
Dynamic Dataflow Graphs

Shuvra S. Bhattacharyya, Ed F. Deprettere, and Bart D. Theelen

Abstract Much of the work to date on dataflow models for signal processing
system design has focused on decidable dataflow models that are best suited for
one-dimensional signal processing. This chapter reviews more general dataflow
modeling techniques that are targeted to applications that include multidimensional
signal processing and dynamic dataflow behavior. As dataflow techniques are
applied to signal processing systems that are more complex, and demand increasing
degrees of agility and flexibility, these classes of more general dataflow models are
of correspondingly increasing interest. We first provide a motivation for dynamic
dataflow models of computation, and review a number of specific methods that
have emerged in this class of models. Our coverage of dynamic dataflow models
in this chapter includes Boolean dataflow, CAL, parameterized dataflow, enable-
invoke dataflow, dynamic polyhedral process networks, scenario aware dataflow,
and a stream-based function actor model.

1 Motivation for Dynamic DSP-Oriented Dataflow Models

The decidable dataflow models covered in [31] are useful for their predictability,
strong formal properties, and amenability to powerful optimization techniques.
However, for many signal processing applications, it is not possible to represent

S.S. Bhattacharyya (�)
University of Maryland, College Park, MD, USA
e-mail: ssb@umd.edu

E.F. Deprettere
Leiden University, Leiden, The Netherlands
e-mail: edd@liacs.nl

B.D. Theelen
Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
e-mail: bart.theelen@tno.nl

S.S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
DOI 10.1007/978-1-4614-6859-2 28, © Springer Science+Business Media, LLC 2013

905

mailto:ssb@umd.edu
mailto:edd@liacs.nl
mailto:bart.theelen@tno.nl

906 S.S. Bhattacharyya et al.

all of the functionality in terms of purely decidable dataflow representations. For
example, functionality that involves conditional execution of dataflow subsystems or
actors with dynamically varying production and consumption rates generally cannot
be expressed in decidable dataflow models.

The need for expressive power beyond that provided by decidable dataflow
techniques is becoming increasingly important in design and implementation signal
processing systems. This is due to the increasing levels of application dynamics
that must be supported in such systems, such as the need to support multi-standard
and other forms of multi-mode signal processing operation; variable data rate
processing; and complex forms of adaptive signal processing behaviors.

Intuitively, dynamic dataflow models can be viewed as dataflow modeling
techniques in which the production and consumption rates of actors can vary in
ways that are not entirely predictable at compile time. It is possible to define
dynamic dataflow modeling formats that are decidable. For example, by restricting
the types of dynamic dataflow actors, and by restricting the usage of such actors to
a small set of graph patterns or “schemas”, Gao, Govindarajan, and Panangaden
defined the class of well-behaved dataflow graphs, which provides a dynamic
dataflow modeling environment that is amenable to compile-time bounded memory
verification [19].

However, most existing DSP-oriented dynamic dataflow modeling techniques do
not provide decidable dataflow modeling capabilities. In other words, in exchange
for the increased modeling flexibility (expressive power) provided by such tech-
niques, one must typically give up guarantees on compile-time buffer underflow
(deadlock) and overflow validation. In dynamic dataflow environments, analysis
techniques may succeed in guaranteeing avoidance of buffer underflow and overflow
for a significant subset of specifications, but, in general, specifications may arise
that “break” these analysis techniques—i.e., that result in inconclusive results from
compile-time analysis.

Dynamic dataflow techniques can be divided into two general classes: (1) those
that are formulated explicitly in terms of interacting combinations of state machines
and dataflow graphs, where the dataflow dynamics are represented directly in terms
of transitions within one or more underlying state machines; and (2) those where
the dataflow dynamics are represented using alternative means. The separation in
this dichotomy can become somewhat blurry for models that have a well-defined
state structure governing the dataflow dynamics, but whose design interface does
not expose this structure directly to the programmer. Dynamic dataflow techniques
in the first category described above are covered in [31]—in particular, those based
on explicit interactions between dataflow graphs and finite state machines. This
chapter focusses on the second category.1 Specifically, dynamic dataflow modeling
techniques that involve different kinds of modeling abstractions, apart from state
transitions, as the key mechanisms for capturing dataflow behaviors and their
potential for run-time variation.

1Except for the Scenario Aware Dataflow model in Sect. 6.

Dynamic Dataflow Graphs 907

Numerous dynamic dataflow modeling techniques have evolved over the past
couple of decades. A comprehensive coverage of these techniques, even after
excluding the “state-centric” ones, is out of the scope this chapter. The objective is
to provide a representative cross-section of relevant dynamic dataflow techniques,
with emphasis on techniques for which useful forms of compile time analysis have
been developed. Such techniques can be important for exploiting the specialized
properties exposed by these models, and improving predictability and efficiency
when deriving simulations or implementations.

2 Boolean Dataflow

The Boolean dataflow (BDF) model of computation extends synchronous dataflow
with a class of dynamic dataflow actors in which production and consumption
rates on actor ports can vary as two-valued functions of control tokens, which are
consumed from or produced onto designated control ports of dynamic dataflow
actors. An actor input port is referred to as a conditional input port if its consumption
rate can vary in such a way, and similarly an output port with a dynamically varying
production rate under this model is referred to as a conditional output port.

Given a conditional input port p of a BDF actor A, there is a corresponding
input port Cp, called the control input for p, such that the consumption rate on Cp is
statically fixed at one token per invocation of A, and the number of tokens consumed
from p during a given invocation of A is a two-valued function of the data value that
is consumed from Cp during the same invocation.

The dynamic dataflow behavior for a conditional output port is characterized in a
similar way, except that the number of tokens produced on such a port can be a two-
valued function of a token that is consumed from a control input port or of a token
that is produced onto a control output port. If a conditional output port q is controlled
by a control output port Cq, then the production rate on the control output is statically
fixed at one token per actor invocation, and the number of tokens produced on q
during a given invocation of the enclosing actor is a two-valued function of the data
value that is produced onto Cq during the same invocation of the actor.

Two fundamental dynamic dataflow actors in BDF are the switch and select
actors, which are illustrated in Fig. 1a. The switch actor has two input ports, a control
input port wc and a data input port wd , and two output ports wx and wy. The port wc

accepts Boolean valued tokens, and the consumption rate on wd is statically fixed
at one token per actor invocation. On a given invocation of a switch actor, the data
value consumed from wd is copied to a token that is produced on either wx or wy

depending on the Boolean value consumed from wc. If this Boolean value is true,
then the value from the data input is routed to wx, and no token is produced on wy.
Conversely if the control token value is false, then the value from wd is routed to
wy with no token produced on wx.

908 S.S. Bhattacharyya et al.

Switch and Select If-then-else

a b

Fig. 1 (a) Switch and select actors in Boolean dataflow, and (b) an if-then-else construct expressed
in terms of Boolean dataflow

A BDF select actor has a single control input port sc; two additional input ports
(data input ports) sx and sy; and a single output port so. Similar to the control port of
the switch actor, the sc port accepts Boolean valued tokens, and the production rate
on the so port is statically fixed at one token per invocation. On each invocation of
the select actor data is copied from a single token from either sx or sy to so depending
on whether the corresponding control token value is true or false respectively.

Switch and select actors can be integrated along with other actors in various ways
to express different kinds of control constructs. For example, Fig. 1b illustrates an
if-then-else construct, where the actors A and B are applied conditionally based on a
stream of control tokens. Here A and B are synchronous dataflow (SDF) actors that
each consume one token and produce one token on each invocation.

Buck has developed scheduling techniques to automatically derive efficient
control structures from BDF graphs under certain conditions [11]. Buck has also
shown that BDF is Turing complete, and furthermore, that SDF augmented with just
switch and select (and no other dynamic dataflow actors) is also Turing complete.
This latter result provides a convenient framework with which one can demonstrate
Turing completeness for other kinds of dynamic dataflow models, such as the
enable-invoke dataflow model described in Sect. 5. In particular, if a given model
of computation can express all SDF actors as well as the functionality associated
with the BDF switch and select actors, then such a model can be shown to be Turing
complete.

Dynamic Dataflow Graphs 909

3 CAL

In addition to providing a dynamic dataflow model of computation that is suitable
for signal processing system design, CAL provides a complete programming
language and is supported by a growing family of development tools for hardware
and software implementation. The name “CAL” is derived as a self-referential
acronym for the CAL actor language. CAL was developed by Eker and Janneck
at U.C. Berkeley [14], and has since evolved into an actively-developed, widely-
investigated language for design and implementation of embedded software and
field programmable gate array applications (e.g., see [30, 56, 77]). One of the most
notable developments to date in the evolution of CAL has been its adoption as part
of the recent MPEG standard for reconfigurable video coding (RVC) [8].

A CAL program is specified as a network of CAL actors, where each actor is
a dataflow component that is expressed in terms of a general underlying form of
dataflow. This general form of dataflow admits both static and dynamic behaviors,
and even non-deterministic behaviors.

Like typical actors in any dataflow programming environment, a CAL actor in
general has a set of input ports and a set of output ports that define interfaces to
the enclosing dataflow graph. A CAL actor also encapsulates its own private state,
which can be modified by the actor as it executes but cannot be modified directly by
other actors.

The functional specification of a CAL actor is decomposed into a set of actions,
where each action can be viewed as a template for a specific class of firings or
invocations of the actor. Each firing of an actor corresponds to a specific action and
executes based on the code that is associated with that action. The core functionality
of actors therefore is embedded within the code of the actions. Actions can in
general consume tokens from actor input ports, produce tokens on output ports,
modify the actor state, and perform computation in terms of the actor state and the
data obtained from any consumed tokens.

The number of tokens produced and consumed by each action with respect to
each actor output and input port, respectively, is declared up front as part of the
declaration of the action. An action need not consume data from all input ports nor
must it produce data on all output ports, but ports with which the action exchanges
data, and the associated rates of production and consumption must be constant for
the action. Across different actions, however, there is no restriction of uniformity
in production and consumption rates, and this flexibility enables the modeling of
dynamic dataflow in CAL.

A CAL actor A can be represented as a sequence of four elements

σ0(A),Σ(A),Γ (A),pri(A), (1)

where Σ(A) represents the set of all possible values that the state of A can take
on; σ0(A) ∈ Σ(A) represents the initial state of the actor, before any actor in the
enclosing dataflow graph has started execution; Γ (A) represents the set of actions
of A; and pri(A) is a partial order relation, called the priority relation of A, on Γ (A)
that specifies relative priorities between actions.

910 S.S. Bhattacharyya et al.

Actions execute based on associated guard conditions as well as the priority
relation of the enclosing actor. More specifically, each actor has an associated guard
condition, which can be viewed as a Boolean expression in terms of the values of
actor input tokens and actor state. An actor A can execute whenever its associated
guard condition is satisfied (true-valued), and no higher-priority action (based on
the priority relation pri(A)) has a guard condition that is also satisfied.

In summary, CAL is a language for describing dataflow actors in terms of
ports, actions (firing templates), guards, priorities, and state. This finer, intra-actor
granularity of formal modeling within CAL allows for novel forms of automated
analysis for extracting restricted forms of dataflow structure. Such restricted forms
of structure can be exploited with specialized techniques for verification or synthesis
to derive more predictable or efficient implementations.

An example of this capability for specialized region detection in CAL programs
is the technique of deriving and exploiting so-called statically schedulable regions
(SSRs) [30]. Intuitively, an SSR is a collection of CAL actions and ports that can be
scheduled and optimized statically using the full power of static dataflow techniques,
such as those available for SDF, and integrated into the schedule for the overall CAL
program through a top-level dynamic scheduling interface.

SSRs can be derived through a series of transformations that are applied on inter-
mediate graph representations. These representations capture detailed relationships
among actor ports and actions, and provide a framework for effective quasi-
static scheduling of CAL-based dynamic dataflow representations. Quasi-static
scheduling is the construction of dataflow graph schedules in which a significant
proportion of overall schedule structure is fixed at compile-time. Quasi-static
scheduling has the potential to significantly improve predictability, reduce run-time
scheduling overhead, and as discussed above, expose subsystems whose internal
schedules can be generated using purely static dataflow scheduling techniques.

Further discussion about CAL can be found in [42], which discusses the
application of CAL to reconfigurable video coding.

