(S)

is the transition function with |T (s)| > 0 for all s ∈ S, and
sinit ∈ S is the initial state. If |T (s)| = 1 for all s ∈ S, then
the MDP is a discrete-time Markov chain (DTMC).

The transition function maps each state to a set of distribu-
tions: it thereby combines the nondeterministic selection of
a distribution with the probabilistic selection of a successor
state according to the chosen distribution. We write MDPS

for the set of all MDP with state set S. A DTMC is a
“deterministic” MDP and thus a fully stochastic process.

Given a set Var of variables where each variable x has
an associated domain (or type) Dom(x) and initial value in
Dom(x), we let Val denote the set of variable valuations, i.e.
of functions Var →

⋃
x∈Var Dom(x) where v ∈ Val ⇒ ∀ x ∈

Var : v(x) ∈ Dom(x). We consider three classes of abstract
expressions over variables: arithmetic expressions Axp (e.g.
x+2), Boolean expressions Bxp (e.g. x+2 ≤ 3), and sampling
expressions Sxp ) Axp that may include continuous and dis-
crete probability distributions (e.g. 3 ∙Normal(x, 1)) as well
as nondeterministic choices (e.g. x+Nondet(2, 4)). The set
of updates, i.e. of sets of assignments to be executed atomic-
ally, is Upd = 2Var×Sxp . We write v := e for the assignment
〈v, e〉. For example, the update

{x := Uniform(1, 3), y := x, z := Nondet([1, y])}

assigns to variable x a new value sampled uniformly from
the interval [1, 3], to variable y the previous value of x, and
to variable z a nondeterministically selected value that is at
least 1 and at most the previous value of y. For x ∈ Var
and μ ∈ Dist(Dom(x)), we write x := Sample(μ) for a
probabilistic choice of new value for x according to μ.

2.1 Scenario-Aware Dataflow
We informally recall the formalism of SADF and its se-

mantics using an example graph (based on the example
of [16], but using notation similar to [9]) here. We form-
ally define it as a special case of xSADF in Section 3.

The left-hand side of Figure 1 shows our example SADF
graph. It consists of the processes A, B, D and D′. Of these,
A and B are kernels while D and D′ are detectors. Processes
are connected by channels : data channels, drawn with solid
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Figure 1: An SADF graph and subscenario DTMC

lines, carry untyped data tokens from one process to another,
while control channels, drawn with dashed lines, carry typed
scenario tokens from a detector to another process. We refer
to the channel that carries tokens from X to Y as chX

Y . For
data channels, we specify the initial number of tokens on the
channel; in our example, we initially have 2 tokens on chB

A

and 1 token on chB
D. Control channels are initially empty.

The types of tokens that a control channel ch can carry

are given by Σ(ch); here, let us use Σ(chD′

D ) = {u} and
Σ(chD

A) = Σ(chD
B) = {v, w}.

A kernel processes information: it repeatedly (1) takes
one scenario token from each of its incoming control chan-
nels, (2) takes a specified number of data tokens from each
of its incoming data channels, (3) processes the data for
some time, and then (4) adds a number of data tokens to
its outgoing data channels. The combination of the types of
the scenario tokens consumed in step 1 is the scenario that
the kernel operates in. The scenario in turn determines the
number of data tokens consumed and produced in steps 2
and 4 as well as the execution time incurred in step 3.

A detector is a more powerful kind of kernel in that it
also supports output of scenario tokens. Its behaviour is
governed by the scenario (which is externally determined
just as in a kernel) in combination with an internally selected
subscenario: after step 1, one transition is performed in a
scenario-specific state machine, with its new state being the
current subscenario. SADF uses DTMC for this purpose.
The subscenario selection DTMC that D uses when it is in
scenario u is shown on the right-hand side of Figure 1. The
set of subscenarios of D is thus {s1, s2}.

To complete the definition of SADF and our example, we
need to specify the numbers of data tokens consumed and
produced, the types of scenario tokens produced, and the
execution times. For each of these pieces of information and
each kernel and detector, we define a function that depends
on the current (sub)scenario. For our example, let the pro-
duction and consumption rates of data tokens be given by

RA = RB = {〈v, chA
B〉 7→ 1, 〈v, chB

A〉 7→ 2,

〈w, chA
B〉 7→ 0, 〈w, chB

A〉 7→ 0},

RD = {〈s1, ch
B
D〉 7→ 1, 〈s2, ch

B
D〉 7→ 1}

while the type of scenario tokens produced by D is given by

PD = {〈s1, ch
D
A〉 7→ v, 〈s1, ch

D
B〉 7→ v,

〈s2, ch
D
A〉 7→ w, 〈s2, ch

D
B〉 7→ w}.

Observe how the internal selection of subscenarios in detect-
ors is what allows switching between different scenarios in
the first place. To specify the execution times of each kernel
or detector, we associate to their possible (sub)scenarios a
probability distribution that assigns a probability to a finite



set of possible delays:

T s
A = T s

B = {v 7→ {1 7→ 1
3
, 2 7→ 1

3
, 3 7→ 1

3
}, w 7→ D(1)},

T s
D = {s1 7→ {0 7→ 1

2
, 1 7→ 1

4
, 2 7→ 1

4
}, s2 7→ D(1)}

In this model, every node thus waits for exactly one time
unit (e.g. 1 second) in the “switched-off” scenario w resp.
s2. The execution time in the “active” scenario v follows the
discrete uniform distribution over {1, 2, 3} time units for A
and B. D on the other hand is twice as likely to process
its input immediately versus taking either 1 or 2 time units
with equal probability.

We have not described the detector D′ so far: its only
purpose is to illustrate that detectors can receive scenario
tokens that determine the subscenario DTMC, and how this
is achieved in the STA semantics of xSADF explained later
on.

