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Abstract Much of the work to date on dataflow models for signal processing
system design has focused on decidable dataflow models. This chapter reviews
more general dataflow modeling techniques targeted to applications that include
dynamic dataflow behavior. The complexity in such applications demands for in-
creased degrees of agility and flexibility in dataflow models. With the application
of dataflow techiques addressing these challenges, interest in classes of more gen-
eral dataflow models has risen correspondingly. We first provide a motivation for
dynamic dataflow models of computation, and review a number of specific methods
that have emerged in this class of models. The dynamic dataflow models covered
in this chapter are Boolean Dataflow, CAL, Parameterized Dataflow, Enable-Invoke
Dataflow, Scenario-Aware Dataflow, and Dynamic Polyhedral Process Networks.

1 Motivation for Dynamic DSP-Oriented Dataflow Models

The decidable dataflow models covered in [30] are useful for their predictabil-
ity, strong formal properties, and amenability to powerful optimization techniques.
However, for many signal processing applications, it is not possible to represent all
of the functionality in terms of purely decidable dataflow representations. For ex-
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ample, functionality that involves conditional execution of dataflow subsystems or
actors with dynamically varying production and consumption rates can in general
not be expressed with decidable dataflow models.

The need for expressive power beyond what decidable dataflow techniques pro-
vide is becoming increasingly important in the design and implementation of signal
processing systems. This is due to the increasing levels of application dynamics that
must be supported in such systems. Examples include the need to support multi-
standard and other forms of multi-mode signal processing operation; variable data
rate processing; and complex forms of adaptive signal processing behaviors.

Intuitively, dynamic dataflow models can be viewed as dataflow modeling tech-
niques in which the production and consumption rates of actors can vary in ways that
are not entirely predictable at compile time. It is possible to define dynamic dataflow
modeling formats that are decidable. For example, by restricting the types of dy-
namic dataflow actors, and by restricting the usage of such actors to a small set of
graph patterns or “schemas”. Gao, Govindarajan, and Panangaden defined the class
of well-behaved dataflow graphs, which provides a dynamic dataflow modeling en-
vironment that is amenable to compile-time bounded memory verification [18].

Most existing DSP-oriented dynamic dataflow modeling techniques do not pro-
vide decidable dataflow modeling capabilities. In other words, in exchange for the
increased modeling flexibility (expressive power), one must typically give up guar-
antees on compile-time buffer underflow (deadlock) and overflow validation. In
dynamic dataflow environments, analysis techniques may succeed in guaranteeing
avoidance of buffer underflow and overflow for a significant subset of specifications.
However, in general, specifications may exist that “break” these analysis techniques
in the sense that compile-time analysis gives inconclusive results.

Dynamic dataflow techniques can be divided into two general classes:

• Models formulated explicitly in terms of interacting combinations of state ma-
chines and dataflow graphs. In this case, the dataflow dynamics are represented
directly in terms of transitions within one or more underlying state machines

• Models where the dataflow dynamics are represented using alternative means

The separation in this dichotomy can become somewhat blurry for models that have
a well-defined state structure governing the dataflow dynamics, but whose design in-
terface does not expose this structure directly to the programmer. Dynamic dataflow
techniques in the first category are covered in [30] — in particular, those based on
explicit interactions between dataflow graphs and finite state machines. This chap-
ter focusses on the second category1. Specifically, dynamic dataflow modeling tech-
niques that involve different kinds of modeling abstractions, apart from state tran-
sitions, as the key mechanisms for capturing dataflow behaviors and their potential
for run-time variation.

Numerous dynamic dataflow modeling techniques have evolved over the past
couple of decades. A comprehensive coverage of these techniques, even after ex-
cluding the “state-centric” ones, is out of the scope this chapter. The objective is

1 Except for the Scenario Aware Dataflow model in Section 6.



to provide a representative cross-section of relevant dynamic dataflow techniques.
The emphasis is on techniques for which useful forms of compile-time analysis
methods have been developed. Such techniques can be important for exploiting the
specialized properties exposed by these models, and improving predictability and
efficiency when deriving simulations or implementations.