4 Parameterized Dataflow

Parameterized dataflow is a meta-modeling approach for integrating dynamic
parameters and run-time adaptation of parameters in a structured way into a certain
class of dataflow models of computations, in particular, those models that have a
well-defined concept of a graph iteration [6]. For example, SDF and cycle-static
SDF (CSDF), which are discussed in [31], and multidimensional SDF (MDSDF),
which is discussed in [37], have well defined concepts of iterations based on
solutions to the associated forms of balance equations. Each of these models can be
integrated with parameterized dataflow to provide a dynamically parameterizable
form of the original model.

When parameterized dataflow is applied in this way to generalize a specialized
dataflow model such as SDF, CSDF, or MDSDF, the specialized model is referred

Dynamic Dataflow Graphs 911

to as the base model, and the resulting, dynamically parameterizable form of
the base model is referred to as parameterized XYZ, where XYZ is the name of
the base model. For example, when parameterized dataflow is applied to SDF
as the base model, the resulting model of computation, called parameterized
synchronous dataflow (PSDF), is significantly more flexible than SDF as it allows
arbitrary parameters of SDF graphs to be modified at run-time. Furthermore,
PSDF provides a useful framework for quasi-static scheduling, where fixed-iteration
looped schedules, such as single appearance schedules [7], for SDF graphs can be
replaced by parameterized looped schedules [6, 40] in which loop iteration counts
are represented as symbolic expressions in terms of variables whose values can
be adapted dynamically through computations that are derived from the enclosing
PSDF specification.

Intuitively, parameterized dataflow allows arbitrary attributes of a dataflow graph
to be parameterized, with each parameter characterized by an associated domain of
admissible values that the parameter can take on at any given time. Graph attributes
that can be parameterized include scalar or vector attributes of individual actors,
such as the coefficients of a finite impulse response filter or the block size associated
with an FFT; edge attributes, such as the delay of an edge or the data type associated
with tokens that are transferred across the edge; and graph attributes, such as those
related to numeric precision, which may be passed down to selected subsets of actors
and edges within the given graph.

The parameterized dataflow representation of a computation involves three
cooperating dataflow graphs, which are referred to as the body graph, the subinit
graph, and the init graph. The body graph typically represents the functional “core”
of the overall computation, while the subinit and init graphs are dedicated to
managing the parameters of the body graph. In particular, each output port of
the subinit graph is associated with a body graph parameter such that data values
produced at the output port are propagated as new parameter values of the associated
parameter. Similarly, output ports of the init graph are associated with parameter
values in the subinit and body graphs.

Changes to body graph parameters, which occur based on new parameter values
computed by the init and subinit graphs, cannot occur at arbitrary points in time.
Instead, once the body graph begins execution it continues uninterrupted through
a graph iteration, where the specific notion of an iteration in this context can be
specified by the user in an application-specific way. For example, in PSDF, the most
natural, general definition for a body graph iteration would be a single SDF iteration
of the body graph, as defined by the SDF repetitions vector [31].

However, an iteration of the body graph can also be defined as some constant
number of iterations, for example, the number of iterations required to process a
fixed-size block of input data samples. Furthermore, parameters that define the body
graph iteration can be used to parameterize the body graph or the enclosing PSDF
specification at higher levels of the model hierarchy, and in this way, the processing
that is defined by a graph iteration can itself be dynamically adapted as the
application executes. For example, the duration (or block length) for fixed-parameter
processing may be based on the size of a related sequence of contiguous network

912 S.S. Bhattacharyya et al.

Fig. 2 An illustration of a speech compression system that is modeled using PSDF semantics.
This illustration is adapted from [6]

packets, where the sequence size determines the extent of the associated graph
iteration.

Body graph iterations can even be defined to correspond to individual actor
invocations. This can be achieved by defining an individual actor as the body
graph of a parameterized dataflow specification, or by simply defining the notion
of iteration for an arbitrary body graph to correspond to the next actor firing in the
graph execution. Thus, when modeling applications with parameterized dataflow,
designers have significant flexibility to control the windows of execution that define
the boundaries at which graph parameters can be changed.

A combination of cooperating body, init, and subinit graphs is referred to as
a PSDF specification. PSDF specifications can be abstracted as PSDF actors in
higher level PSDF graphs, and in this way, PSDF specifications can be integrated
hierarchically.

Figure 2 illustrates a PSDF specification for a speech compression system. This
illustration is adapted from [6]. Here setSp (“set speech”) is an actor that reads a
header packet from a stream of speech data, and configures L, which is a parameter
that represents the length of the next speech instance to process. The s1 and s2
actors are input interfaces that inject successive samples of the current speech
instance into the dataflow graph. The actor s2 zero-pads each speech instance to
a length R (R ≥ L) so that the resulting length is divisible by N, which is the
speech segment size. The An (“analyze”) actor performs linear prediction on speech
segments, and produces corresponding auto-regressive (AR) coefficients (in blocks
of M samples), and residual error signals (in blocks of N samples) on its output
edges. The actors q1 and q2 represent quantizers, and complete the modeling of the
transmitter component of the body graph.

Dynamic Dataflow Graphs 913

Receiver side functionality is then modeled in the body graph starting with the
actors d1 and d2, which represent dequantizers. The actor Sn (“synthesize”) then
reconstructs speech instances using corresponding blocks of AR coefficients and
error signals. The actor P1 (“play”) represents an output interface for playing or
storing the resulting speech instances.

The model order (number of AR coefficients) M, speech segment size N, and
zero-padded speech segment length R are determined on a per-segment basis by the
selector actor in the subinit graph. Existing techniques, such as the Burg segment
size selection algorithm and AIC order selection criterion [32] can be used for this
purpose.

The model of Fig. 2 can be optimized to eliminate the zero padding overhead
(modeled by the parameter R). This optimization can be performed by converting the
design to a parameterized cyclo-static dataflow (PCSDF) representation. In PCSDF,
the parameterized dataflow meta model is integrated with CSDF as the base model
instead of SDF.

For further details on this speech compression application and its representations
in PSDF and PCSDF, the semantics of parameterized dataflow and PSDF, and quasi-
static scheduling techniques for PSDF, see [6].

Parameterized cyclo-static dataflow (PCSDF), the integration of parameterized
dataflow meta-modeling with cyclo-static dataflow, is explored further in [57].
The exploration of different models of computation, including PSDF and PCSDF,
for the modeling of software defined radio systems is explored in [5]. In [36],
Kee et al. explore the application of PSDF techniques to field programmable
gate array implementation of the physical layer for 3GPP-Long Term Evolution
(LTE). The integration of concepts related to parameterized dataflow in language
extensions for embedded streaming systems is explored in [41]. General techniques
for analysis and verification of hierarchically reconfigurable dataflow graphs are
explored in [46].

5 Enable-Invoke Dataflow

Enable-invoke dataflow (EIDF) is another DSP-oriented dynamic dataflow mod-
eling technique [51]. The utility of EIDF has been demonstrated in the context
of behavioral simulation, FPGA implementation, and prototyping of different
scheduling strategies [49–51]. This latter capability—prototyping of scheduling
strategies—is particularly important in analyzing and optimizing embedded soft-
ware. The importance and complexity of carefully analyzing scheduling strategies
are high even for the restricted SDF model, where scheduling decisions have a major
impact on most key implementation metrics [9]. The incorporation of dynamic
dataflow features makes the scheduling problem more critical since application
behaviors are less predictable, and more difficult to understand through analytical
methods.

914 S.S. Bhattacharyya et al.

EIDF is based on a formalism in which actors execute through dynamic
transitions among modes, where each mode has “synchronous” (constant produc-
tion/consumption rate behavior), but different modes can have differing dataflow
rates. Unlike other forms of mode-oriented dataflow specification, such as stream-
based functions (see Sect. 8), SDF-integrated starcharts (see [15]), SysteMoc
(see [15]), and CAL (see Sect. 3), EIDF imposes a strict separation between
fireability checking (checking whether or not the next mode has sufficient data to
execute), and mode execution (carrying out the execution of a given mode). This
allows for lightweight fireability checking, since the checking is completely separate
from mode execution. Furthermore, the approach improves the predictability of
mode executions since there is no waiting for data (blocking reads)—the time
required to access input data is not affected by scheduling decisions or global
dataflow graph state.

For a given EIDF actor, the specification for each mode of the actor includes
the number of tokens that is consumed on each input port throughout the mode,
the number of tokens that is produced on each output port, and the computation
(the invoke function) that is to be performed when the actor is invoked in the given
mode. The specified computation must produce the designated number of tokens on
each output port, and it must also produce a value for the next mode of the actor,
which determines the number of input tokens required for and the computation to
be performed during the next actor invocation. The next mode can in general depend
on the current mode as well as the input data that is consumed as the mode executes.

At any given time between mode executions (actor invocations), an enclosing
scheduler can query the actor using the enable function of the actor. The enable
function can only examine the number of tokens on each input port (without
consuming any data), and based on these “token populations”, the function returns
a Boolean value indicating whether or not the next mode has enough data to execute
to completion without waiting for data on any port.

The set of possible next modes for a given actor at a given point in time can
in general be empty or contain one or multiple elements. If the next mode set is
empty (the next mode is null), then the actor cannot be invoked again before
it is somehow reset or re-initialized from environment that controls the enclosing
dataflow graph. A null next mode is therefore equivalent to a transition to a mode
that requires an infinite number of tokens on an input port. The provision for multi-
element sets of next modes allows for natural representation of non-determinism in
EIDF specifications.

When the set of next modes for a given actor mode is restricted to have at most
one element, the resulting model of computation, called core functional dataflow
(CFDF), is a deterministic, Turing complete model [51]. CFDF semantics underlie
the functional DIF simulation environment for behavioral simulation of signal
processing applications. Functional DIF integrates CFDF-based dataflow graph
specification using the dataflow interchange format (DIF), a textual language for
representing DSP-oriented dataflow graphs, and Java-based specification of intra-
actor functionality, including specification of enable functions, invoke functions,
and next mode computations [51].

Dynamic Dataflow Graphs 915

Fig. 3 An illustration of the design of a switch actor in CFDF

Figures 3 and 4 illustrate, respectively, the design of a CFDF actor and its imple-
mentation in functional DIF. This actor provides functionality that is equivalent to
the Boolean dataflow switch actor described in Sect. 2.

6 Scenario Aware Dataflow

This section discusses Scenario-Aware Dataflow (SADF), which is a generalization
of dataflow models with strict periodic behavior. Like most dataflow models, SADF
is primarily a coordination language that highlights how actors (which are poten-
tially executed in parallel) interact. To express dynamism, SADF distinguishes data
and control explicitly, where the control-related coherency between the behavior
(and hence, the resource requirements) of different parts of a signal processing
application can be captured with so-called scenarios [26]. The scenarios commonly
coincide with dissimilar (but within themselves more static) modes of operation
originating, for example, from different parameter settings, sample rate conversion
factors, or the signal processing operations to perform. Scenarios are typically
defined by clustering operational situations with similar resource requirements [26].
The scenario-concept in SADF allows for more precise (quantitative) analysis
results compared to applying traditional SDF-based analysis techniques. Still, com-
mon subclasses of SADF can be synthesized into efficient implementations [65].

916 S.S. Bhattacharyya et al.

Fig. 4 An implementation of the switch actor design of Fig. 3 in the functional DIF environment

6.1 SADF Graphs

In this subsection SADF is introduced by some examples from the multi-media
domain. Consider the MPEG-4 video decoder for the Simple Profile from [66, 70].
It supports video streams consisting of intra (I) and predicted (P) frames. For an
image size of 176× 144 pixels (QCIF), there are 99 macro blocks to decode for
I frames and no motion vectors. For P frames, such motion vectors determine the
new position of certain macro blocks relative to the previous frame. The number
of motion vectors and macro blocks to process for P frames ranges between 0 and
99. The MPEG-4 decoder clearly shows variations in the functionality to perform
and in the amount of data to communicate between the operations. This leads to
large fluctuations in resource requirements [52]. The order in which the different
situations occur strongly depends on the video content and is generally not periodic.