2.1.1 Measures of interest
Given an SADF model of a system (e.g. of a streaming

data processing application supporting video or audio cod-
ing), we would like to compute a number of values describ-
ing different aspects of the system’s performance. Examples
that are supported by the Sdf 3 [14] tool include, for spe-
cified channels or processes,
– buffer occupancy: the number of tokens in a channel,
– response delay: the time until the first processing of data

completes in a kernel or detector,
– inter-firing latency: the time between two subsequent com-

pletions of data processing, and
– throughput: the number of completions of data processing

per time unit.
Depending on the value, we may ask for maximum/minimum
values (e.g. the maximum number of tokens ever in a par-
ticular channel), probabilities (e.g. the probability of the
response delay being lower than t time units), or expected
values (e.g. the expected throughput). Using Sdf 3 and de-
pending on the type of value, simulation or model checking
can be used to compute these values. In contrast to sim-
ulation, model checking gives exact results and works well
for rare events, but its applicability to large SADF graphs
is limited by the state space explosion problem.

2.1.2 Exponentially-timed SADF
If we consider execution times to be sampled from the ex-

ponential distribution instead of from finite-support prob-
ability distributions, we obtain an eSADF graph. The ex-
ponential distribution is parameterised by a rate λ ∈ R+

resulting in a distribution with mean 1
λ
. In eSADF, the rate

parameter depends on the current (sub)scenario. If we thus
use mappings from (sub)scenarios to rates as execution time
functions in our example graph, e.g.

T e
A = T e

B = {v 7→ 1
2
, w 7→ 1}, T e

D = {s1 7→ 4
3
, s2 7→ 1}

instead of T s
A, T s

B and T s
D, then our example becomes an

eSADF graph. Observe that with this particular choice of
rates we have the same mean execution times as before, but
the actual execution time distributions are very different.

The exponential distribution is memoryless. This has en-
abled the development of efficient analysis methods for con-
tinuous-time stochastic models that use but exponentially-
distributed delays [2]. The semantics of eSADF is defined
in terms of such a model, and as a result eSADF graphs can
be model-checked efficiently [9].

l0
true
ṙ = 0

l1
c ≤ x
ṙ = 1

l2
c ≤ 16
ṙ = 0

l3
true
ṙ = 0

l4
true
ṙ = 0

true, a
1
2 , {c := 0, x := Exp(2)}

1
2 , {c := 0}

c ≥ 8, τ , ∅

c ≥ x, b, ∅

c ≥ 16, τ , {r := r + 5}

Figure 2: A stochastic timed automaton [7]

2.2 Stochastic Timed Automata
Stochastic timed automata [7] support nondeterministic

decisions, real-time behaviour, continuous and discrete prob-
abilistic selections, and any combination thereof. Being a
generalisation of timed automata, they deal with time via
clock variables (or clocks). Clocks take values in R+

0 and
advance synchronously over time with rate 1. We restrict
expressions in Bxp to be clock constraints : they must be of
the form e | b1 ∧ b2 | b1 ∨ b2 | c ≥ n | c ≤ n where the c are
clocks, b1, b2 ∈ Bxp are clock constraints, and n ∈ Axp as
well as e ∈ Bxp are clock-free expressions without restric-
tions. We do not allow clocks in expressions in Axp or Sxp.

Definition 2. A stochastic timed automaton (STA) is a 7-
tuple 〈Loc,Var , A, E, linit , Inv ,Rew〉 where Loc is a finite set
of locations, Var ⊇ CV ]RV is a finite set of variables with
subsets CV of clocks and RV of rewards, A ⊇ {τ} is the

finite alphabet, E ∈ Loc → 2Bxp×A×Dist(Upd×Loc) is the edge
function, linit ∈ Loc is the initial location, Inv ∈ Loc → Bxp
is the invariant function, and Rew ∈ Loc×RV → Axp is the
rate reward function. The edge function maps locations to
finite sets of edges, which in turn consist of a guard, a label
and a finite-support probability distribution over updates
and target locations, with the restriction that assignments
involving a clock (a reward) must be of the form c := n
(r := r + n) with n ∈ Axp reward-free. If 〈g, a, μ〉 ∈ E(l),
we write l g,a−−→ μ. A location’s invariant is a clock constraint
that allows time to pass as long as it evaluates to true.

MDP are untimed STA without continuous distributions.
Given an MDP M = 〈S, T, sinit 〉, we define STA(M, act , v)
as the STA 〈S,∅, {τ, act}, Ev

T , {s 7→ true | s ∈ S},∅〉 where
μ ∈ T (s) ⇔ 〈true, act , μv

E〉 ∈ Ev
T (s) and μv

E is defined by
μ(s) = μv

E(〈{v := s}, s〉). An example is shown in Fig-
ure 5. An STA in which no update contains a continu-
ous probability distribution is a probabilistic timed auto-
maton (PTA [11]). STA can also be seen as generalised
semi-Markov processes (GSMP) extended with discrete and
continuous nondeterminism.

We use the example STA shown in Figure 2 to convey an
intuition of the semantics of STA and refer the interested
reader to [7] for a formal definition. This STA has locations
l0 through l4 and three variables c, x and r, where c is a clock
and r a reward. The invariant is given on the second line, the
rate reward on the last line of each location. The invariants
specify when time is allowed to advance; so in location l2,
time can progress until clock c reaches the value 16, at which
point l2 has to be left via an edge before time can pass again.
If that were impossible, a timelock would occur. When time
is spent in some location, the values of all rewards increase
at the given rate. Guards specify when an edge is enabled,
while the action labels are used in parallel composition (see



below). The only edge out of l0 has guard true and is labelled
with action a. It leads to l1 or l2 with probability 1

2
each.

In both cases, clock c is reset to zero, and when we go to
l1, the real-valued variable x is updated with a randomly
selected value according to the exponential distribution with
rate 2. When an edge has a single target location, we omit
the branching in the graphical representation of the STA;
likewise, we may omit true guards.