2 Boolean Dataflow

The Boolean Dataflow (BDF) model of computation extends Synchronous Dataflow
(SDF) with a class of dynamic dataflow actors in which production and consumption
rates on actor ports can vary as two-valued functions of control tokens. Such control
tokens are consumed from or produced onto designated control ports of dynamic
dataflow actors. An actor input port is referred to as a conditional input port if its
consumption rate can vary in such a way. Similarly an output port with a dynami-
cally varying production rate under this model is referred to as a conditional output
port. Given a conditional input port p of a BDF actor A, there is a corresponding
input port Cp, called the control input for p. The consumption rate on Cp is stati-
cally fixed at one token per invocation of A. The number of tokens consumed from
p during a given invocation of A is a two-valued function of the data value that is
consumed from Cp during the same invocation. The dynamic dataflow behavior for
a conditional output port is characterized in a similar way, except that the number of
tokens produced on such a port can be a two-valued function of a token consumed
from a control input port or of a token produced onto a control output port. If a con-
ditional output port q is controlled by a control output port Cq, then the production
rate on the control output is statically fixed at one token per actor invocation. The
number of tokens produced on q during a given invocation is a two-valued function
of the data value produced onto Cq during the same invocation of the actor.

Two fundamental dynamic dataflow actors in BDF are the switch and select ac-
tors, which are illustrated in Figure 1a. The switch actor has two input ports, a
control input port wc and a data input port wd , and two output ports wx and wy. The
port wc accepts Boolean valued tokens, and the consumption rate on wd is statically
fixed at one token per actor invocation. On a given invocation of a switch actor, the
data value consumed from wd is copied to a token that is produced on either wx
or wy depending on the Boolean value consumed from wc. If this Boolean value is
true, then the value from the data input is routed to wx, and no token is produced
on wy. Conversely, if the control token value is false, then the value from wd is
routed to wy with no token produced on wx.

A BDF select actor has a single control input port sc, two additional input ports
(data input ports) sx and sy, and a single output port so. Similar to the control port
of the switch actor, port sc accepts Boolean valued tokens, and the production rate
on so is statically fixed at one token per invocation. On each invocation of the select
actor, data is copied from a single token from either sx or sy to so depending on
whether the corresponding control token value is true or false respectively.
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Fig. 1: (a) Switch and select actors in Boolean dataflow, and (b) An if-then-else
construct expressed in terms of Boolean dataflow.

Switch and select actors can be integrated along with other actors in various ways
to express different kinds of control constructs. For example, Figure 1b illustrates
an if-then-else construct, where the actors A and B are applied conditionally based
on a stream of control tokens. Here A and B are SDF actors that each consume one
token and produce one token on each invocation.

Buck has developed scheduling techniques to automatically derive efficient con-
trol structures from BDF graphs under certain conditions [9]. Buck also showed that
BDF is Turing complete, and furthermore, that SDF augmented with just switch
and select (and no other dynamic dataflow actors) is also Turing complete. This
latter result provides a convenient framework to demonstrate Turing completeness
for other kinds of dynamic dataflow models, such as the Enable-Invoke Dataflow
(EIDF) model described in Section 5. In particular, if a given model of computa-
tion can express all SDF actors as well as the functionality associated with the BDF
switch and select actors, then such a model can be shown to be Turing complete.

3 CAL

In addition to providing a dynamic dataflow model of computation that is suit-
able for signal processing system design, CAL provides a complete programming
language. It is furthermore supported by a growing family of development tools
for hardware and software implementation. The name “CAL” is derived as a self-
referential acronym for the CAL Actor Language. CAL was developed by Eker and
Janneck at U. C. Berkeley [13]. It has since evolved into an actively-developed,
widely-investigated language for design and implementation of embedded software
and field programmable gate array applications (e.g., see [56, 29, 78]). One of the
most notable developments to date in the evolution of CAL has been its adoption as
part of the recent MPEG standard for Reconfigurable Video Coding (RVC) [6].



A CAL program is specified as a network of CAL actors, where each actor is
a dataflow component that is expressed in terms of a general underlying form of
dataflow. This general form of dataflow admits both static and dynamic behaviors,
and even non-deterministic behaviors. Like typical actors in any dataflow program-
ming environment, a CAL actor in general has a set of input ports and a set of output
ports that define interfaces to the enclosing dataflow graph. A CAL actor also en-
capsulates its own private state, which can be modified by the actor as it executes
but cannot be modified directly by other actors.