Figure 5 depicts an SADF graph for the MPEG-4 decoder in which nine different
scenarios are identified. SADF distinguishes two types of actors: kernels (solid
vertices) model the data processing parts, whereas detectors (dashed vertices)

Dynamic Dataflow Graphs 917

d

a

1
1

1

1

d

1

1

1

1

b

1

c

1

1

d

e

31

1

c

IDCTVLD

MC
RCFD

Actor (Sub)Scenario E (kCycles)

VLD
P0 0

All except P0 40

IDCT
P0 0

All except P0 17

MC

I, P0 0
P30 90
P40 145
P50 190
P60 235
P70 265
P80 310
P99 390

RC

I 350
P0 0

P30 , P40 , P50 250
P60 300

P70 , P80 , P99 320

FD All 0

Rate
(Sub)Scenario
I P0 Px

a 0 0 1
b 0 0 x

c 99 1 x

d 1 0 1
e 99 0 x

x ∈ { 30 , 40 , 50 , 60 , 70 , 80 , 99}

a

b

c

Fig. 5 Modeling the MPEG-4 decoder with SADF. (a) Actors and channels; (b) parameterized
rates; (c) worst-case execution times

control the behavior of actors through scenarios.2 Moreover, data channels (solid
edges) and control channels (dashed edges) are distinguished. Control channels
communicate scenario-valued tokens that influence the control flow. Data tokens do
not influence the control flow. The availability of tokens in channels is shown with
a dot. Here, such dots are labeled with the number of tokens in the channel. The
start and end points of channels are labeled with production and consumption rates
respectively. They refer to the number of tokens atomically produced respectively
consumed by the connected actor upon its firing. The rates can be fixed or scenario-
dependent, similar as in PSDF. Fixed rates are positive integers. Parameterized
rates are valued with non-negative integers that depend on the scenario. The
parameterized rates for the MPEG-4 decoder are listed in Fig. 5b. A value of
0 expresses that data dependencies are absent or that certain operations are not
performed in those scenarios. Studying Fig. 5b reveals that for any given scenario,
the rate values yield a consistent SDF graph. In each of these scenario graphs,
detector FD has a repetition vector entry of 1 [70], which means that scenario
changes as prescribed by the behavior of detectors may occur only at iteration
boundaries of each such scenario graph. This is not necessarily true for SADF in
general as discussed below.

2In case of one detector, SADF literature may not show the detector and control channels explicitly.

918 S.S. Bhattacharyya et al.

SADF specifies execution times of actors (from a selected time domain, see
Sect. 6.2) per scenario. Figure 5c lists the worst-case execution times of the MPEG-4
decoder for an ARM7TDMI processor. Figure 5b, c show that the worst-case
communication requirements occur for scenario P99, in which all actors are active
and production/consumption rates are maximal. Scenario P99 also requires maximal
execution times for VLD, IDCT, and MC, while for RC it is the scenario I in which
the worst-case execution time occurs. Traditional SDF-based approaches need
to combine these worst-case requirements into one (unrealistically) conservative
model, which yields too pessimistic analysis results.

An important aspect of SADF is that sequences of scenarios are made explicit
by associating state machines to detectors. The dynamics of the MPEG-4 decoder
originate from control-flow code that (implicitly or explicitly) represents a state-
machine with video stream content dependent guards on the transitions between
states. One can think of if-statements that distinguish processing I frames from
processing P frames. For the purpose of compile-time analysis, SADF abstracts
from the content of data tokens (similar to SDF and CSDF) and therefore also
from the concrete conditions in control-flow code. Different types of state machines
can be used to model the occurrences of scenarios, depending on the compile-time
analysis needs as presented in Sect. 6.2. The dynamics of the MPEG-4 decoder
can be captured by a state-machine of nine states (one per scenario) associated to
detector FD.

The operational behavior of actors in SADF follows two steps, similar to the
switch and select actors in BDF. The first step covers the control part which
establishes the mode of operation. The second step is like the traditional data flow
behavior of SDF actors3 in which data is consumed and produced. Kernels establish
their scenario in the first step when a scenario-valued token is available on their
control inputs. The operation mode of detectors is established based on external and
internal forces. Subscenario denotes the result of the internal forces affecting the
operation mode. External forces are the scenario-valued tokens available on control
inputs (similar as for kernels). The combination of tokens on control inputs for a
detector determine its scenario,4 which (deterministically) selects a corresponding
state-machine. A transition is made in the selected state machine, which establishes
the subscenario. Where the scenario determines values for parameterized rates and
execution time details for kernels, it is the subscenario that determines these aspects
for detectors. Tokens produced by detectors onto control channels are scenario-
valued to coherently affect the behavior of controlled actors, which is a key feature
of SADF. Actor firings in SADF block until sufficient tokens are available. As
a result, the execution of different scenarios can overlap in a pipelined fashion.
For example, in the MPEG-4 decoder, IDCT is always ready to be executed
immediately after VLD, which may already have accepted a control token with a

3Execution of the reflected function or program is enabled when sufficient tokens are available on
all (data) inputs, and finalizes (after a certain execution time) with producing tokens on the outputs.
4If a detector has no control inputs, it operates in a default scenario ε and has one state machine.

Dynamic Dataflow Graphs 919

RQL ROL ARL IMDCTL FIL SPFL
576

576

b
b

b

f

f
i

i
i

l

l

l

576
576

1152RQR ROR

S

ARR IMDCTR FIR SPFR
d

d

d h
j

j j n

n

n

576 576

11521152

1152 WH

g

e

k

m

g

c

h

a

e

FD BDR

2

1

1

1

1

1

x
1

1

1

1

BDL

1

y y

1

z
z

1

1

1
1

1

x

1

1 1

9

1

z

y

1

Fig. 6 Modeling an MP3 decoder with SADF using hierarchical control

different scenario value from FD. The ability to express such so-called pipelined
reconfiguration is another key feature of SADF.

Now, consider the MP3 audio decoder example taken from [66] depicted in
Fig. 6. It illustrates that SADF graphs can contain multiple detectors, which may
even control each other’s behavior. MP3 decoding transforms a compressed audio
bitstream into pulse code modulated data. The stream is partitioned into frames of
1,152 mono or stereo frequency components, which are divided into two granules
of 576 components structured in blocks [58]. MP3 distinguishes three frame types:
Long (L), Short (S) and Mixed (M) and two block types: Long (BL) and Short (BS).
A Long block contains 18 frequency components, while Short blocks include only
6 components. Long frames consist of 32 Long blocks, Short frames of 96 Short
blocks and Mixed frames are composed of 2 Long blocks, succeeded by 90 Short
blocks. The frame type and block type together determine the operation mode.
Neglecting that the frame types and specific block type sequences are correlated
leads to unrealistic models. The sequences of block types is dependent on the frame
type, as is reflected in the structure of source code of the MP3 audio decoder. SADF
supports hierarchical control to intuitively express this kind of correlation between
different aspects that determine the scenario.

Figure 7a lists the parameterized rates for the MP3 decoder. Only five combi-
nations of frame types occur for the two audio channels combined. A two-letter
abbreviation is used to indicate the combined fame type for the left and right
audio channel, respectively: LL, SS, LS and SL. Mixed frame type M covers both
audio channels simultaneously. Detector FD determines the frame type with a state
machine of five states, each uniquely identify a subscenario in {LL, SS, LS, SL, M}.
The operation mode of kernel S depends on the frame types for both audio channels
together and therefore it operates according to a scenario from this same set. The
scenario of kernels RQL, ROL and RQR, ROR is only determined by the frame type
for either the left or right audio channel. They operate in scenario S, M or L by
receiving control tokens from FD, valued with either the left or right letter in LL,
SS, LS, SL or with M.

920 S.S. Bhattacharyya et al.

Rate
Scenario

L S M
a, c 576 0 36
b, d 0 576 540

Rate
(Sub)Scenario

LL SS LS SL M
e 0 576 0 576 36
f 576 0 576 0 540
g 0 576 576 0 540
h 576 0 0 576 36
x 1 1 1 1 2

Rate
Scenario
BL BS

i, j 18 0
k, m 0 6
l, n 18 6

Rate
SubScenario

LBL SBS MBL MBS
y, z 32 96 2 90

ScenarioL ScenarioS

LBL SBS

ScenarioM

MBS MBL

a b

Fig. 7 Properties of the MP3 decoder model. (a) Parameterized rates; (b) state machines for BDL
and BDR

Detectors BDL and BDR identify the appropriate number and order of Short and
Long blocks based on the frame scenario, which they receive from FD as control
tokens valued L, S or M. From the perspective of BDL and BDR, block types BL
and BS are refinements (subscenarios) of the scenarios L, S and M. Figure 7b shows
the three state machines associated with BDL as well as BDR. Each of their states
implies one of the possible subscenarios in {LBL,SBS,MBL,MBS}. The value
of the control tokens produced by BDL and BDR to kernels ARL, IMDCTL, FIL

and ARR, IMDCTR, FIR in each of the four possible subscenarios matches the last
two letters of the subscenario name (i.e., BL or BS). Although subscenarios LBL
and MBL both send control tokens valued BL, the difference between them is the
number of such tokens (similarly for subscenarios SBS and MBS).

Consider decoding of a Mixed frame. It implies the production of two M-valued
tokens on the control port of detector BDL. By interpreting each of these tokens,
the state machine for scenario M in Fig. 7b makes one transition. Hence, BDL uses
subscenario MBL for its first firing and subscenario MBS for its second firing. In
subscenario MBL, BDL sends 2 BL-valued tokens to kernels ARL, IMDCTL and
SPFL, while 90 BS-valued tokens are produced in subscenario MBS. As a result,
ARL, IMDCTL and SPFL first process 2 Long blocks and subsequently 90 Short
blocks as required for Mixed frames.

The example of Mixed frames highlights a unique feature of SADF: reconfigu-
rations may occur during an iteration. An iteration of the MP3 decoder corresponds
to processing frames, while block type dependent variations occur during process-
ing Mixed frames. Supporting reconfiguration within iterations is fundamentally
different from assumptions underlying other dynamic dataflow models, including
for example PSDF. The concept is orthogonal to hierarchical control. Hierarchical
control is also different from other dataflow models with hierarchy such as
heterochronous dataflow [27]. SADF allows pipelined execution of the controlling
and controlled behavior together, while other approaches commonly prescribe that
the controlled behavior must first finish completely before the controlling behavior
may continue.

Dynamic Dataflow Graphs 921

6.2 Analysis

Various analysis techniques exist for SADF, allowing the evaluation of both quali-
tative properties (such as consistency and absence of deadlock) and best/worst-case
and average-case quantitative properties (like minimal and average throughput).

Consistency of SADF graphs is briefly discussed now. The MPEG-4 decoder is
an example of a class of SADF graphs where each scenario is like a consistent SDF
graph and scenario changes occur at iteration boundaries of these scenario graphs
(but still pipelined). Such SADF graphs are said to be strongly consistent [70], which
is easy to check as it results from structural properties only. The SADF graph of the
MP3 decoder does not satisfy these structural properties (for Mixed frames), but it
can still be implemented in bounded memory. The required consistency property
is called weak consistency [66]. Checking weak consistency requires taking the
possible (sub)scenario sequences as captured by the state machines associated to
detectors into account, which complicates a consistency check considerably.

Analysis of quantitative properties and the efficiency of the underlying tech-
niques depend on the selected type of state machine associated to detectors as well
as the chosen time model. For example, one possibility is to use non-deterministic
state machines, which merely specify what sequences of (sub)scenarios can occur
but not how often. This is typically used for best/worst-case analysis. Applying the
techniques in [20, 23, 24] then allows computing that a throughput of processing
0.253 frames per kCycle can be guaranteed for the MPEG-4 decoder. An alternative
is to use probabilistic state machines (i.e., Markov chains), which additionally
capture the occurrence probabilities of the (sub)scenario sequences to allow for
average-case analysis as well. Assuming that scenarios I, P0, P30, P40, P50, P60, P70,
P80 and P99 of the MPEG-4 decoder may occur in any order and with probabilities
0.12, 0.02, 0.05, 0.25, 0.25, 0.09, 0.09, 0.09 and 0.04 respectively, the techniques
in [67] allow computing that the MPEG-4 decoder processes on average 0.426
frames per kCycle. The techniques presented in [71] combine the association
of Markov chains to detectors with exponentially distributed execution times to
analyze the response time distribution of the MPEG-4 decoder for completing the
first frame.

The semantics of SADF graphs where Markov chains are associated to detectors
while assuming generic discrete execution time distributions5 has been defined
in [66] using Timed Probabilistic Systems (TPS). Such transition systems opera-
tionalize the behavior with states and guarded transitions that capture events like
the begin and end of each of the two steps in firing actors and progress of time.
In case an SADF graph yields a TPS with finite state space, it is amenable to
analysis techniques for (Priced) Timed Automata or Markov Decision Processes and
Markov Chains by defining reward structures as also used in (probabilistic) model
checking. Theelen et al. [67] discusses that specific properties of dataflow models in

5This covers the case of constant execution times as so-called point distributions [66, 67].