In our example STA, we have several types of delays and
decisions: The choice of target location when leaving l0
is probabilistic. When we arrive in l2, the edge back to
l0 can be taken after a delay nondeterministically chosen
between 8 and 16 time units. If we choose to wait for the full
16 time units, there is an additional (discrete) nondetermin-
istic choice of going to l4 instead. When we go from l0 to
l1, the update of x combined with the way x is subsequently
used in the invariant of l1 and the guard of the edge to l2
implies that the amount of time spent in l1 follows the expo-
nential distribution with rate 2, i.e. it is a stochastic delay.

Our example contains both rate rewards (of rate 1 in l1)
and edge rewards (of 5 from l2 to l4). Rewards are used to
observe the accumulated effect of staying in a certain state
(accumulating reward over time) or of performing a certain
action (incurring an immediate reward). An orthogonal fea-
ture that can be added to any automata-based model, they
are also referred to as costs or prices. They see prominent
use in verification with priced timed automata [1, 3] as well
as in AI and planning in discounted form with MDP [12].

2.2.1 Parallel composition
Given two STA, we can define their parallel composition

using a standard interleaving semantics. We use a CSP-like
parallel composition operator ‖ that forces edges with the
same action label to synchronise. In particular, in the paral-
lel composition M1 ‖ M2, if STA M1 wants to take an edge
labelled a and M2 also has an edge with the same label at
some point, then M1 is forced to either wait until M2 is also
ready to take an edge labelled a, resulting in synchronisa-
tion, or to take an edge with a different label if possible. We
also allow variables to be shared between STA that run in
parallel. We call a given set of STA {M1, . . . , Mn} a net-
work of STA and identify it with the parallel composition
M1 ‖ . . . ‖ Mn. Again, for a formal definition of STA paral-
lel composition, we refer the interested reader to [7].

2.2.2 Model checking for STA
STA are very expressive, and a model checking technique

for STA has been developed only recently [7]. It works by
first replacing sampling from continuous probability distri-
butions by a discrete probabilistic selection of an interval
from the distribution’s support according to the intervals’
probability masses. Then, a concrete value from the chosen
interval is selected nondeterministically. We could e.g. re-
place the assignment x := Exp(λ) by

[xl, xu] := Sample({[0, 1] 7→ 1 − e−λ, [1,∞) 7→ e−λ})

followed by x := Nondet([xl, xu]). The result is a PTA, for
which several model checking techniques are available [11].
The Modest Toolset [8] uses the digital clocks technique,
where clocks are replaced by bounded integer variables, res-
ulting in an MDP that is analysed using e.g. value iteration.

While the PTA model checking step is exact, the replace-
ment of the continuous distributions is an abstraction, which
by construction is safe. The overall STA model check-

ing approach thus delivers upper/lower bounds on max-
imum/minimum reachability probabilities (i.e. answers for
queries of the type “what is the max./min. probability to
eventually reach a certain set of states”) and on expected
accumulated rewards (i.e. answers for queries such as “what
is the max. expected amount of energy consumed within the
first t time units”). The maximisation/minimisation is due
to the need to range over all resolutions of nondeterminism.

3. FLEXIBLE SADF
We generalise SADF to support costs (like energy usage)

plus execution times selected nondeterministically or based
on arbitrary discrete or continuous probability distributions.
We call the result flexible SADF, or xSADF for short.

3.1 Syntax of xSADF
Building on the intuitive explanation of SADF from the

previous section, we now formally define xSADF graphs:

Definition 3. An xSADF graph is a 5-tuple 〈P , C, I, Sct , Σ〉
where P = K]D is a finite set of processes, partitioned into
kernels K and detectors D, C = DC]CC is a finite set of chan-
nels, partitioned into data channels DC and control channels
CC, I ∈ DC → N specifies the initial number of tokens in
data channels, Σ ∈ CC → 2ST maps control channels to a
subset of the finite set Sct of scenario tokens, and the asso-
ciation between processes and channels is well-defined.

We assume some total order on control channels, and that
all sets of control channels appearing are ordered. This al-
lows us to properly define scenarios as the combinations of
the scenarios tokens taken from a set of control channels:

Definition 4. The set of scenarios for an (ordered) set

C = {cc1, . . . , cck} ⊆ CC is ΣC
def
=
∏k

i=1 Σ(cci).

A kernel consists of incoming control channels, data chan-
nels, and its behaviour is determined by its scenarios:

Definition 5. A kernel K ∈ K is a 6-tuple

K = 〈CCK ,DCK , RK , U i
K , TK , U r

K〉

where CCK = CCin
K ⊆ CC are the incoming control channels,

DCK = DCin
K ∪ DCout

K ⊆ DC are the data channels, with
incoming channels in DCin

K and outgoing channels in DCout
K ,

RK ∈ ΣCCK × DCK → N is the token rate function that
maps each data channel to the number of tokens produced
or consumed at once in the given scenario, U i

K ∈ ΣCCK ×
DCK ∪ CCK → R+

0 is the immediate cost of producing or
consuming one token, TK ∈ ΣCCK → Sxp is the execution
time function, and U r

K ∈ ΣCCK ∪ {⊥} → R+
0 is the cost rate

function that determines the cost per time unit of processing
data in a scenario or of being in the idle state ⊥.

We see that the differences between SADF (or eSADF)
and xSADF are that (a) the execution time functions T now
map to expressions in Sxp, which may include continuous
stochastic or nondeterministic choices, and (b) that imme-
diate and rate costs are tracked via U i and U r.