The functional specification of a CAL actor is decomposed into a set of actions,
where each action can be viewed as a template for a specific class of firings or in-
vocations of the actor. Each firing of an actor corresponds to a specific action and
executes based on the code that is associated with that action. The core function-
ality of actors therefore is embedded within the code of the actions. Actions can
in general consume tokens from actor input ports, produce tokens on output ports,
modify the actor state, and perform computation in terms of the actor state and the
data obtained from any consumed tokens.

The number of tokens produced and consumed by each action with respect to
each actor output and input port, respectively, is declared up front as part of the
declaration of the action. An action need not consume data from all input ports nor
must it produce data on all output ports. However, the ports with which the action
exchanges data, and the associated rates of production and consumption must be
constant for the action. Across different actions, however, there is no restriction of
uniformity in production and consumption rates. This flexibility enables the model-
ing of dynamic dataflow in CAL.

A CAL actor A can be represented as a sequence of four elements σ0(A), Σ(A),
Γ (A), pri(A), where Σ(A) represents the set of all possible values that the state of
A can take. σ0(A) ∈ Σ(A) represents the initial state of the actor, before any actor
in the enclosing dataflow graph has started execution. Γ (A) represents the set of
actions of A. Finally, pri(A) is a partial order relation, called the priority relation of
A, on Γ (A) that specifies relative priorities between actions.

Actions execute based on associated guard conditions as well as the priority re-
lation of the enclosing actor. More specifically, each actor has an associated guard
condition, which can be viewed as a Boolean expression in terms of the values of
actor input tokens and actor state. An actor A can execute whenever its associated
guard condition is satisfied (true-valued), and no higher-priority action (based on
the priority relation pri(A)) has a guard condition that is also satisfied.

In summary, CAL is a language for describing dataflow actors in terms of ports,
actions (firing templates), guards, priorities, and state. This finer, intra-actor granu-
larity of formal modeling within CAL allows for novel forms of automated analysis
for extracting restricted forms of dataflow structure. Such restricted forms of struc-
ture can be exploited with specialized techniques for verification or synthesis to
derive more predictable or efficient implementations.

An example of the capability for specialized region detection in CAL programs
is the technique of deriving and exploiting so-called Statically Schedulable Regions
(SSRs) [29]. Intuitively, an SSR is a collection of CAL actions and ports that can be



scheduled and optimized statically using the full power of static dataflow techniques,
such as those available for SDF, and integrated into the schedule for the overall CAL
program through a top-level dynamic scheduling interface.

SSRs can be derived through a series of transformations that are applied on inter-
mediate graph representations. These representations capture detailed relationships
among actor ports and actions, and provide a framework for effective quasi-static
scheduling of CAL-based dynamic dataflow representations. Quasi-static schedul-
ing is the construction of dataflow graph schedules in which a significant propor-
tion of overall schedule structure is fixed at compile-time. Quasi-static scheduling
has the potential to significantly improve predictability, reduce run-time scheduling
overhead, and as discussed above, expose subsystems whose internal schedules can
be generated using purely static dataflow scheduling techniques.

A further discussion of CAL can be found in [43], which presents the application
of CAL to reconfigurable video coding.

4 Parameterized Dataflow

Parameterized Dataflow is a meta-modeling approach for integrating dynamic pa-
rameters and run-time adaptation of parameters in a structured way into the class
of dataflow models of computations that have a well-defined concept of a graph it-
eration [4]. For example, SDF and Cyclo-Static SDF (CSDF), which are discussed
in [30], and Multi-Dimensional SDF (MDSDF), which is discussed in [39], have
well defined concepts of iterations based on solutions to the associated forms of bal-
ance equations. Each of these models can be integrated with Parameterized Dataflow
to provide a dynamically parameterizable form of the original model.