922 S.S. Bhattacharyya et al.

general and SADF in particular allow for substantial state-space reductions during
such analysis. The underlying techniques have been implemented in the SDF3 tool
kit [62], covering the computation of worst/best-case and average-case properties
for SADF including throughput and various forms of latency and buffer occupancy
metrics [68]. In case such exact computation is hampered by state-space explosion,
[68,70] exploit an automated translation into process algebraic models expressed in
the Parallel Object-Oriented Specification Language (POOSL) [69], which allows
for statistical model checking (simulation-based estimation) of the properties. The
combination of Markov chains and exponentially distributed execution times has
been studied in [71], using a process algebraic semantics based on Interactive
Markov Chains [33] to apply a general-purpose model checker for analyzing
response time distributions.

In case we abstract from the stochastic aspects of execution times and scenario
occurrences, SADF is still amenable to worst/best-case analysis. Since SADF
graphs are timed dataflow graphs, they exhibit linear timing behavior [20, 43, 76],
which facilitates network-level worst/best-case analysis by considering the worst/
best-case execution times for individual actors. For linear timed systems this is
know to lead to the overall worst/best-case performance. For the class of strongly-
consistent SADF graphs with a single detector (also called FSM-based SADF),
very efficient performance analysis can be done based on a (max,+)-algebraic
interpretation of the operational semantics. It allows for worst-case throughput
analysis, some latency analysis and can find critical scenario sequences without
exploring the state-space of the underlying TPS. Instead, the analysis is performed
by means of state-space analysis and maximum-cycle ratio analysis of the equivalent
(max,+)-automaton [20, 23, 24]. Geilen et al. [23] shows how this analysis can
be extended for the case that scenario behaviors are not complete iterations of the
scenario SDF graphs.

6.3 Synthesis

FSM-based SADF graphs have been extensively studied for implementation on
(heterogeneous) multi-processor platforms [64]. Variations in resource requirements
need to be exploited to limit resource usage without violating any timing require-
ments. The result of the design flow for FSM-based SADF implemented in the SDF3

tool kit [62] is a set of Pareto optimal mappings that provide a trade-off in valid
resource usages. For certain mappings, the application may use many computational
resources and few storage resources, whereas an opposite situation may exist for
other mappings. At run-time, the most suitable mapping is selected based on the
available resources not used by concurrently running applications [59].

There are two key aspects of the design flow of [62, 64]. The first concerns
mapping channels onto (possibly shared) storage resources. Like other dataflow
models, SADF associates unbounded buffers with channels, but a complete graph
may still be implemented in bounded memory. FSM-based SADF allows for

Dynamic Dataflow Graphs 923

Fig. 8 Throughput/buffer size trade-off space for the MPEG-4 decoder

efficient compile-time analysis of the impact that certain buffer sizes have on the
timing of the application. Hence, a synthesized implementation does not require
run-time buffer management, thereby making it easier to guarantee timing. The
design flow in [64] dimensions the buffer sizes of all individual channels in the graph
sufficiently large to ensure that timing (i.e., throughput) constraints are met but also
as small as possible to save memory and energy. It exploits the techniques of [63]
to analyze the trade-off between buffer sizes and throughput for each individual
scenario in the FSM-based SADF graph. After computing the trade-off space for
all individual scenarios, a unified trade-off space for all scenarios is created. The
same buffer size is assigned to a channel in all scenarios. Combining the individual
spaces is done using Pareto algebra [22] by taking the free product of all trade-off
spaces and selecting only the Pareto optimal points in the resulting space. Figure 8
shows the trade-off space for the individual scenarios in the MPEG-4 decoder.
In this application, the set of Pareto points that describe the trade-off between
throughput and buffer size in scenario P99 dominate the trade-off points of all other
scenarios. Unifying the trade-off spaces of the individual scenarios therefore results
in the trade-off space corresponding to scenario P99. After computing the unified
throughput/buffer trade-off space, the synthesis process in [64] selects a Pareto point
with the smallest buffer size assignment that satisfies the throughput constraint as a
means to allocate the required memory resources in the multiprocessor platform.

924 S.S. Bhattacharyya et al.

A second key aspect of the synthesis process is the fact that actors of the
same or different applications may share resources. The set of concurrently active
applications is typically unknown at compile-time. It is therefore not possible to
construct a single static-order schedule for actors of different applications. The
design flow in [64] uses static-order schedules for actors of the same application,
but sharing of resources between different applications is handled by run-time
schedulers with TDMA policies. It uses a binary search algorithm to compute the
minimal TDMA time slices ensuring that the throughput constraint of an application
is met. By minimizing the TDMA time slices, resources are saved for other
applications. Identification of the minimal TDMA time slices works as follows.
In [3], it is shown that the timing impact of a TDMA scheduler can be modeled
into the execution time of actors. This approach is used to model the TDMA time
slice allocation it computes. Throughput analysis is then performed on the modified
FSM-based SADF graph. When the throughput constraint is met, the TDMA time
slice allocation can be decreased. Otherwise it needs to be increased. This process
continues until the minimal TDMA time slice allocation satisfying the throughput
constraint is found.

7 Dynamic Polyhedral Process Networks

The chapter on polyhedral process networks (PPN) [73] deals with the auto-
matic derivation of certain dataflow networks from static affine nested loop pro-
grams (SANLP). An SANLP is a nested loop program in which loop bounds,
conditions and variable index expressions are (quasi-)affine expressions in the
iterators of enclosing loops and static parameters.6 Because many signal processing
applications are not static, there is a need to consider dynamic affine nested loop
programs (DANLP) which differ from SANLPs in that they can contain

1. If-the-else constructs with no restrictions on the condition [60].
2. Loops with no condition on the bounds [44].
3. While statements other than while(1) [45].
4. Dynamic parameters [78].

Remark. In all DANLP programs presented in subsequent subsections, arrays are
indexed by affine functions of static parameters and enclosing for-loop iterators.
This is why the A is still in the name.

6The corresponding tool is called PNgen [74], and is part of the Daedalus design frame-
work [48], http://daedalus.liacs.nl.

http://daedalus.liacs.nl

Dynamic Dataflow Graphs 925

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 [x(i), t(i)] = F1(...);
5 end
6

7 for i = 1:1:N,
8 if t(i) <= 0,
9 [x(i)] = F2(x(i));
10 end
11 [...] = F3(x(i));
12 end

Fig. 9 Pseudo code of a simple weakly dynamic program

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 ctrl(i) = N+1;
5 end
6 for i = 1:1:N,
7 [out_0, out_1] = F1(...);
8 [x_1(i)] = opd(out_0);
9 [t_1(i)] = opd(out_1);
10 end
11
12 for i = 1:1:N,
13 [t_1(i)] = ipd(t_1(i));
14 if t_1(i) <= 0,
15 [in_0] = ipd(x_1(i));

16 [out_0] = F2(in_0);
17 [x_2(i)] = opd(out_0);
18 [ctrl(i)] = opd(i);
19 end
20
21 C = ipd(ctrl(i));
22 if i = C,
23 [in_0] = ipd(x_2(C));
24 else
25 [in_0] = ipd(x_1(i));
26 end
27
28 [out_0] = F3(in_0);
29 [...] = opd(out_0);
30 end

Fig. 10 Example of dynamic single assignment code

7.1 Weakly Dynamic Programs

While in a SANLP condition statements must be affine in static parameters and
iterators of enclosing loops, if conditions can be anything in a DANLP. Such
programs have been called weakly dynamic programs (WDP) in [60]. A simple
example of a WDP is shown in Fig. 12.

The question of course is whether the argument of function F3 originates from
the output of function F2 or function F1.

In the case of a SANLP, the input–output equivalent PPN is obtained by
(1) converting the SANLP—by means of an array analysis [16, 17]—to a single
assignment code (SAC) used in the compiler community and the systolic array
community (see [34]); (2) deriving from the SAC a polyhedral reduced dependence
graph [55] (PRDG); and (3) constructing the PPN from the PRDG [13, 39, 55].

While in a SAC every variable is written only once, in a dynamic single
assignment code (dSAC) every variable is written at most once. For some variables,
it is not known whether or not they will be read or written at compile time. For a
WDP, however, not all dependences are known at compile time and, therefore, the
analysis must be based on the so-called fuzzy array dataflow analysis [18]. This
approach allows the conversion of a WDP to a dSAC. The procedure to generate the
dSAC is out of the scope of this chapter. The dSAC for the WDP in Fig. 9 is shown
in Fig. 10.

926 S.S. Bhattacharyya et al.

C in the dSAC shown in Fig. 10 is a parameter emerging from the if-statement in
line 8 of the original program shown in Fig. 9. This if-statement also appears in the
dSAC in line 14. The dynamic change of the value of C is accomplished by the lines
18 and 21 in Fig. 10. The control variable ctrl(i) in line 18 stores the iterations
for which the data dependent condition that introduces C is true. Also, the variable
ctrl(i) is used in line 21 to assign the correct value to C for the current iteration.
See [60] for more details.

The dSAC can now be converted to two graph structures, namely the Approxi-
mate reduced dependence graph (ADG), and the Schedule tree (STree). The ADG
is the dynamic counterpart of the static PRDG. Both the PRDG and the ADG are
composed of processes N, input ports IP, output ports OP, and edges E [13, 55].
They contain all information related to the data dependencies between functions in
the SAC and the dSAC, respectively. However, in a WDP some dependencies are
not known at compile time, hence the name approximate. Because of this, the ADG
has the additional notion of linearly bounded set, as follows.

Let be given four sets of functions
S1 = { f 1

x (i) | x = 1..|S1|, i ∈ Zn}, S2 = { f 2
x (i) | x = 1..|S2|, i ∈ Zn}, S3 =

{ f 3
x (i) | x = 1..|S3|, i ∈ Zn}, S4= { f 4

x (i) | x = 1..|S4|, i ∈ Zn}, an integral m × n
matrix A and an integral n-vector b. A linearly bounded set (LBS) is a set of points
LBS = { i ∈ Zn | A.i ≥ b,

i f S1 �≡ /0 ⇒ ∀ x=1..|S1|, f 1
x (i)≥ 0,

i f S2 �≡ /0 ⇒ ∀ x=1..|S2|, f 2
x (i)≤ 0,

i f S3 �≡ /0 ⇒ ∀ x=1..|S3|, f 3
x (i)> 0,

i f S4 �≡ /0 ⇒ ∀ x=1..|S4|, f 4
x (i)< 0 }.

The set of points B = { i ∈ Zn | A.i ≥ b } is called linear bound of the LBS and
the set S = S1 ∪ S2 ∪ S3 ∪ S4 is called filtering set. Every f j

x (i) ∈ S can be an
arbitrary function of i.

Consider the dSAC shown in Fig. 10. The exact iterations i are not known at
compile time because of the dynamic condition at line 14 in the dSAC (Fig. 10).
That is why the notion of linearly bounded set is introduced, by which the unknown
iterations i are approximated. So, NDN2 is the following LBS: NDN2 = {i ∈ Z | 1 ≤
i ≤ N ∧ 8 ≤ N ≤ 16, t 1(i) ≤ 0}. The linear bound of this LBS is the polytope
B = {1 ≤ i ≤ N∧8 ≤ N ≤ 16} that captures the information known at compile time
about the bounds of the iterations i. The variable t 1(i) is interpreted as an unknown
function of i called filtering function whose output is determined at run time.

The STree contains all information about the execution order amongst the
functions in the dSAC. The STree represents one valid schedule between all these
functions called global schedule. From the STree a local schedule between any
arbitrary set of the functions in the dSAC can be obtained by pruning operations
on the STree. Such a local schedule may for example be needed when two or more
processes are merged [61]. The STres is obtained by converting the dSAC to a syntax
tree using a standard syntax parser, after which all the nodes and edges that are not
related to nodes Fi (nodes F1, F2, and F3 in Fig. 10). See [60] for further details.
A summary is depicted in Fig. 11.