A detector is a kernel that may also have outgoing con-
trol channels. Its behaviour is determined by subscenarios,
which are selected by scenario-dependent MDP:

Definition 6. A detector D ∈ D is a 9-tuple

D = 〈CCD,DCD, ΩD, FD, RD, U i
D, TD, U r

D, PD〉



where CCD = CCin
D ∪CCout

D ⊆ CC are the incoming and outgo-
ing control channels, DCD is as for kernels, ΩD is a finite set
of subscenarios, FD ∈ ΣCCin

D
→ MDPΩD is the subscenario

decision function that maps each scenario to an MDP, RD ∈
ΩD ×DCD ∪CCout

D → N is the token rate function that maps
each data channel or outgoing control channel to the number
of tokens produced or consumed at once in a subscenario,
U i

K ∈ (ΣCCin
D
×CCin

D )∪(ΩD×DCD∪CCout
D ) → R+

0 is the imme-

diate cost of producing or consuming one token, TD ∈ ΩD →
Sxp is the execution time function, U r

D ∈ ΩD ∪ {⊥} → R+
0

is the cost rate function, and PD ∈ ΩD ×CCout
D → Sct is the

scenario token production function with PD(〈s, cc〉) ∈ Σ(cc)
that determines, for every subscenario, the type of scenario
tokens to produce for each outgoing control channel.

The third difference to SADF (or eSADF) is consequently
that (c) the next subscenario is selected by an MDP instead
of a DTMC, allowing nondeterministic subscenario selection.

Channels are associated to processes as either incoming or
outgoing channels. We require that every data channel con-
nects exactly two processes and that every control channel
connects exactly one detector to one process:

Definition 7. In an xSADF graph, the association between
processes and channels is well-defined if for every ch ∈ C,
there is exactly one Pin ∈ P and one Pout ∈ P s.t. either
ch ∈ CCin

Pin
and ch ∈ CCout

Pout
or ch ∈ DCin

Pin
and ch ∈ DCout

Pout
.

With these definitions, it is now easy to see that SADF
and eSADF are special cases of xSADF: If the energy rate
functions always return zero and (i) the execution time func-
tions always return expressions corresponding to sampling
from finite-support distributions, then the graph is an SADF
graph. If alternatively (ii) the execution time functions al-
ways return expressions of the form Exp(λ) with λ depend-
ing on the (sub)scenario, then it is an eSADF graph.

3.2 Semantics of xSADF
We define a formal semantics of xSADF graphs in terms of

STA, which are a natural match for the continuous stochastic-
nondeterministic features that we added. Like the eSADF
semantics given in terms of Markov automata [9], our se-
mantics is compositional: every process is mapped to one
STA representing its higher-level behaviour, plus one addi-
tional STA for each scenario of each detector to implement
the corresponding subscenario selection MDP. The overall
semantics of the xSADF graph is the parallel composition
of the semantics of its components. Communication between
the process STA happens via shared variables that repres-
ent the channels, while detectors additionally synchronise on
shared actions with their subscenario MDP.

3.2.1 Channel semantics
Let C = DC]CC be the set of channels of an xSADF graph

as defined above. For each data channel dc ∈ DC, we include
a shared variable dc in the semantics with Dom(dc) = N and
initial value I(dc). For each control channel cc ∈ CC, we
use a shared variable cc whose type is a queue of scenario
tokens that is initially empty. In implementations, we as-
sume a bijection between scenario tokens and integers, and
use queues over N for the control channels. We define three
functions on queues q: hd(q) returns the first element of q,
tl(q) returns a new queue obtained by removing the first ele-
ment from q, and enq(q, t, n) returns a new queue obtained
by appending n ∈ N tokens t ∈ Sct to the end of q.
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|chD
A| ≥ 1 ∧ hd(chD

A) = v, τ ,

{chD
A := tl(chD

A), uA := uA+ 1
10}

chB
A ≥ 2, τ , {cA := 0,

bA := Nondet([1, 3])}

cA≥bA, τ , {chB
A :=chB

A−2,

chA
B :=chA

B+1, uA :=uA+ 3
10}

|chD
A| ≥ 1 ∧ hd(chD

A) = w, τ ,

{chD
A := tl(chD

A), uA := uA+ 1
10}

chB
A ≥ 2, τ ,

{cA := 0, bA := 1}

cA≥bA, τ , {chB
A :=chB

A−0,

chA
B :=chA

B+0, uA :=uA+ 0
10}

Figure 3: STA semantics of the kernel A

3.2.2 Process semantics
The STA for a kernel K has three different classes of loc-

ations: an initial location iK , and for every scenario σ, one
location wσ

K to wait for data tokens and one “delaying” loc-
ation dσ

K . In iK , the automaton waits for a scenario token
to be available on every incoming control channel. As soon
as this is the case, it moves (implementing step 1 of Sec-
tion 2.1) to wσ

K for the resulting scenario σ. It waits in wσ
K

until at least R(〈σ, dc〉) data tokens are available on each
data channel dc ∈ DCin

K , then moves to dσ
K (step 2). On this

edge, clock cK is reset to zero and real-valued variable bK

is set to an execution time selected via expression TK(σ).
The invariant of dσ

K is cK ≤ bK ; combined with the guard
cK ≥ bK of the edge back to iK from dσ

K , this implements
the execution time delay of step 3. The token production of
step 4 is also performed on that edge back to iK . Formally:

Definition 8. Given a kernel K ∈ K as defined above with
control channels CCin

K = {cc1, . . . , cck}, its STA semantics is

MK = 〈LocK ,VarK , {τ}, EK , iK , InvK ,RewK〉

where LocK = {iK}∪{wσ
K , dσ

K | σ ∈ ΣCCin
K
}, VarK = CCK ∪

DCK ∪{cK , bK , uK} with cK a clock, bK of type R and uK a
reward, EK defines the following edges, for each σ ∈ ΣCCin