When Parameterized Dataflow is applied to generalize a specialized dataflow
model such as SDF, CSDF, or MDSDF, the specialized model is referred to as the
base model. The resulting dynamically parameterizable form of the base model is
referred to as parameterized X, where X denotes the base model. For example, when
Parameterized Dataflow is applied to SDF as the base model, the resulting model of
computation is called Parameterized Synchronous Dataflow (PSDF). PSDF is sig-
nificantly more flexible than SDF as it allows arbitrary parameters of SDF graphs
to be modified at run-time. Furthermore, PSDF provides a useful framework for
quasi-static scheduling, where fixed-iteration looped schedules – such as single ap-
pearance schedules [5] for SDF graphs – can be replaced by parameterized looped
schedules [4, 41]. In such parameterized schedules, loop iteration counts are repre-
sented as symbolic expressions in terms of variables whose values can be adapted
dynamically through computations derived from the enclosing PSDF specification.

Intuitively, Parameterized Dataflow allows arbitrary attributes of a dataflow graph
to be parameterized, with each parameter characterized by an associated domain of
admissible values that the parameter can take on at any given time. Graph attributes
that can be parameterized include scalar or vector attributes of individual actors,
such as the coefficients of a finite impulse response filter or the block size associ-



ated with an FFT. Also edge attributes, like the delay of an edge or the data type
associated with tokens transferred across the edge, can be parameterized. A final
parameterization example are graph attributes related to numeric precision, which
may be passed down to selected subsets of actors and edges within the given graph.

The Parameterized Dataflow representation of a computation involves three co-
operating dataflow graphs, which are referred to as the body, subinit, and init graphs.
The body graph typically represents the functional “core” of the computation, while
the subinit and init graphs are dedicated to managing the parameters of the body
graph. In particular, each output port of the subinit graph is associated with a body
graph parameter such that data values produced at the output port are propagated as
new parameter values of the associated parameter. Similarly, output ports of the init
graph are associated with parameter values in the subinit and body graphs.

Changes to body graph parameters, which occur based on new parameter values
computed by the init and subinit graphs, cannot occur at arbitrary points in time.
Instead, once the body graph begins execution it continues uninterrupted through
a graph iteration, where the specific notion of an iteration in this context can be
specified by the user in an application-specific way. For example, in PSDF, the most
natural and general definition for a body graph iteration would be a single SDF
iteration of the body graph (as defined by the SDF repetitions vector [30]).

An iteration of the body graph can however also be defined as some constant
number of iterations, e.g., the number of iterations required to process a fixed-size
block of input data samples. Furthermore, parameters that define the body graph
iteration can be used to parameterize the body graph or the enclosing PSDF spec-
ification at higher levels of the model hierarchy. In this way, the processing that is
defined by a graph iteration can itself be dynamically adapted as the application
executes. For example, the duration (or block length) for fixed-parameter process-
ing may be based on the size of a related sequence of contiguous network packets,
where the sequence size determines the extent of the associated graph iteration.

Body graph iterations can even be defined to correspond to individual actor in-
vocations. This can be achieved by defining an individual actor as the body graph
of a parameterized dataflow specification, or by simply defining the notion of itera-
tion for an arbitrary body graph to correspond to the next actor firing in the graph
execution. Thus, when modeling applications with parameterized dataflow, design-
ers have significant flexibility to control the windows of execution that define the
boundaries at which graph parameters can be changed.

A combination of cooperating body, init, and subinit graphs is called a PSDF
specification. PSDF specifications can be abstracted as PSDF actors in higher level
PSDF graphs, and in this way, PSDF specifications can be integrated hierarchically.

Figure 2 illustrates a PSDF specification for a speech compression system. This
illustration is adapted from [4]. Here, setSp (“set speech”) is an actor that reads a
header packet from a stream of speech data, and configures L, which is a parameter
representing the length of the next speech instance to process. The s1 and s2 actors
are input interfaces that inject successive samples of the current speech instance
into the dataflow graph. The actor s2 zero-pads each speech instance to a length R
(R ≥ L) so that the resulting length is divisible by N, which is the speech segment
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Fig. 2: An illustration of a speech compression system that is modeled using PSDF
semantics. This illustration is adapted from [4].

size. The An (“analyze”) actor performs linear prediction on speech segments, and
produces corresponding auto-regressive (AR) coefficients (in blocks of M samples),
and residual error signals (in blocks of N samples) on its output edges. The actors
q1 and q2 represent quantizers, and complete the modeling of the transmitter com-
ponent of the body graph. The receiver side functionality is modeled in the body
graph starting with the actors d1 and d2, which represent dequantizers. The actor
Sn (“synthesize”) reconstructs speech instances using corresponding blocks of AR
coefficients and error signals. Actor P1 (“play”) represents an output interface for
playing or storing the resulting speech instances.