Dynamic Dataflow Graphs 927

N1
(F1)

q2

q1

p1

q1

q2

p1

p2

p2
p2

(F2)

N3
(F3)

q2

p1

q1

q2

p1

p2

p2

N2
(F2)

N3
(F3)

q11
N1
(F1)

p3q12

N2
ED5(ctrl)

ED4(x_2)

ED
2(

x_
1)

ED3(x_1)

a

b

c

d

ED5(ctrl)

ED3(x_1)

ED
2(

x_
1)

ED4(x_2)

STree Marking

OG2

OG2

OG1

IG1

IG1 OG1

IG3

IG2
(N2)
P1

C1(ED5)

C2(ED4)

C3(ED1&ED2)

C4(ED3)P2

F1 F2

STree Pruning

F1 F2

F1

root

root

root
for i = 1:1:Nfor i = 1:1:N

for i = 1:1:Nfor i = 1:1:N

for i = 1:1:N for i = 1:1:N
ED1(t_1)

ED1(t_1)

F3

F3

F3

(N1&N3)

if t_1(i) <= 0

if t_1(i) <= 0

Fig. 11 Examples of (a) approximated dependence graph (ADG) model; (b) transformed ADG;
(c) schedule tree and transformations; (d) process network model

The difference between the ADG in Fig. 11a and the transformed ADG in
Fig. 11b is that an ADG may have several input ports connected to a single output
port whilst in the transformed ADG every input port is connected to only one single
output port (in accordance with the Kahn Process Network semantics [35]).

Parsing the STree in Fig. 11c top-down from left to right generates a program
that gives a valid execution order (global schedule) among the functions F1, F2 and
F3 which is the original order given by the dSAC.

The process network in Fig. 11d may be the result of a design space exploration,
and some optimizations. For example, process P2 is constructed by grouping nodes
N1 and N3 in the ADG in Fig. 11b. Because the behavior of process P2 is sequential
(by default), it has to execute the functionality of nodes N1 and N3 in sequential
order. This order is obtained from the STree in Fig. 11c. See [60] for details.

928 S.S. Bhattacharyya et al.

1 %parameter N 1 10;
2
3 for j = 1 to N,
4 for i = 1 to f(...),
5 y[i] = F1()
6 end
7 end
8 [...] = F2(y[5]),

An example of a Dynloop program.

1 %parameter N 1 10;
2
3 for j = 1 to N,
4 X[j] = f(...)
5 for i = 1 to max f,
6 if i <= X[j] ,
7 y[i] = F1()
8 end
9 end
10 end
11 [] = F2(y[5])

An equivalent Weakly
Dynamic Program.

Fig. 12 A Dynloop program and its equivalent WDP program

In a (static) PPN, there are two models of FIFO communication [72], namely
in-order communication and out-of-order communication. In the first model, the
order in which tokens are read from a FIFO channel is the same as the order in
which they have been written to the channel. In the second model that order is
different. In a PPN that is input–output equivalent to a WDP, there are two more
FIFO communication models, namely in-order with coloring and out-of-order with
coloring. This is necessary because the number of tokens that will be written to
a channel and read from that channel is not known at compile time. See [60] for
details.

Buffer sizes can be determined using the procedure given in [73] and in [74],
except that a conservative strategy (over-estimation) is needed due to the fact that the
rate and the exact amount of data tokens that will be transferred over a particular data
channel is unknown at compile-time. This can be done by modifying the iteration
domains of all input/output ports, such that all dynamic if-conditions defining any
of these iteration domains evaluate always to true.

7.2 Dynamic Loop-Bounds

Whereas in a SANLP loop bounds have to be affine functions of iterators of
enclosing loops and static parameters, loop bounds in a DANLP program can be
dynamic. Such programs have been called Dynloop programs in [44]. A simple
example of a Dynloop program is shown at the left side in Fig. 12

A Dynloop program can be cast in the form of a WDP. See Sect. 7.1. The WDP
corresponding to the Dynloop program at the left in Fig. 12 is shown at the right
in Fig. 12.

Dynamic Dataflow Graphs 929

1 %parameter N 1 10;

2 for j = 1 to N,
3 X[j] = f()
4 for i = 1 to max_f,
5 if i <= X[j],
6 y_1[j,i] = F1()
7 ctrl_c1[i] = j
8 ctrl_c2[i] = i
9 end
10 ctrl c1 1[j,i] = ctrl c1[i]
11 ctrl c2 1[j,i] = ctrl c2[i]
12 end
13 end

14 if max f >= 5,
15 c1 = ctrl c1 1[N, 5]
16 c2 = ctrl c2 1[N, 5]
17 else
18 c1 = N + 1
19 c2 = max f + 1
20 end
21 if c1 <= N & c2 == 5,
22 in_0 = y_1[c1,c2]
23 else
24 in_0 = 0
25 end
26 [...] = F2(in_0)

Fig. 13 Final dSAC

The maximum value of f (), denoted by max f, see line 5 at the right in Fig. 12
is substituted for the upper bound of the loop at line 4 at the left in Fig. 12. The
value of max f can be determined by studying the range of function f ().7

As in Sect. 7.1, a dynamic single assignment code (dSAC) can now be obtained
by means of a fuzzy array dataflow analysis (FADA) [18]. This analysis introduces
parameters to deal with the dynamic structure in the WDP. The values of these
parameters have to be changed dynamically. This is done by introducing for every
such parameter a control variable that stores the correct value of the parameter for
every iteration. However, the straightforward introduction of control values as done
in Sect. 7.1 violates the dSAC condition that every control variable is written at
most once. To obtain a valid dSAC, an additional dataflow analysis for the control
variables is necessary, resulting in additional control variables. See [44] for details.

The final dSAC is shown in Fig. 13 where it has been assumed that the variable
y(5) has been initialized to zero.

The control variables must be initialized with values that are greater than
the maximum value of the corresponding parameters. For the example at hand,
parameter c1 ∈ [1..N], and c2 ∈ [1..max f]. Therefore, the corresponding control
variables are initialized as follows:

∀i : 1 ≤ i≤ max f : ctrl c1[i]= N+ 1,
ctrl c2[i]= max f+ 1.

This initialization is not shown in Fig. 13 for the sake of brevity.
After applying the standard linearization [72], and its extension described in

Sect. 7.1, and estimating buffer sizes as described in that same subsection, the
resulting PPN is as shown in Fig. 14.

7If that is not possible, then an alternative way to estimate max f is given in [44].

930 S.S. Bhattacharyya et al.

1 for j = 1 to N,
2 read(i1, in_1)
3 for i = 1 to max_f,
4 if i <= in_1,
5 y_1[j,i] = F1()
6 ctrl_c1[i] = j
7 ctrl_c2[i] = i
8 endif
9 if j=N and i=5
10 out_1 = ctrl_c1[i]
11 out_2 = ctrl_c2[i]
12 out_3 = y_1[ctrl_c1[i], ctrl_c2[i]]
13 write(o1, out_1)
14 write(o2, out_2)
15 write(o3, out_3)
16 endif
17 endfor
18 endfor

Process P2

i1

i3

i2

1 if max_f >= 5,
2 read(i1, in_1)
3 read(i2, in_2)
4 read(i3, in_3)
5 else
6 in_1 = N+1

9 if in_1 <= N & in_2 == 5,

11 else
12 in_4 = 0
13 endif
14 [] = F2(in_4)

8 endif
7 in_2 = max_f+1

10 in_4 = in_3

Process P3Process P1

o1

1 for j = 1 to N,
2 out_1 = f();
3 write(o1, out_1);
4 endfor

i1

o3

o2
o1

Fig. 14 The final PPN derived from the program in Fig. 13

7.3 Dynamic While-Loops

Whereas in a SANLP program only while(1)loops are allowed, in a DANLP
program any while-loop is acceptable. Such DANLP programs have been called
while-loop affine programs (WLAP) in [45].

There are a number of publications that address the problem of while loops
parallelization [4, 10, 12, 25, 28, 29, 53, 54]. The approach presented here has the
advantage that it

• Supports both task-level and data-level parallelism.
• Generates also parallel code for multi-processor systems having distributed

memory.
• Provides an automatic data-dependence analysis procedure.
• Exposes and utilizes all available parallelism.

An example is shown at the left side in Fig. 15.
Again, the question is from where, say, function F7 gets its scalar argument

x. Because this is not known at compile-time, a fuzzy array dataflow analysis
(FADA) [18] is necessary to find all data dependencies.

The approach to convert a WLAP program to an input–output equivalent
polyhedral process network (PPN) goes in four steps. First, all data-dependency
relations in the initial WLAP program have to be found by applying the FADA
analysis on it. Recall that the result of the analysis is approximated, i.e., it depends
on parameters which values are determined at run-time. Second, based on the results
of the analysis, the initial WLAP is transformed into a dynamic Single Assignment
Code (dSAC) representation. See Sect. 7.1. Parameters that are introduced by the
FADA appear in the dSAC, and their values are assigned using control variables.
Third, the control variables are generated in a way that extends the methods in
Sects. 7.1 and 7.2 to be applicable for WLAP programs as well, see [45]. Fourth,
the topology of the corresponding PPN is derived as well as the code to be executed
in the processes of the PPN.

Dynamic Dataflow Graphs 931

1 ¶meter EPS 0.005

2 for i = 1 to N,
3 y[i] = F1()
4 x = F2(y[i])
5 while (x >= EPS)
6 x = F3()
7 for j = i+1 to N+1,
8 y[j] = F4(y[j-1])
9 x = F5(x, y[j])
10 end
11 y[i] = F6(x)
12 end
13 out = F7(x)
14 end

1 %parameter EPS 0.005

2 w = 0
3 ctrl_x_5 = (N+1,0)
4 for i = 1 to N,
5 y_1[i] = F1()
6 in_2 = y_1[i]
7 x_2[i] = F2(in_2)
8 while (in_w = σx(W,(i,w)) >= EPS),
9 w = w + 1
11 x_3[i,w] = F3()
11 for j = i+1 to N+1,
12 in_4 = σy(S4,(i,w, j))
13 y_4[i,w,j] = F4(in_4)
14 in_5_x = σx(S5,(i,w, j))
15 in_5_y = y_4[i,w,j]
16 x_5[i,w,j] = F5(in_5_x, in_5_y)
17 ctrl x 5 = (i,w)
18 end
19 in_6 = σx(S6,(i,w))
20 y_6[i,w] = F6(in_6)
21 end
22 ctrl x 5 [i] = ctrl x 5
23 (a ,b

a b
) = ctrl x 5 [i]

24 in_7 = σx(S7,(i, ,))
25 out = F7(in_7)
26 end

An example of a WLAP program The corresponding final dSAC

Fig. 15 An example of a while-loop affine program and its corresponding dynamic single
assignment program

The iterator w is associated with the while loop and is initialized with value 0,
meaning that the while loop has never been executed. The parameter α captures
the value of the for-loop iterator in the enclosing while-loop and is initialized to
N + 1. The parameter β is the upper bound of the while-loop iterator w. Because
α ∈ [1..N] and β ≥ 1, the above initializations satisfy the condition that their values
are never taken by the corresponding parameters. From line 23 at the right side
in Fig. 15, it follows that the control variable ctrl x 5 is initialized to ctrl x 5
= (N+1,0) at line 3 at the right side in Fig. 15. Where does the control variable
ctrl x 5 come from? It comes from the construction of the dSAC. The procedure
to derive the final dSAC is largely based on [18] and its extension in Sect. 7.2.
The problem is again that the dSAC resulting from the FADA analysis is not a
proper dSAC because it violates the property that every variable is written at most
once. The relation between writing to and reading from the control variables must
be identified by performing a dataflow analysis for the control variables, where
the writings to them occur inside a while-loop. To that end, an additional control
variable ctrl x 5 is introduced right after the while-loop, see line 22 at the right
in Fig. 15. The new control variable is written at every iteration of for-loop i and
takes the value either of control variable ctrl x 5 assigned on the last iteration of
the while-loop, or its initial value, if the while-loop is not executed. A static exact

932 S.S. Bhattacharyya et al.

P1

P2y_1[]

P4

y_4[]

W

x_2[] P7

x_2[]

P3
P5

P6

ctrl_x_5_[]

y_6[]

Fig. 16 The PPN for the program in Fig. 15

1 %parameter EPS 0.005

2 w = 0
3 for i = 1 to N,
4 while(1),
5 w = w + 1
6 if (w > 2) then w = 2
7 if (w == 1),
8 read(P2, 1, in w)
9 else
10 read(P5, 2, in w)
11 end
12 out_w = (in_w >= EPS)
13 write(P3, 3, out w)
14 write(P4, 4, out w)
15 write(P5, 5, out w)
16 write(P6, 6, out w)
17 if (!out_w) <break>
18 end
19 end

Code of process W

1 w = 0
2 ctrl_x_5 = (N+1,0)
3 for i = 1 to N,
4 while(1),
5 w = w + 1
6 if (w > 2) then w = 2
7 read(W, 1, in w)
8 if (!in_w) <break>
9 for j = i+1 to N+1,
10 if (j == i+1),
11 if (w == 1),
12 read(P3, 2, in 5 x)
13 else
14 read(P5, 3, in 5 x)
15 en
16 else
17 read(P5, 4, in 5 x)
18 end
19 read(P4,5, in 5 y)
20 out 5 = F5(in_5_x, in_5_y)
21 ctrl x 5 = (i,w)
22 if (j == N+1),
23 write(P5, 6, out 5)
24 else
25 write(P5, 7, out 5)
26 endif
27 end
28 end
29 out_5_c = ctrl x 5
30 out 5 x = out_5
31 write(P7, 8, out 5 c)
32 write(P7, 9, out 5 x)
33 end

Code of process P5

1 w = 0
2 for i = 1 to N,
3 read(P5, 1, in c)
4 if (in_c. >=1 && 1<= in_c. <= i),
5 read(P5, 2, in 7)
6 else
7 read(P2, 3, in 7)
8 end
9 out = F7(in_7)
10 end

Code of process P7

b a

Fig. 17 Processes W , P5, and P7 after linearization

array dataflow analysis (EADA) [16] can be performed on this new control variable
ctrl x 5 . This is possible because the new control variable is not surrounded by
the dynamic while-loop, i.e., it is outside the while loop.