K
:

iK
gcK

σ ,τ
−−−−→ D(〈updiK

σ , wσ
K〉)

wσ
K

gdK
σ ,τ

−−−−→ D({cK := 0, bK := TK(σ)}, dσ
K)

dσ
K

cK≥bK ,τ
−−−−−−→ D(updkK

σ , iK)

with gcK
〈σ1,...,σk〉

def
=
∧

cc∈CCin
K
|cc| ≥ 1 ∧

∧k
i=1 hd(cci) = σi,

gdK
σ

def
=
∧

dc∈DCin
K

dc ≥ R(〈σ, dc〉),

updiK
σ

def
= {cc := tl(cc) | cc ∈ CCin

K}
∪ {uK := uK +

∑
cc∈CCin

K
U i

K(〈σ, cc〉)}, and

updkK
σ

def
= {dc := dc − RK(〈σ, dc〉) | dc ∈ DCin

K}
∪ {dc := dc + RK(〈σ, dc〉) | dc ∈ DCout

K }
∪ {uK := uK +

∑
dc∈DCK

RK(〈σ,dc〉) ∙ U i
K(〈σ,dc〉)},

the invariant function is defined by

InvK(l) =






∨
cc∈CCin

K
|cc| < 1 if l = iK

¬ gdK
σ if l = wσ

K

cK ≤ bK if l = dσ
K ,

and the rate rewards by RewK(〈l, uK〉) = U r(σ) if l = dσ
K

and RewK(〈l, uK〉) = U r(⊥) otherwise.
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Figure 4: STA for detector D (high-level part)

The reward uK keeps track of the kernel’s immediate and
rate costs. We show in Figure 3 the STA for kernel A of
our example from Section 2.1. For the execution times, we
use TA = {v 7→ Nondet([1, 3]), w 7→ 1}, for the cost rates
U r

A = {v 7→ 4, w 7→ 1
8
,⊥ 7→ 1

8
}, and U i assigns cost 1

10
to

every token production and consumption in every scenario.
The STA semantics for the high-level behaviour of a de-

tector is very similar. The main difference is that most be-
haviour is determined by the current subscenario sD ∈ ΩD.
The shared variable sD is updated by the subscenario MDP
on synchronisation on action reqσ in scenario σ. Formally:

Definition 9. Given a detector D ∈ D as usual with con-
trol channels CCin

K = {cc1, . . . , ccn}, its STA semantics is

MD = 〈LocD,VarD, AD, ED, iD, InvD,RewD〉

where LocD = {iD} ∪ {wσ
D | σ ∈ ΣCCin

K
} ∪ {dω | ω ∈ ΩD},

VarD = CCD ∪ DCD ∪ {cD, bD, uD, sD} with cD a clock, bD

of type R, uD a reward and sD of type ΩD, AD = {τ} ∪
{reqD

σ | σ ∈ ΣCCin
K
}, ED defines the following edges, for

each σ ∈ ΣCCin
D

and ω ∈ ΩD:

iD
gcD

σ ,reqD
σ−−−−−−→ D(〈updiD

σ , wσ
D〉)

wσ
D

sD=ω∧gdD
ω ,τ

−−−−−−−−−→ D({cD :=0, bD :=TD(ω)}, dω
D)

dω
D

cD≥bD ,τ
−−−−−−→ D(upddD

ω , iD)

with upddD
ω

def
= updkK

ω

∪ {uD := uD +
∑

cc∈CCout
D

RD(〈ω, cc〉) ∙ U i
D(〈ω, cc〉)}

∪ {cc := enq(cc, PD(〈ω, cc〉), RD(〈ω, cc〉)) | cc ∈ CCout
D },

the invariant function is defined by

InvD(l) =






∨
cc∈CCin

K
|cc| < 1 if l = iK

∧
ω∈ΩD

¬ (sD = ω ∧ gdD
ω ) if l = wσ

D

cD ≤ bD if l = dω
D,

and the rewards by RewD(〈l, uD〉) =

{
U r(ω) if l = dω

D

U r(⊥) otherwise.
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Figure 5: Subscenario MDP and STA semantics

The STA for the high-level behaviour of our example de-
tector D is shown in Figure 4. For execution times we
use TD = {s1 7→ Exp( 1

2
), s2 7→ 1}, and for cost rates

U r
D = {s1 7→ 1

4
, s2 7→ 1

4
,⊥ 7→ 1

4
}. In this example, we

omit immediate costs for clarity.

3.2.3 Subscenario MDP semantics
For each scenario σ, a subscenario selection MDP FD(σ)

is associated to a detector D. We include each of these as
a separate STA in the semantics. The STA semantics of
FD(σ) is simply Mσ

FD
= STA(FD(σ), reqD

σ , sD). Let us use
the MDP shown on the left-hand side of Figure 5 for D in its
only scenario u (in place of the DTMC shown in Figure 1).
Then its STA semantics is shown on the right-hand side of
that same figure. The coordination between the high-level
behaviour STA MK and the subscenario MDP Mσ

FD
works

as follows: we have seen in Definition 9 that, when in loca-
tion iD and the first values of the incoming control channels
correspond to scenario σ, MK moves to wσ

K with an edge
labelled with action reqσ. Because all edges in Mσ

FD
are la-

belled with action reqσ, the edge in MK has to synchronise
with one of the edges in Mσ

FD
, corresponding to the trans-

ition from one state to another in Mσ
FD

. These states already
represent subscenarios, but MK cannot “read” the state of
another STA. The edges of Mσ

FD
therefore also assign to

shared variable sD the new state, i.e. the new subscenario.
As we have seen in Definition 9, the subsequent behaviour
of MK then depends on the value of variable sD.

3.3 Properties
As described in Section 2.2.2, we can compute (safe bounds

on) reachability probabilities and expected accumulated re-
wards via model checking or simulation, applied to the STA
semantics of an xSADF graph. This enables the computa-
tion of both the probability distribution over time as well
as the expected values at points in time for the measures of
interest listed in Section 2.1.1. For example, we can derive
– the maximum and minimum probability that a given chan-

nel contains n or more tokens at some point within t time
units for t ∈ {0, . . . , tmax},

– the maximum and minimum expected response delay, or
– the maximum and minimum expected average throughput

over the time interval [0, t] for t ∈ {0, . . . , tmax}
where tmax is the time horizon that we are interested in.
Queries for max./min. values (not probabilities) as in Sdf 3
are not implemented in STA model checkers, albeit being
straightforward in theory. On the other hand, the question
of what a “steady-state” value in an STA is and how to
compute it is an open problem at this time, so steady-state
properties of true xSADF graphs cannot yet be computed.