The model order (number of AR coefficients) M, speech segment size N, and
zero-padded speech segment length R are determined on a per-segment basis by the
selector actor in the subinit graph. Existing techniques, such as the Burg segment
size selection algorithm and AIC order selection criterion [32] can be used for this.

The model of Figure 2 can be optimized to eliminate the zero padding overhead
(modeled by the parameter R). This optimization can be performed by converting
the design to a Parameterized Cyclo-Static Dataflow (PCSDF). In PCSDF, Parame-
terized Dataflow is integrated with CSDF as the base model instead of SDF.

Further details on the examplified speech compression application and its repre-
sentations in PSDF and PCSDF, the semantics of Parameterized Dataflow and PSDF,
and quasi-static scheduling techniques for PSDF can be found in [4]. Parameterized
Cyclo-Static Dataflow (PCSDF), the integration of Parameterized Dataflow meta-
modeling with Cyclo-Static Dataflow, is explored further in [57]. The exploration
of different models of computation, including PSDF and PCSDF, for modeling soft-
ware defined radio systems is described in [3]. In [38], Kee et al. explore the appli-
cation of PSDF techniques to field programmable gate array implementation of the
physical layer for 3GPP-Long Term Evolution (LTE). The integration of concepts
related to parameterized dataflow in language extensions for embedded streaming
systems is described in [42]. General techniques for analysis and verification of hi-
erarchically reconfigurable dataflow graphs are explored in [47].



5 Enable-Invoke Dataflow

Enable-Invoke Dataflow (EIDF) is another DSP-oriented dynamic dataflow model-
ing technique [51]. The applicability of EIDF has been demonstrated in the con-
text of behavioral simulation, FPGA implementation, and prototyping of different
scheduling strategies [51, 49, 50]. This latter capability – prototyping of scheduling
strategies – is particularly important in analyzing and optimizing embedded soft-
ware. The importance and complexity of carefully analyzing scheduling strategies
are high, even for the restricted SDF model where scheduling decisions have a major
impact on key implementation metrics [7]. The incorporation of dynamic dataflow
features makes the scheduling problem more critical since application behaviors are
less predictable and more difficult to understand through analytical methods.

EIDF is based on a formalism in which actors execute through dynamic tran-
sitions among modes. Although each mode has constant production/consumption
rate behavior, different modes can have different dataflow rates. Unlike other forms
of mode-oriented dataflow specification, SDF-integrated starcharts [30], Syste-
Moc [14], and CAL (see Section 3), EIDF imposes a strict separation between fire-
ability checking (checking whether or not the next mode has sufficient data to exe-
cute), and mode execution (carrying out the execution of a given mode). This allows
for lightweight fireability checking since it is completely separated from mode exe-
cution. Furthermore, the approach improves predictability of mode executions since
there is no waiting for data (blocking reads) – the time required to access input data
is not affected by scheduling decisions or global dataflow graph state.

For a given EIDF actor, the specification for each mode of the actor includes the
number of tokens that is consumed on each input port, the number of tokens that is
produced on each output port, and the computation (the invoke function) that is to be
performed when the actor is invoked in the given mode. The specified computation
must produce the designated number of tokens on each output port. The invoke
function must also produce a value for the next mode of the actor, which determines
the number of input tokens required for and the computation to be performed during
the next actor invocation. The next mode can in general depend on the current mode
as well as the input data that is consumed as the mode executes.

At any given time between mode executions (actor invocations), an enclosing
scheduler can query the actor using the enable function of the actor. The enable
function can only examine the number of tokens on each input port (without con-
suming any data), and based on these “token populations”, the function returns a
Boolean value indicating whether or not the next mode has enough data to execute
to completion without waiting for data on any port.