The PPN that corresponds to the final dSAC in Fig. 15 is depicted in Fig. 16.
This PPN consists of 8 processes and 18 channels. The processes P1–P7

correspond to the functions F1–F7 in Fig. 15. Process W corresponds to the while
condition at line 8 of the final dSAC in Fig. 15

The code for processes W , P5, and P7 is shown in Fig. 17. Process W is an
example of a process detecting the termination of the while-loop at line 5 at the left
in Fig. 15. Process P5 is an example of a process executing a function enclosed in
the while-loop. Process P7 is an example of a process that runs a function outside
the while-loop, and has a data dependency with a function inside the while-loop.

Dynamic Dataflow Graphs 933

7.4 Parameterized Polyhedral Process Networks

Parameters that appear in a SANLP program are static. In a DANLP, parameters can
be dynamic. A polyhedral process network [73] that is input–output equivalent to
such a DANLP program is, then, a parameterized polyhedral process network called
P3N in [78].

Remark. There are two assumptions here. First, dynamic conditions, dynamic loop
bounds and dynamic while-loops are left out to focus only on dynamic parameters.
Second, values of the dynamic parameters are obtained from the environment.

The formal definition of a P3N is given in [78], and is only slightly different from
the definition given in [73]. Although the consistency of a P3N has to be checked
at run-time, still some analysis can be done at compile-time. A simple example of a
P3N is shown in Fig. 18.

Figure 18a is a static PPN, process P3 of which is shown in Fig. 18b. Figure 18c
is a P3N version of the PPN in Fig. 18a. Process P3 of the P3N in Fig. 18c is shown
in Fig. 18d. The PPN and the P3N have the same dataflow topology. Processes P2
and P3 in the P3N in Fig. 18c are reconfigured by two parameters M and N whose
values are updated from the environment at run-time using process Ctrl and FIFO
channels ch7, ch8, and ch9. The P3N shown in Fig. 18c may be derived from a
sequential program, yet it can also be constructed from library elements as in [31].

Recall from [73] that a parametric polyhedron P(p) is defined as
P(p) = {(w,x1, . . . ,xd)∈Qd+1 | A ·(w,x1, . . . ,xd)

T ≥ B ·p+b}with A ∈Zm×d ,B∈
Zm×n and c ∈ Zm. For nested loop programs, w is to be interpreted as the one-
dimensional while(1) index, and d as the depth of a loop nest. For a particular
value of w the polyhedron gets closed, i.e., it becomes a polytope. The parameter
vector p is bounded by a polytope Pp = {p ∈Qn | C ·p ≥ d}.

The domain DP of a process is defined as the set of all integral points in its
underlying parametric polyhedron, i.e., DP = PP(p)∩Zd+1. The domains DIP and
DOP of an input port IP and an output port OP, respectively, of a process are
subdomains of the domain of that process.

The following four notions play a role in the operational semantics of a P3N:

• Process iteration.
• Process cycle.
• Process execution.
• Quiescent point.

A process iteration of process P is a point (w,x1, . . . ,xd)∈ DP, where the following
operations are performed sequentially: reading a token from each IP for which
(w,x1, . . . ,xd) ∈ DIP, executing process function FP, and writing a token to each
OP for which (w,x1, . . . ,xd) ∈ DOP.

A process cycle CYCP(S ,p)⊂ DP is the set of lexicographically ordered points
∈DP for a particular value of w=S ∈Z+. The lexical ordering is typically imposed
by a loop nest.

934 S.S. Bhattacharyya et al.

 for(i=00; i<=1100; i++) {
 for(j=00; j<=88; j++){
 if(i <= 55 && j >=44)
 READ(in1, IP1);
 else
 READ(in1, IP2);
 READ(in2, IP3);

 out = F3(in1, in2);

 WRITE(out, OP5);
WRRIITTEE(out, OP6);

 } }

Process P3

P1 P3

P2

ch3

P2

PPN

OP5

P1 P3

P2

ch1

ch4 ch3

(M)

IP10
(N)

IP11
1 while(1){
2 READ(M , IP8)
3 READ(N , IP9)
4 for(i=00; i<=MM; i++) {
5 for(j=00; j<=NN--22 ** ii; j++){
6 if(ii <= NN)
7 READ(in1, IP1);
8 else
9 READ(in1, IP2);
10 READ(in2, IP3);

11 out = F3(in1, in2);

12 WRITE(out, OP5);
13 WRITE(out, OP6);
 } } }

Process P3

ch2

ch1

OP5

ch9
ch8

OP1 IP1

ch7

OP6

OP6

Parameterized PPN

OP5

Ctrl

OP6

ch4

OP5

OP6
`

IP3

ch8

ch9

IP1

IP3

(M)

IP8
(N)

IP9

IP2ch2 ch3

IP8

IP9

IP1

IP3

IP2

OP2

IP7

(M)

OP8

OP9
OP7

ch2

ch1

IP2 ch2

ch1

ch3

IP1

IP3

IP2

a b

c d

Fig. 18 (a) An example of a PPN, (b) process P3 in the PPN, (c) an example of a P3N, and
(d) process P3 in the P3N

A Process execution EP is a sequence of process cycles denoted by CYCP

(1,p1)→ CYCP(2,p2)→ . . .→ CYCP(k,pk), where k → ∞.
A point QP(S ,pi) ∈ CYCP(S ,pi) of process P is a quiescent point if CYCP

(S ,pi) ∈ EP and ¬(∃(w,x1, . . . ,xd) ∈ CYCP(S ,pi) : (w,x1, . . . ,xd)≺ QP(S ,pS).
Thus, process P can change parameter values at the first process iteration of any

process cycle during the execution. The notion of quiescent points as being the
points at which values of the parameters p can change appears also in [47]. The
behavior of the control process Ctrl is given in Fig. 19a.

Process Ctrl starts with at least one valid parameter combination (lines 1--2)
and then reads parameters from the environment (lines 3--4) every pre-specified
time interval. For every incoming parameter combination, the process function
Eval (line 5) checks whether the combination of parameter values is valid. The

Dynamic Dataflow Graphs 935

1 M_new = M_init
2 N_new = N_init
 while(1){
3 READ_PARM (M, IP10)
4 READ_PARM (N, IP11)

5 [M_new, N_new] =
 Eval(M, N, M_new, N_new)

6 WRITE_PARM (M_new, OP7)
7 WRITE_PARM (M_new, OP8)
8 WRITE_PA

a b

M (N_new, OP9)
 }

Process Ctrl

 [M_new, N_new]
 Eval(M, N, M_old, N_old){

 // checking parameters

 par_ok = Check(M, N);

 if(par_ok){
 return (M, N)
 else {
 return (M_old, N_old)
 } }

Process Function Eval

IP10

IP11

ch8

ch7OP7

OP9

OP8

ch9

Fig. 19 (a) Control process Ctrl and (b) process function Eval

Fig. 20 Which combinations (M, N) do ensure consistency of P3N?

implementation of function Eval is given in Fig. 19b. If the combination is valid,
then function Eval returns the current parameter values (M, N). Otherwise, the
last valid parameters combination (propagated through M new, N new in this
example) is returned. After the evaluation of the parameters combination, process
Ctrl writes the parameter values to output ports (lines 6–8) when all channels
ch7, ch8, and ch9 have at least one buffer place available. When at least one channel
buffer is full, the incoming parameters combination is discarded and the control
process continues to read the next parameters combination from the environment.
Furthermore, the depth of the FIFOs of the control channels determines how many
process cycles of the dataflow processes are allowed to overlap.

Valid parameter values lead to the consistent execution of a P3N, i.e., without
deadlocks and with bounded memory (FIFOs with finite capacity). To illustrate the
problem, consider channel ch3 connecting processes P2 and P3 of the P3N given in
Fig. 18c.

The access of processes P2 and P3 to channel ch3 is depicted in Fig. 20.

936 S.S. Bhattacharyya et al.

Consistency requires that, for each corresponding process cycle of both processes
CYCP2(i,Mi) and CYCP3(i,Mi,Ni), the number of tokens produced by process P2 to
channel ch3 must be equal to the number of tokens consumed by process P3 from
channel ch3. For example, if (M,N) = (7,8), P2 produces 25 tokens to ch3 and P3
consumes 25 tokens from the same channel after one corresponding process cycle
of both processes. It can be verified that P2 produces 13 tokens to ch3 while P3
requires 20 tokens from it in a corresponding process cycle when (M,N) = (3,7).
Thereby, in order to complete one execution cycle of P3 in this case, it will read data
from ch3 which will be produced during the next execution cycle of P2. Evidently
this leads to an incorrect execution of the P3N. From this example, it is clearly
seen that the incoming values of (M,N) must satisfy certain relation to ensure the
consistent execution of the P3N.

Although the consistency of a P3N has to be checked at run-time, still some
analysis can be done at design-time. This is because input ports and output ports of
a process cycle are parametric polytopes. The number of points in a port domain
equals the number of tokens that will be written to a channel or read from a channel
depending on whether the port is an output port or an input port, respectively. The
condition |DCYC

OP | = |DCYC
IP | can be checked by comparing the number of points

in both port domains. The counting problem can be solved in polynomial time
using the Barvinok library [73, 75]. In general the number of points in domain
DX = PX(p)∩Zd+1, where X stand for either a process P, an input port IP, or
an output port OP, is a set of quasi-polynomials [73].

For the example shown in Fig. 20, the difference |DCYC
OP | − |DCYC

IP | is,

{
(1+N +N ·M−M2)− (3M+4) = 0 if (M,N) ∈C1
(1+ 3

4 N + 1
4 N2 + 1

4 N − 1
4 · {0,1}N)− (3M+4) = 0 if (M,N) ∈C2

where C1 = {(M,N) ∈ Z2 | M ≤ N ∧ 2M ≥ 1+N}, C2 = {(M,N) ∈ Z2 | 2M ≤
N}, and {0,1}N is a periodic coefficient with period 2.8 In this example, if the
range of the parameters is 0 ≤ M,N ≤ 100, then there are only ten valid parameter
combinations. If 0≤ M,N ≤ 1,000, then there are 34 valid parameter combinations,
and if 0 ≤ M,N ≤ 10,000, then the number of valid combinations is 114.

The symbolic subtraction of the quasi-polynomials can result in constant zero,
non-zero constant, or a quasi-polynomial. In the first case, consistency is always
preserved for all parameters within the range. In the second case, all parameters
within the range are invalid, because they violate the consistency condition. In
the third case, a quasi-polynomial remains, and only some parameter combinations
within the range are valid for the consistency condition. The equations can be solved
at design time, and all valid parameter combinations are put in a table which is
stored in a function Check. At run-time, the control process only propagates those
incoming parameter combinations that match an entry in the table. Alternatively,
function Check evaluates the difference between the two quasi-polynomials against

8{0,1}N is 0 or 1 depending on whether N is even or odd, respectively.