We use rewards uP to keep track of the cost accumulated
by process P . This allows us to additionally compute e.g. the



expected energy consumption of P over time, or the prob-
ability that the amount of data generated by all processes
together exceeds a threshold before a given point in time.

4. IMPLEMENTATION
We have added support for the analysis of xSADF mod-

els to the Modest Toolset [8], a modular set of tools for
stochastic timed models. The Modest Toolset is centered
around a metamodel for networks of stochastic timed auto-
mata. It supports a number of input languages that map to
this metamodel as well as several analysis tools, including
the model checker mcsta [7] and the simulator/statistical
model checker modes [4]. Due to its modularity, we were
able to add support for xSADF models given in the stand-
ard Sdf 3 format as an input language in a separate binary
module without having to change any other aspect of the
toolset. Doing so immediately resulted in xSADF support in
all included analysis tools, in particular mcsta and modes.

We have extended the XML-based Sdf 3 format for SADF
to support costs as well as continuous-stochastic and non-
deterministic delays. So far, the format allowed the specific-
ation of finite-support execution time distributions via sets
of weighted “profiles” for each process, for example

<profile execution_time="0" weight="2" />

<profile execution_time="1" weight="1" />

<profile execution_time="2" weight="1" />

for T s
D(s1) = {0 7→ 1

2
, 1 7→ 1

4
, 2 7→ 1

4
} of our example from

Section 2.1. Our implementation adds support for a concise
set of expressions as execution times to specify continuous
distributions or nondeterministic selections, for example

<profile execution_time="NONDET(1, 3) "/>

or <profile execution_time="SAMPLE(EXP(0.5)) "/>

for TA(v) = Nondet([1, 3]) or TD(s1) = Exp( 1
2
) as in our

examples from Section 3.2.2.
As long as a given xSADF graph does not contain non-

spurious nondeterminism [4], a simulation-based analysis
with modes is possible. Unaffected by the size of a model’s
state space, this kind of analysis scales to very large xSADF
graphs. However, simulation does not work as soon as true
nondeterminism is present, and needs a very large number
of runs to obtain precise results, especially in the presence of
rare events. We thus focus on the analysis of xSADF graphs
using STA model checking in the remainder of this paper.

4.1 Reductions and Optimisations
The key challenge in model checking xSADF graphs is

that the state spaces of the underlying MDP semantics (cf.
Section 2.2.2) grow very quickly with the number of pro-
cesses and scenarios, the sizes of the channels, and the com-
plexity of the execution times. In order to be able to ana-
lyse realistic-size xSADF graphs within reasonable time and
memory limits, we thus implemented a number of optimisa-
tions and reductions both on the level of the STA encoding
of the graph as well as within mcsta’s MDP analysis engine.

4.1.1 Efficient queues
The exploration of the reachable state space, which is a

necessity prior to performing value iteration in MDP model
checking, was very slow in our first implementation. Pro-
filing showed that this was due to the queue data structure
for control channels generated by our xSADF input module.
The Modest Toolset’s STA metamodel allows the defin-
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Figure 6: Standard vs. countdown delays

ition of recursive datatypes with functions that operate on
them. We first generated a naive linked-list implementation

type queue = { int hd, queue option tl }

that stored one scenario token hd per queue element, leading
to deeply recursive representations of long queues and high
runtimes for the functions operating on them. We replaced
this by a data structure that groups runs of identical tokens

type queue = { int token, int count, queue option tl }

with tl and enq functions as described in Section 3.2.1
that maintain a minimal representation. This resulted in
a speedup from a few dozen states per second to several
tens of thousands of states per second.

4.1.2 Active clocks and countdown timers
As described in Section 2.2.2, mcsta uses a digital clocks

semantics to transform timed models into MDP. This in-
duces a worst-case blowup exponential in the number of
clocks and the maximal values that the clocks are compared
with. We use two techniques to mitigate this blowup: active
clocks reduction and countdown timers.

The former, well known from timed automata verification,
resets a clock c to zero and stops incrementing it whenever
the system is in a location from which c will not, on any path
through the model, be used in a guard or invariant before it
is assigned a new value. Since the clock variables in kernels
and detectors are only used in the dσ

P locations, this leads to
noticeably smaller state spaces (cf. Section 5.1). We added
this reduction to mcsta’s digital clocks transformation.

The latter is applicable when execution times are selec-
ted from a distribution with bounded support (e.g. from the
continuous uniform distribution or from finite-support dis-
tributions as in SADF). It works by replacing the updates
of the form {c := 0, b := e} for e ∈ Sxp with maximum
possible value emax ∈ R+ by {c := emax − e, b := emax} in
the semantics of kernels and detectors. Let us illustrate the
effect using the execution time distribution T s

D(s1) = {0 7→
1
2
, 1 7→ 1

4
, 2 7→ 1

4
} from our example of Section 2.1. The

left-hand side of Figure 6 shows the relevant fragment of the
digital clocks semantics of the corresponding delay when us-
ing the standard semantics. The right-hand side of that
figure shows the same state-space fragment when using the
countdown timer optimisation. States are labelled with the
location that the STA is in, plus the values of variables cD
(first number) and bD (second number). In particular for
models with many finite-support probability distributions
for execution times (like SADF graphs), this optimisation
induces a dramatic reduction in state-space size. We per-
form this optimisation inside our xSADF input module.
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Figure 7: Structure of the mpeg4_sp model

4.1.3 Essential state chain reduction
The final reduction that we make use of is inspired by the

essential states reduction of [5], which collapses those states
in an MDP that eventually lead to the same“essential” state
with probability 1. We implemented a simpler version in-
side mcsta’s state-space exploration procedure: if a state s
has a single outgoing transition that leads to one successor
state s′ with probability 1, we replace s by s′ and reduce
recursively for s′, effectively collapsing the chain of two or
more states to a single one. For this to be sound, we also re-
quire that the transition from s to s′ does not change values
that are observed in the properties being checked. Although
the conditions appear restrictive, the chains of states that
they apply to are common in digital clocks MDP. If we were
to apply this reduction to the fragments shown in Figure 6,
all the dv

A-states would be merged with the subsequent iA
states and thus removed. We also implemented the original
essential states reduction for comparison. On xSADF mod-
els, however, it only removes a small number of additional
states compared to the essential state chain reduction as
described above, yet incurs a significant runtime overhead.