The set of possible next modes for a given actor at a given point in time can in
general be empty or contain one or multiple elements. If the next mode set is empty
(i.e., it is null), then the actor cannot be invoked again before it is somehow reset or
re-initialized from environment that controls the enclosing dataflow graph. A null
next mode is therefore equivalent to a transition to a mode that requires an infinite
number of tokens on an input port. The provision for multi-element sets of next
modes allows for natural representation of non-determinism in EIDF specifications.
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Fig. 3: An illustration of the design of a switch actor in CFDF.

When the set of next modes for a given actor mode is restricted to have at most
one element, the resulting model of computation, called Core Functional Dataflow
(CFDF), is a deterministic, Turing complete model [51]. CFDF semantics underlie
the Functional DIF simulation environment for behavioral simulation of signal pro-
cessing applications. Functional DIF integrates CFDF-based dataflow graph speci-
fication using the Dataflow Interchange Format (DIF). DIF is a textual language for
DSP-oriented dataflow graphs and Java-based specifications of intra-actor function-
ality covering enable and invoke functions, and next mode computations [51].

Figure 3 and Figure 4 illustrate, respectively, the design of a CFDF actor and its
implementation in functional DIF. This actor provides functionality that is equiva-
lent to the Boolean Dataflow switch actor described in Section 2.

6 Scenario-Aware Dataflow

This Section discusses Scenario-Aware Dataflow (SADF), which is a generalization
of dataflow models with strict periodic or static behavior. Like many dataflow mod-
els, SADF is primarily a coordination language that highlights how actors (which
are potentially executed in parallel) interact. To express dynamism, SADF distin-
guishes data and control explicitly. The control-related coherency between the be-
havior (and hence, the resource requirements) of different parts of a signal process-
ing application can be captured with so-called scenarios [25]. The scenarios com-
monly coincide with dissimilar (but within themselves more static) modes of opera-



public CFSwitch() {

    _control       = addMode("control");

    _control_true  = addMode("control_true");

    _control_false = addMode("control_false");

    _data_in       = addInput("data_in");

    _control_in    = addInput("control_in");

    _true_out      = addOutput("true_out");

    _false_out     = addOutput("false_out");

    _control.setConsumption(_control_in, 1);

    _control_true.setConsumption(_data_in, 1);

    _control_true.setProduction(_true_out, 1);

    _control_false.setConsumption(_data_in, 1);

    _control_false.setProduction(_false_out, 1);

}

a) Constructor
(defines modes and dataflow behavior)

public boolean enable(CoreFunctionMode mode) {

    if (_control == mode) {

        if (peek(_control_in) > 0) {

            return true;

        }

        return false;

    } else if (_control_true == mode) {

        if (peek(_data_in) > 0) {

            return true;

        }

        return false;

    } else if (_control_false == mode) {

        if (peek(_data_in) > 0) {

            return true;

        }

        return false;

    }

    return false;

}

b) Enable Function
(determines whether firing condition is met)

public CoreFunctionMode invoke(CoreFunctionMode mode) {

    if (_init == mode) {

        return _control;

    }

    if (_control == mode) {

        if ((Boolean)pullToken(_control_in)) {

            return _control_true;

        } else {

            return _control_false;

        }

    }

    if (_control_true == mode) {

        Object obj = pullToken(_data_in);

        pushToken(_true_out, obj);

        return _control;

    }

    if (_control_false == mode) {

        Object obj = pullToken(_data_in);

        pushToken(_false_out, obj);

        return _control;

    }

}

c) Invoke Function
(performs action and determines next mode)

Fig. 4: An implementation of the switch actor design of Figure 3 in the functional
DIF environment.

tion originating, for example, from different parameter settings, sample rate conver-
sion factors, or the signal processing operations to perform. Scenarios are typically
defined by clustering operational situations with similar resource requirements [25].
The scenario-concept in SADF allows for more precise (quantitative) analysis re-
sults compared to applying SDF-based analysis techniques. Moreover, common
subclasses of SADF can be synthesized into efficient implementations [66, 35].