Dynamic Dataflow Graphs 937

zero with incoming parameter values at run-time. When using a table, the execution
time of the P3N is almost equal to the execution time of the corresponding PPN.
On the other hand, evaluation the polynomials at run-time overlaps the dataflow
processing. For medium and high workloads (execution latency of the processes)
the overhead is negligible. See [78] for further details.

8 The Stream-Based Function Model

The active entities in dataflow graphs are pure functions, embedded in Actors. In
dataflow (polyhedral and parameterized polyhedral) process networks, the active
entities encompass state and pure functions. They are called Processes. Actors and
processes are specified in a host language like C, C++ or Java, by convention.

Remark. For reasons of convenience, the active entities in dataflow graphs and
dataflow networks will in this section be called actors, whether they are void of
state, encompass a single thread of control, or are processes. Thus static dataflow
graphs [31], dynamic dataflow graphs, polyhedral process [73] and Sect. 7.4, and
Kahn process networks [21] will collectively be referred to as Dataflow Actor Net-
works (DFAN). They obey the Kahn coordination semantics, possibly augmented
with actor firing rules, annotated with deadlock free minimal FIFO buffer capacities,
and one or more global schedules associated with them.

This section deals with a parallel model for actors, called Stream-based func-
tion (SBF) in [38] SBF is appealing when it comes to implementing a DFAN in
a heterogeneous multiprocessor execution platform that consists of a number of
computational elements (processors), and a communication, synchronization, and
storage infrastructure. This requires a mapping that relates an untimed application
model and a timed architecture model together: Actors are assigned to processors
(both of type ISA and dedicated), FIFO channels are logically embedded in—
often distributed—memory, and DFAN communication primitives and protocols
are transformed to platform specific communication primitives and protocols. The
specification of platform processors and DFAN actors may be quite different.

The SBF can serve as an intermediate specification between the conventional
DFAN actor specification, and a variety of computational elements in the execution
platform.

8.1 The Stream-Based Function Actor

The SBF is composed of a set of functions, called function repertoire, a transition
and selection function, called controller, and a combined function and data state,
called private memory. The controller selects a function from the function repertoire
that is associated with a current function state, and makes a transition to the next

938 S.S. Bhattacharyya et al.

fb

fa
Read Ports

Enable Signal

Output Buffer0

Write PortStateInput Buffer0

Input Buffer1
Controller

Fig. 21 A simple SBF actor

function state. A selected function is enabled when all its input arguments can be
read, and all its results can be written; it is blocked otherwise. A selected non-
blocked function must evaluate or fire. Arguments and results are called input tokens
and output tokens, respectively.

An actor operates on sequences of tokens, streams or signals, as a result of a
repetitive enabling and firing of functions from the function repertoire. Tokens are
read from external ports and/or loaded from private memory, and are written to
external ports and/or stored in private memory. The external ports connect to FIFO
channels through which actors communicate point-to-point.

Figure 21 depicts an illustrative stream-based function (SBF) actor. Its function
repertoire is P = { finit , fa, fb}. The two read ports, and the single write port connect
to two input and one output FIFO channels, respectively. P contains at least an
initialization function finit , and is a finite set of functions. The functions in P must be
selected in a mutual exclusive order. That order depends on the controller’s selection
and transition function. The private memory consists of a function state part, and a
data state part that do not intersect.

8.2 The Formal Model

If C denotes the SBF actor’s function state space, and if D denotes its data state
space, then the actor’s state space S is the Cartesian product of C and D,

S =C×D, C∩D = /0. (2)

Let c ∈ C be the current function state. From c, the controller selects a function
and makes a function state transition by activating its selection function μ and
transition function ω as follows,

μ : C → P, μ(c) = f , (3)

ω : C×D →C, ω(c,d) = c′. (4)

Dynamic Dataflow Graphs 939

The evaluation of the combined functions μ and ω is instantaneous. The
controller cannot change the content of C; it can only observe it. The transition
function allows for a dynamic behavior as it involves the data state space D.
When the transition function is only a map from C to C, then the trajectory of
selected functions will be static (see [31, 73]). Assuming that the DFAN does not
deadlock, and that its input streams are not finite, the controller will repeatedly
invoke functions from the function repertoire P in an endless firing of functions,

finit
μ(ω(S))−→ fa

μ(ω(S))−→ fb
μ(ω(S))−→ . . . fx

μ(ω(S))−→ . . . (5)

Such a behavior is called a Fire-and-Exit behavior. It is quite different from a
threaded approach in that all synchronization points are explicit. The role of the
function finit in (5) is crucial. This function has to provide the starting current
function state cinit ∈C

cinit = finit (channela . . .channelz). (6)

It evaluates first and only once, and it may read tokens from one or more external
ports to return the starting current function state.

The SBF model is reminiscent of the Applicative State Transition (AST) node in
the systolic array model of computation [34] introduced by Annevelink [1], after the
Applicative State Transition programming model proposed by Backus [2]. The AST
node, like the SBF actor, comprises a function repertoire, a selection function μ , and
a transition function ω . However, the AST node does not have a private memory,
and the initial function state cinit is read from a unique external channel. Moreover,
AST nodes communicate through register channels. The SBF actor model is also
reminiscent of the CAL, which is discussed in Sect. 3.

Clearly, the actors in decidable dataflow models [31] and the multidimensional
dataflow models [37], and the processes in polyhedral precess networks [73] and
Kahn process networks [21] are special cases of the SBF actor. Analysis is still
possible in case the SBF-based DFAN originates from weakly dynamic nested loop
programs, see Sect. 7.1, Dynloop programs, see Sect. 7.2, WLAP programs, see
Sect. 7.3, and some parameterized polyhedral process networks, see Sect. 7.4.

Actors in dataflow actor networks communicate point to point over FIFO
buffered channels. Conceptually, buffer capacities are unlimited, and actors syn-
chronize by means of a blocking read protocol: an actor that attempts to read
tokens from a specific channel will block whenever that channel is empty. Writing
tokens will always proceed. Of course, channel FIFO capacities are not unlimited
in practice, so that a mapped DFAN does have a blocking write protocol as well:
an actor that attempts to write tokens to a specific channel will block whenever
that channel is full. A function [c,d] = f (a,b) has to bind to input ports px and py,
respectively, when the function has to receive its arguments a and b, in this order.
Similarly, that function has to bind to ports qx and qy, respectively, when ports qx

and qy are to receive results c and d, in this order.

940 S.S. Bhattacharyya et al.

In the SBF actor, the controller’s selection function μ selects both a function
from the function repertoire and the corresponding input and output ports. Note that
a function that is selected from the function repertoire may read arguments and write
results from non-unique input ports and to non-unique output ports, respectively, as
is also the case with polyhedral process networks [73].

This allows to separate function selection and binding, so that reading, executing,
and writing can proceed in a pipelined fashion. Although standard blocking read
and blocking write synchronization is possible, the SBF actor allows for a more
general deterministic dynamic approach. In this approach, the actor behavior is
divided into a channel checking part and a scheduling part. See also Sect. 5. In the
channel checking part, channels are visited without empty or full channel blocking.
A visited input channel Cin returns a Cin.1 signal when the channel is not empty, and
a Cin.0 signal when the channel is empty. And similarly for output channels. These
signals indicate whether or not a particular function from the function repertoire
can fire. In the scheduling part, a function can only be invoked when the channel
checking signals allow it to fire. If not, then the function will not be invoked. As
a consequence, the actor is blocked. Clearly channel checking and scheduling can
proceed in parallel.

9 Summary

This chapter, has reviewed several DSP-oriented dataflow models of computa-
tion that are oriented towards representing dynamic dataflow behavior. As signal
processing systems are developed and deployed for more complex applications,
exploration of such generalized dataflow modeling techniques is of increasing
importance. This chapter has complemented the discussion in [31], which focuses
on the relatively mature class of decidable dataflow modeling techniques, and builds
on the dynamic dataflow principles introduced in certain specific forms [15, 21].

Acknowledgements In this work, Bhattacharyya has been supported in part by the US Air Force
Office of Scientific Research. The authors also thank Marc Geilen (m.c.w.geilen@tue.nl) and
Sander Stuijk (s.stuijk@tue.nl), both from the Eindhoven University of Technology, for their
contribution to Sect. 6.

References

1. Annevelink, J.: HIFI: A design method for implementing signal processing algorithms on
VLSI processor arrays. Ph.D. thesis, Delft University of Technology, Department of Electical
Engineering, Delft, The Netherlands (1988)

2. Backus, J.: Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs. Communications of the ACM 21(8), 613–641 (1978)

Dynamic Dataflow Graphs 941

3. Bekooij, M., Hoes, R., Moreira, O., Poplavko, P., Pastrnak, M., Mesman, B., Mol, J., Stuijk, S.,
Gheorghita, V., van Meerbergen, J.: Dataflow analysis for real-time embedded multiprocessor
system design. In: P. van der Stok (ed.) Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices, pp. 81–108. Springer (2005)

4. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral model is more
widely applicable than you think. In: Proc. International Conference on Compiler Construction
(ETAPS CC’10). Paphos, Cyprus (2010)

5. Berg, H., Brunelli, C., Lucking, U.: Analyzing models of computation for software defined
radio applications. In: Proceedings of the International Symposium on System-on-Chip (2008)

6. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP systems.
IEEE Transactions on Signal Processing 49(10), 2408–2421 (2001)

7. Bhattacharyya, S.S., Buck, J.T., Ha, S., Lee, E.A.: Generating compact code from dataflow
specifications of multirate signal processing algorithms. IEEE Transactions on Circuits and
Systems — I: Fundamental Theory and Applications 42(3), 138–150 (1995)

8. Bhattacharyya, S.S., Eker, J., Janneck, J.W., Lucarz, C., Mattavelli, M., Raulet, M.: Overview
of the MPEG reconfigurable video coding framework. Journal of Signal Processing Systems
(2010). DOI:10.1007/s11265-009-0399-3

9. Bhattacharyya, S.S., Leupers, R., Marwedel, P.: Software synthesis and code generation for
DSP. IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing
47(9), 849–875 (2000)

10. Bijlsma, T., Bekooij, M.J.G., Smit, G.J.M.: Inter-task communication via overlapping read and
write windows for deadlock-free execution of cyclic task graphs. In: Proceedings SAMOS’09,
pp. 140–148. Samos, Greece (2009)

11. Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. Ph.D. thesis, Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley (1993)

12. Collard, J.F.: Automatic parallelization of while-loops using speculative execution. Int. J.
Parallel Program. 23(2), 191–219 (1995)

13. Deprettere, E.F., Rijpkema, E., Kienhuis, B.: Translating imperative affine nested loop
programs to process networks. In: E.F. Deprettere, J. Teich, S. Vassiliadis (eds.) Embedded
Processor Design Challenges, LNCS 2268, pp. 89–111. Springer, Berlin (2002)

14. Eker, J., Janneck, J.W.: CAL language report, language version 1.0 — document edition 1.
Tech. Rep. UCB/ERL M03/48, Electronics Research Laboratory, University of California at
Berkeley (2003)

15. Falk, J., Haubelt, C., Zebelein, C., Teich, J.: Integrated modeling using finite state machines and
dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook
of Signal Processing Systems, second edn. Springer (2013)

16. Feautrier, P.: Dataflow analysis of scalar and array references. Int. Journal of Parallel
Programming 20(1), 23–53 (1991)

17. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Parallel Program-
ming Model, pp. 79–103 (1996)

18. Feautrier, P., Collard, J.F.: Fuzzy array dataflow analysis. Tech. rep., Ecole Normale Superieure
de Lyon (1994). ENS-Lyon/LIP No 94-21

19. Gao, G.R., Govindarajan, R., Panangaden, P.: Well-behaved programs for DSP computation.
In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(1992)

20. Geilen, M.: Synchronous dataflow scenarios. ACM Trans. Embed. Comput. Syst. 10(2),
16:1–16:31 (2011)

21. Geilen, M., Basten, T.: Kahn process networks and a reactive extension. In: S.S. Bhattacharyya,
E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second
edn. Springer (2013)