5. EVALUATION
We applied our implementation of xSADF model checking

to variations of the MPEG-4 SP decoder model provided on
the Sdf 3 website.1 We first study the impact of the reduc-
tion techniques described in the previous section. We then
look at how the different types of execution times influence
the state-space sizes and analysis performance. Finally, we
apply xSADF’s new ability to evaluate energy usage as costs.

All experiments were performed on an Intel Core i5 6600T
system (2.7 GHz) with 16 GB of memory running 64-bit Win-
dows 10. Where we report the number of states of a model,
this refers to the state space of the MDP of the digital clocks
semantics of the PTA obtained from the STA semantics (cf.
Section 2.2.2). It thus includes four kinds of blowup com-
pared to the size of the compositional semantics itself: the
parallel composition is flattened to a single product auto-
maton, each continuous sampling is replaced by a choice
over a number of intervals, the possible values of the vari-
ables (including the queues for control channels) become
part of the states, and finally the digital clocks semantics
makes the integer values of all clocks another component of
the states. MDP model checking proceeds in two phases:
first the exploration of the reachable state space, then a nu-
merical analysis to compute the value of the property being
checked (using value iteration in our implementation). We
report performance data for these two phases separately.
The size of the reachable state space that needs to be ex-
plored, and which we report, depends on the property: goal

1www.es.ele.tue.nl/sadf/examples.php

exploration analysis

red. states mem time rate mem time

– 158.3 M 7.7GB 718 s 220 k/s 9.4GB 397 s

ac 48.1 M 2.3GB 171 s 281 k/s 2.6GB 64 s

ac ct 7.5 M 1.0GB 26 s 289 k/s 0.4GB 15 s

ac ec 6.4 M 0.9GB 119 s 54 k/s 0.4GB 7 s

ac ct ec 2.4 M 0.5GB 47 s 52 k/s 0.2GB 2 s

Table 1: Impact of reductions (mpeg4_r, MC)

states can be made absorbing, so that the part of the state
space that is entirely “behind” goal states is ignored.

5.1 Impact of the Reductions
We first study the impact of the various reduction tech-

niques. The full mpeg4_sp model consists of four kernels and
one detector operating in nine scenarios with a pipelining
degree of 3. Its graph structure is shown in Figure 7. The
execution times of the kernels are given by finite-support dis-
tributions with four different possible times in most cases.
For our evaluations, we removed six of the scenarios (the re-
maining ones being I, P50 and P90) and limited the pipelin-
ing degree to 1, resulting in the model we call mpeg4_r.

We compute the maximum expected response delay of ker-
nel MC. The performance results are shown in Table 1. The
first column indicates the enabled reductions: active clocks
(ac), countdown timers (ct), and essential state chains (ec).
We then list the number of reachable states in the under-
lying MDP (in millions of states), the peak memory usage
during state space exploration (column “mem”) as well as
the total time and rate (in thousands of states per second).
For the analysis phase, we list memory usage and total time.

We see that, if we disable all reductions, we need to ex-
plore 66 times as many states as when all of them are en-
abled. The factors are 15 for memory usage and 23 for run-
time. Enabling the essential state chains reduction lowers
the performance of the exploration phase. However, it yields
significant memory savings, and memory is usually the lim-
iting factor in model checking. Even so, it almost makes up
for the slower exploration by speeding up the analysis phase.

5.2 Varying the Execution Times
The next point that we are interested in is how the state

space sizes depend on the kinds of execution times used.
For this purpose, we created five new versions of the mpeg4_r

model by modifying the execution times of all three scenarios
of kernel VLD. In the original model, they are determined
by a finite-support distribution with mean 16:

TVLD(∗)=Sample({10 7→0.6, 20 7→0.25, 30 7→0.1, 40 7→0.05}).
We study the following variants:
– deterministic: the execution time is always 16,
– nondet.: it is nondeterministic in the interval [10, 40],
– uniform: it is selected from the continuous uniform dis-

tribution over [10, 40] (which has mean 25),
– normal: it is sampled from the normal distribution with

mean 16 and standard deviation 8, and
– exponential: the execution time is sampled from the ex-

ponential distribution with rate 1
16

, i.e. with mean 16.
For each of these models and the original, we compute the
minimum expected response delay of kernel IDCT, repor-
ted in column“result”of Table 2. Due to the safe abstraction
within the STA model checking algorithm, the computed

http://www.es.ele.tue.nl/sadf/examples.php


exploration analysis

type states mem time time result

deterministic 559 153 MB 0 s 0 s 27.35

nondet. 1234 153 MB 0 s 0 s 21.35

finite-support 1447 153 MB 0 s 0 s 27.35

uniform 13.5 k 155MB 0 s 0 s 35.85

normal 2.9 M 957MB 26 s 2 s 26.81

exponential 4.5 M 1557MB 42 s 3 s 26.08

Table 2: Impact of execution times (mpeg4_r, IDCT)

delays are lower bounds on the actual value for the uni-
form, normal and exponential models. In the nondetermin-
istic model, the analysis selects those execution times within
the prescribed intervals that minimise the overall result.

Using fixed deterministic times or overapproximating the
original behaviour with nondeterminism leads to smaller
state spaces, as expected. The uniform distribution causes
a moderate blowup, while the two continuous distributions
with unbounded support result in significantly larger state
spaces. This is due to the need to account for all the intervals
generated by the safe abstraction in the analysis. Further-
more, because the distributions’ supports are unbounded,
we cannot use the countdown timers reduction (which we
thus disabled for all models in this comparison).