6.1 SADF Graphs

We introduce SADF by some examples from the multi-media domain. We first con-
sider the MPEG-4 video decoder for the Simple Profile from [71, 67]. It supports
video streams consisting of Intra (I) and Predicted (P) frames. For an image size of
176× 144 pixels (QCIF), there are 99 macro blocks to decode for I frames and no
motion vectors. For P frames, such motion vectors determine the new position of
certain macro blocks relative to the previous frame. The number of motion vectors
and macro blocks to process for P frames ranges between 0 and 99. The MPEG-4
decoder clearly shows variations in the functionality to perform and in the amount of
data to communicate between the operations. This leads to large fluctuations in re-
source requirements [52]. The order in which the different situations occur strongly
depends on the video content and is generally not periodic.

Figure 5 depicts an SADF graph for the MPEG-4 decoder in which 9 different
scenarios are identified. SADF distinguishes two types of actors: kernels (solid ver-
tices) model the data processing parts, whereas detectors (dashed vertices) control
the behavior of actors through scenarios2. Moreover, data channels (solid edges) and
control channels (dashed edges) are distinguished. Control channels communicate
scenario-valued tokens that influence the control flow. Data tokens do not influence
the control flow. The availability of tokens in channels is shown with a dot. Here,
such dots are labeled with the number of tokens in the channel. The start and end
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Fig. 5: Modeling the MPEG-4 decoder with SADF.

2 In case of one detector, SADF literature may not show the detector and control channels explicitly.



points of channels are labeled with production and consumption rates respectively.
They refer to the number of tokens atomically produced respectively consumed by
the connected actor upon its firing. The rates can be fixed or scenario-dependent,
similar as in PSDF. Fixed rates are positive integers. Parameterized rates are valued
with non-negative integers that depend on the scenario. The parameterized rates for
the MPEG-4 decoder are listed in Figure 5b. A value of 0 expresses that data depen-
dencies are absent or that certain operations are not performed in those scenarios.
Studying Figure 5b reveals that for any given scenario, the rate values yield a con-
sistent SDF graph. In each of these scenario graphs, detector FD has a repetition
vector entry of 1 [71], which means that scenario changes as prescribed by the be-
havior of FD may only occur at iteration boundaries of each scenario graph. This is
not necessarily true for SADF in general as discussed below.

SADF specifies execution times of actors (from a selected time domain, see
Subsection 6.2) per scenario. Figure 5c lists the worst-case execution times of the
MPEG-4 decoder for an ARM7TDMI processor. The tables in Figure 5 show that
the worst-case communication requirements occur for scenario P99, in which all ac-
tors are active and production/consumption rates are maximal. Scenario P99 also
requires maximal execution times for VLD, IDCT, and MC, while for RC, it is sce-
nario I in which the worst-case execution time occurs. Traditional SDF-based ap-
proaches need to combine these worst-case requirements into one (unrealistically)
conservative model, which yields too pessimistic analysis results.

An important aspect of SADF is that sequences of scenarios are made explicit
by associating state machines to detectors. The dynamics of the MPEG-4 decoder
originate from control-flow code that (implicitly or explicitly) represents a state-
machine with video stream content dependent guards on the transitions between
states. One can think of if-statements that distinguish processing I frames from pro-
cessing P frames. For the purpose of compile-time analysis, SADF abstracts from
the content of data tokens (similar to SDF and CSDF) and therefore also from the
concrete conditions in control-flow code. Different types of state machines can be
used to model the occurrences of scenarios, depending on the compile-time analysis
needs as presented in Subsection 6.2. The dynamics of the MPEG-4 decoder can be
captured by a state-machine of 9 states (one per scenario) associated to detector FD.

The operational behavior of actors in SADF follows two steps, similar to the
switch and select actors in BDF (see Section 2) and to EIDF (see Section 5). The
first step covers the control part which establishes the mode of operation. The sec-
ond step is like the traditional data flow behavior of SDF actors3 in which data is
consumed and produced. Kernels establish their scenario in the first step when a
scenario-valued token is available on their control inputs. The operation mode of
detectors is established based on external and internal forces. We use subscenario
to denote the result of the internal forces affecting the operation mode. External
forces are the scenario-valued tokens available on control inputs (similar as for ker-
nels). The combination of tokens on control inputs for a detector determine its sce-

3 Execution of the reflected function or program is enabled when sufficient tokens are available on
all (data) inputs, and finalizes (after a certain execution time) with producing tokens on the outputs.