22. Geilen, M.C.W., Basten, T., Theelen, B.D., Otten, R.J.H.M.: An algebra of pareto points.
Fundamenta Informaticae 78(1), 35–74 (2007)

942 S.S. Bhattacharyya et al.

23. Geilen, M.C.W., Falk, J., Haubelt, C., Basten, T., Theelen, B.D., Stuijk, S.: Performance
analysis of weakly-consistent scenario-aware dataflow graphs. Tech. Rep. ESR-2011-03,
Eindhoven University of Technology (2011)

24. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow scenarios.
In: Proceedings of the eighth IEEE/ACM/IFIP international conference on hardware/software
codesign and system synthesis, CODES/ISSS ’10, pp. 125–134. ACM, New York, NY, USA
(2010)

25. Geuns, S., Bijlsma, T., Corporaal, H., Bekooij, M.: Parallelization of while loops in nested loop
programs for shared-memory multiprocessor systems. In: Proc. Int. Conf. Design, Automation
and Test in Europe (DATE’11). Grenoble, France (2011)

26. Gheorghita, S.V., Stuijk, S., Basten, T., Corporaal, H.: Automatic scenario detection for im-
proved WCET estimation. In: Proceedings of the 42nd annual Design Automation Conference,
DAC ’05, pp. 101–104. ACM, New York, NY, USA (2005)

27. Girault, A., Lee, B., Lee, E.: Hierarchical finite state machines with multiple concurrency
models. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
18(6), 742 –760 (1999)

28. Griebl, M., Collard, J.F.: Generation of Synchronous Code for Automatic Parallelization of
while-loops. EURO-PAR’95, Springer-Verlag LNCS, number 966, pp. 315–326 (1995)

29. Griebl, M., Lengauer, C.: A communication scheme for the distributed execution of loop nests
with while loops. Int. J. Parallel Programming 23 (1995)

30. Gu, R., Janneck, J., Raulet, M., Bhattacharyya, S.S.: Exploiting statically schedulable regions
in dataflow programs. In: Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, pp. 565–568. Taipei, Taiwan (2009)

31. Ha, S., Oh, H.: Decidable dataflow models for signal processing: Synchronous dataflow and its
extensions. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of
Signal Processing Systems, second edn. Springer (2013)

32. Haykin, S.: Adaptive Filter Theory. Prentice Hall (1996)
33. Hermanns, H.: Interactive Markov chains: and the quest for quantified quality. Springer-Verlag,

Berlin, Heidelberg (2002)
34. Hu, Y.H., Kung, S.Y.: Systolic arrays. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,

J. Takala (eds.) Handbook of Signal Processing Systems, second edn. Springer (2013)
35. Kahn, G.: The semantics of a simple language for parallel programming. In: Proc. of

Information Processing (1974)
36. Kee, H., Wong, I., Rao, Y., Bhattacharyya, S.S.: FPGA-based design and implementation

of the 3GPP-LTE physical layer using parameterized synchronous dataflow techniques. In:
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp.
1510–1513. Dallas, Texas (2010)

37. Keinert, J., Deprettere, E.F.: Multidimensional dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn.
Springer (2013)

38. Kienhuis, B., Deprettere, E.F.: Modeling stream-based applications using the SBF model of
computation. Journal of Signal Processing Systems 34(3), 291–299 (2003)

39. Kienhuis, B., Rijpkema, E., Deprettere, E.F.: Compaan: Deriving Process Networks from
Matlab for Embedded Signal Processing Architectures. In: Proc. 8th International Workshop
on Hardware/Software Codesign (CODES’2000). San Diego, CA, USA (2000)

40. Ko, M., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S.S., Kienhuis, B., Deprettere,
E.: Parameterized looped schedules for compact representation of execution sequences in
DSP hardware and software implementation. IEEE Transactions on Signal Processing 55(6),
3126–3138 (2007)

41. Lin, Y., Choi, Y., Mahlke, S., Mudge, T., Chakrabarti, C.: A parameterized dataflow language
extension for embedded streaming systems. In: Proceedings of the International Symposium
on Systems, Architectures, Modeling and Simulation, pp. 10–17 (2008)

42. Mattavelli, M., Raulet, M., Janneck, J.W.: MPEG reconfigurable video coding. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, second edn. Springer (2013)

Dynamic Dataflow Graphs 943

43. Moreira, O.: Temporal analysis and scheduling of hard real-time radios running on a multi-
processor. Ph.D. thesis, Eindhoven University of Technology (2012)

44. Nadezhkin, D., Nikolov, H., Stefanov, T.: Translating affine nested-loop programs with
dynamic loop bounds into polyhedral process networks. In: ESTImedia, pp. 21–30 (2010)

45. Nadezhkin, D., Stefanov, T.: Automatic derivation of polyhedral process networks from while-
loop affine programs. In: ESTImedia, pp. 102–111 (2011)

46. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: Proceedings of
the International Conference on Formal Methods and Models for Codesign (2004)

47. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: Proc. of
MEMOCODE, pp. 179–188 (2004)

48. Nikolov, H., Stefanov, T., Deprettere, E.: Systematic and automated multi-processor system
design, programming, and implementation. IEEE Transactions on Computer-Aided Design
27(3), 542–555 (2008)

49. Plishker, W., Sane, N., Bhattacharyya, S.S.: A generalized scheduling approach for dynamic
dataflow applications. In: Proceedings of the Design, Automation and Test in Europe Confer-
ence and Exhibition, pp. 111–116. Nice, France (2009)

50. Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized
scheduling of dynamic dataflow applications. In: Proceedings of the Design Automation
Conference, pp. 923–926. San Francisco (2009)

51. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattacharyya, S.S.: Functional DIF for rapid
prototyping. In: Proceedings of the International Symposium on Rapid System Prototyping,
pp. 17–23. Monterey, California (2008)

52. Poplavko, P., Basten, T., van Meerbergen, J.L.: Execution-time prediction for dynamic
streaming applications with task-level parallelism. In: DSD, pp. 228–235 (2007)

53. Raman, E., Ottoni, G., Raman, A., Bridges, M.J., August, D.I.: Parallel-stage decoupled
software pipelining. In: Proc. 6th annual IEEE/ACM international symposium on Code
generation and optimization, pp. 114–123 (2008)

54. Rauchwerger, L., Padua, D.: Parallelizing while loops for multiprocessor systems. In: In
Proceedings of the 9th International Parallel Processing Symposium (1995)

55. Rijpkema, E., Deprettere, E., Kienhuis, B.: Deriving process networks from nested loop
algorithms. Parallel Processing Letters 10(2), 165–176 (2000)

56. Roquier, G., Wipliez, M., Raulet, M., Janneck, J.W., Miller, I.D., Parlour, D.B.: Automatic
software synthesis of dataflow program: An MPEG-4 simple profile decoder case study. In:
Proceedings of the IEEE Workshop on Signal Processing Systems (2008)

57. Saha, S., Puthenpurayil, S., Bhattacharyya, S.S.: Dataflow transformations in high-level
DSP system design. In: Proceedings of the International Symposium on System-on-Chip,
pp. 131–136. Tampere, Finland (2006)

58. Shlien, S.: Guide to MPEG-1 audio standard. Broadcasting, IEEE Transactions on 40(4),
206 –218 (1994)

59. Shojaei, H., Ghamarian, A., Basten, T., Geilen, M., Stuijk, S., Hoes, R.: A parameterized
compositional multi-dimensional multiple-choice knapsack heuristic for CMP run-time man-
agement. In: Design Automation Conf., DAC 09, Proc., pp. 917–922. ACM (2009)

60. Stefanov, T., Deprettere, E.: Deriving process networks from weakly dynamic applications
in system-level design. In: Proc. IEEE-ACM-IFIP International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS’03), pp. 90–96. Newport Beach,
California, USA (2003)

61. Stefanov, T., Kienhuis, B., Deprettere, E.: Algorithmic transformation techniques for efficient
exploration of alternative application instances. In: Proc. 10th Int. Symposium on Hardware/-
Software Codesign (CODES’02), pp. 7–12. Estes Park CO, USA (2002)

62. Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF For Free. In: Application of Concurrency to
System Design, 6th International Conference, ACSD 2006, Proceedings, pp. 276–278. IEEE
Computer Society Press, Los Alamitos, CA, USA (2006). DOI 10.1109/ACSD.2006.23. URL
http://www.es.ele.tue.nl/sdf3

http://www.es.ele.tue.nl/sdf3

944 S.S. Bhattacharyya et al.

63. Stuijk, S., Geilen, M., Basten, T.: Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Trans. on Computers 57(10), 1331–1345 (2008)

64. Stuijk, S., Geilen, M., Basten, T.: A predictable multiprocessor design flow for streaming
applications with dynamic behaviour. In: Proceedings of the Conference on Digital System
Design, DSD ’10, pp. 548–555. IEEE (2010). DOI 10.1109/DSD.2010.31

65. Stuijk, S., Geilen, M.C.W., Theelen, B.D., Basten, T.: Scenario-aware dataflow: Modeling,
analysis and implementation of dynamic applications. In: ICSAMOS, pp. 404–411 (2011)

66. Theelen, B.D., Geilen, M.C.W., Stuijk, S., Gheorghita, S.V., Basten, T., Voeten, J.P.M.,
Ghamarian, A.: Scenario-aware dataflow. Tech. Rep. ESR-2008-08, Eindhoven University of
Technology (2008)

67. Theelen, B.D., Geilen, M.C.W., Voeten, J.P.M.: Performance model checking scenario-aware
dataflow. In: Proceedings of the 9th international conference on Formal modeling and analysis
of timed systems, FORMATS’11, pp. 43–59. Springer-Verlag, Berlin, Heidelberg (2011)

68. Theelen, B.D.: A performance analysis tool for scenario-aware streaming applications. In:
QEST, pp. 269–270 (2007)

69. Theelen, B.D., Florescu, O., Geilen, M.C.W., Huang, J., van der Putten, P.H.A., Voeten, J.P.M.:
Software/hardware engineering with the parallel object-oriented specification language. In:
Proceedings of the 5th IEEE/ACM International Conference on Formal Methods and Models
for Codesign, MEMOCODE ’07, pp. 139–148. IEEE Computer Society, Washington, DC,
USA (2007)

70. Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.:
A scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In: Proceedings of MEMOCODE, pp 185194, pp. 185–194. IEEE Computer Society
Press (2006)

71. Theelen, B.D., Katoen, J.P., Wu, H.: Model checking of scenario-aware dataflow with CADP.
In: DATE, pp. 653–658 (2012)

72. Turjan, A., Kienhuis, B., Deprettere, E.: Realizations of the Extended Linearization Model. in
Domain-Specific Embedded Multiprocessors (Chapter 9), Marcel Dekker, Inc. (2003)

73. Verdoolaege, S.: Polyhedral process networks. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn. Springer
(2013)

74. Verdoolaege, S., Nikolov, H., Stefanov, T.: pn: a tool for improved derivation of process
networks. EURASIP J. Embedded Syst. (2007)

75. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting integer points
in parametric polytopes using Barvinok’s rational functions. Algorithmica (2007)

76. Wiggers, M.: Aperiodic multiprocessor scheduling. Ph.D. thesis, University of Twente (2009)
77. Willink, E.D., Eker, J., Janneck, J.W.: Programming specifications in CAL. In: Proceedings of

the OOPSLA Workshop on Generative Techniques in the context of Model Driven Architecture
(2002)

78. Zhai, J.T., Nikolov, H., Stefanov, T.: Modeling adaptive streaming applications with parameter-
ized polyhedral process networks. In: Proceedings of the 48th Design Automation Conference,
DAC ’11, pp. 116–121. ACM, New York, NY, USA (2011)

	Dynamic Dataflow Graphs
	1 Motivation for Dynamic DSP-Oriented Dataflow Models
	2 Boolean Dataflow
	3 CAL
	4 Parameterized Dataflow
	5 Enable-Invoke Dataflow
	6 Scenario Aware Dataflow
	6.1 SADF Graphs
	6.2 Analysis
	6.3 Synthesis

	7 Dynamic Polyhedral Process Networks
	7.1 Weakly Dynamic Programs
	7.2 Dynamic Loop-Bounds
	7.3 Dynamic While-Loops
	7.4 Parameterized Polyhedral Process Networks

	8 The Stream-Based Function Model
	8.1 The Stream-Based Function Actor
	8.2 The Formal Model

	9 Summary
	References