5.3 Flexible Support for Costs
Aside from full support for nondeterminism and extended

expressivity in specifying execution times, xSADF adds fa-
cilities to specify (sub)scenario-dependent immediate costs
for token production/consumption as well as rate costs ac-
cumulated over time when processes are busy or idle. A
natural use of this feature annotates the components of an
xSADF graph with energy usage information: the cost rates
then represent the expectable power needed for processing
data or when idling; the immediate costs on token produc-
tion/consumption can serve as an abstraction of the en-
ergy consumed by infrastructure like buses and buffers when
transmitting data between components. Many other inter-
pretations of costs are possible, such as counting the number
of tokens produced, weighted by token type or channel, etc.

A standard analysis task supported by our implement-
ation is to compute the expected cost at time t. This is
solved for STA by adding a fresh clock c that is never reset
and computing the expected accumulated value of interest
for the goal states identified by c ≥ t. However, this proced-
ure effectively “unrolls” the state space over time, leading to
drastic state-space explosion. To combat this, we reduced
our mpeg4_r model again by scaling time : all execution times
were divided by a factor of 5, resulting in the model we call
mpeg4_s. Thus, to obtain results valid for mpeg4_r, the time
values of an analysis of mpeg4_s need to be multiplied by 5.
However, some of the execution times in kernel IDCT are
not evenly divisible by 5, yet STA model checking requires
integer time bounds. We thus replace each execution time x
in IDCT by Nondet([bx

5
c, dx

5
e]). In this way, the minimum

(maximum) expected cost computed on mpeg4_s times 5 is a
lower (upper) bound on the minimum (maximum) expected
cost in mpeg4_r. In a formalism without nondeterminism
(such as the original SADF definition), the only alternative
would be simple rounding, which would not guarantee any
relationship between the computed costs of the two models.
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For our study, we have set the energy usage rates (in e.g.
watts) for all kernels to 1

4
when idle and 2 (4) when pro-

cessing an I-frame (P-frame). Producing a data token incurs
an energy cost of 1 for communication overhead. In practice,
the power specification for the hardware at hand should of
course be used. Detector FD may be seen as a modelling ar-
tifact that represents the stream of incoming data but does
not correspond to a piece of hard- or software in itself. We
thus set its energy usage to 0, but still associate a cost of 1
to every (scenario) token it produces. This allows us to also
study the amount of data being processed into the decoder.

Figure 8 displays the accumulated energy consumption of
the kernels over time together with the expected number
of tokens generated by FD. We plot the max. and min.
values (shown as pairs of lines of the same color) at time
points t ∈ {5, 10, . . . , 195, 200, 210, . . . , 400}. The differences
between max. and min. are due to the nondeterminism intro-
duced. This has a direct effect on the behaviour of IDCT,
but takes long to propagate visibly into the behaviour of the
other components. Furthermore, we clearly see the effect of
cyclic system behaviour as data is processed frame by frame,
and we see an order in the kernels’ active periods. Notably,
we compute and display expected values (means) instead of
displaying single concrete runs of the system. Therefore the
results average out over time as the processes probabilistic-
ally move into different scenarios of different durations.

6. CONCLUSION
We have presented flexible SADF, called xSADF, support-

ing scenario-dependent cost annotations and allowing gen-
eral stochastic and nondeterministic processing delays. It
is a proper extension of both the discrete probabilistically-
timed SADF of Theelen et al. [16] and the exponentially-
timed eSADF of Katoen and Wu [9]. We have presented
a compositional semantics of xSADF in terms of stochastic
timed automata (STA), which in turn can be analysed using
recently developed model checking techniques for STA.

Table 3 gives an overview of the expressivity of our con-
tribution relative to its predecessors. The great flexibility
of xSADF enables a more accurate and adequate model-
ling of scenarios and subscenarios, especially with respect to
their impact on costs. This makes it possible to analyse new
quantities, such as expected accumulated energy consump-
tion. But of course, the added expressiveness comes at the
price of a more involved analysis. We have focussed on the



feature SADF eSADF xSADF

exec.
times

deterministic X – X
finite-support X – X
exponential – X X

generally distr. – – X
nondeterministic – – X

subscen.

selection
probabilistic X X X

nondeterministic – – X
costs (e.g. energy usage) – – X

Table 3: Expressiveness of xSADF

STA model checking approach, and have described several
optimisations that enable effective analysis. We have not
discussed the simulation-based (or statistical model check-
ing) analysis of xSADF, albeit this being another avenue for
models with only spurious nondeterminism.

We have provided experimental evidence that the different
optimisations can reduce model size and solution time by an
order of several magnitudes. We have also demonstrated the
possibility to study the impact of different assumptions on
the execution time in an otherwise unchanged model, some-
thing that was not possible in the predecessor works, which
are tailored to a single assumption (either finite support or
exponential). Finally, we have used the Modest Toolset
implementation as a vehicle to derive the accumulated en-
ergy consumption as a function of advancing time. Notably,
it is straightforward to associate other interpretations (such
as costs in $) to the cost modelling mechanisms we support.

PTA and MDP model checking are active fields of re-
search. Improvements in these fields directly lead to im-
provements in (STA and thus in) xSADF model checking.
This is the benefit of using an STA semantics.

Future work.
The modelling of costs in xSADF can be further refined;

we could e.g. attach per-token rate costs to channels to keep
track of the energy used while data is buffered. Costs can
currently be observed in properties during the analysis, but
this information is not available to the processes during their
execution within the model itself. Allowing them to ob-
serve and react to cost information, such as the current en-
ergy consumption rate or the available energy supply, could
make it possible to naturally represent power management
schemes like dynamic voltage and frequency scaling (DVFS)
inside an xSADF model and analyse their effects. Of partic-
ular interest would be the inclusion of battery models, which
would allow a detector to, for example, switch off compon-
ents when the battery runs low. Adding features like these
means that the semantics becomes a network of stochastic
hybrid automata (SHA [6]). SHA are well-understood in
theory but model-checking tools are still in a prototypical
stage and limited to very small state spaces.
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