nario4, which (deterministically) selects a corresponding state-machine. A transition
is made in the selected state machine, which establishes the subscenario. Where the
scenario determines values for parameterized rates and execution time details for
kernels, it is the subscenario that determines these aspects for detectors. Tokens
produced by detectors onto control channels are scenario-valued to coherently af-
fect the behavior of controlled actors, which is a key feature of SADF. Actor firings
in SADF block until sufficient tokens are available. Hence, the execution of different
scenarios can overlap in a pipelined fashion. For example, in the MPEG-4 decoder,
IDCT is always ready to be executed immediately after VLD, which may already
have accepted a control token with a different scenario value from FD. The ability
to express such so-called pipelined reconfiguration is another key feature of SADF.

We now turn our attention to the MP3 audio decoder example from [67] depicted
in Figure 6. It illustrates that SADF graphs can contain multiple detectors, which
may even control each other’s behavior. MP3 decoding transforms a compressed au-
dio bitstream into pulse code modulated data. The stream is partitioned into frames
of 1152 mono or stereo frequency components, which are divided into two gran-
ules of 576 components structured in blocks [58]. MP3 distinguishes three frame
types: Long (L), Short (S) and Mixed (M), and two block types: Long (BL) and
Short (BS). A Long block contains 18 frequency components, while Short blocks
include only 6 components. Long frames consist of 32 Long blocks, Short frames
of 96 Short blocks and Mixed frames are composed of 2 Long blocks, succeeded
by 90 Short blocks. The frame type and block type together determine the operation
mode. Neglecting that the frame types and specific block type sequences are corre-
lated leads to unrealistic models. The sequences of block types is dependent on the
frame types as reflected in the structure of source code of the MP3 audio decoder.
SADF supports hierarchical control to intuitively express this kind of correlation
between different aspects that determine the scenario.
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Fig. 6: Modeling an MP3 decoder with SADF using hierarchical control.

4 If a detector has no control inputs, it operates in a default scenario ε and has one state machine.



Rate Scenario
L S M

a, c 576 0 36
b, d 0 576 540

Rate (Sub)Scenario
LL SS LS SL M

e 0 576 0 576 36
f 576 0 576 0 540
g 0 576 576 0 540
h 576 0 0 576 36
x 1 1 1 1 2

Rate Scenario
BL BS

i, j 18 0
k, m 0 6
l, n 18 6

Rate SubScenario
LBL SBS MBL MBS

y, z 32 96 2 90

Scenario L Scenario S

LBL SBS

Scenario M

MBS MBL

a) Parameterized Rates b) State Machines for BDL and BDR

Fig. 7: Properties of the MP3 decoder model.

Figure 7a lists the parameterized rates for the MP3 decoder. Only five combina-
tions of frame types occur for the two audio channels combined. We use a two-letter
abbreviation to indicate the combined fame type for the left and right audio channel
respectively: LL, SS, LS and SL. Mixed frames M cover both audio channels simul-
taneously. Detector FD determines the frame type with a state machine of 5 states,
each uniquely identifying a subscenario in {LL, SS, LS, SL, M}. The operation mode
of kernel S depends on the frame types for both audio channels together and there-
fore it operates according to a scenario from this same set. The scenario of kernels
RQL, ROL and RQR, ROR is only determined by the frame type for either the left or
right audio channel. They operate in scenario S, M or L by receiving control tokens
from FD, valued with either the left or right letter in LL, SS, LS, SL or with M.

Detectors BDL and BDR identify the appropriate number and order of Short and
Long blocks based on the frame scenario, which they receive from FD as control
tokens valued L, S or M. From the perspective of BDL and BDR, block types BL and
BS are refinements (subscenarios) of the scenarios L, S and M. Figure 7b shows the
three state machines associated with BDL as well as BDR. Each of their states im-
plies one of the possible subscenarios in {LBL,SBS,MBL,MBS}. The value of the
control tokens produced by BDL and BDR to kernels ARL, IMDCTL, FIL and ARR,
IMDCTR, FIR in each of the 4 possible subscenarios matches the last two letters of
the subscenario name (i.e., BL or BS). Although subscenarios LBL and MBL both
send control tokens valued BL, the difference between them is the number of such
tokens (similarly for subscenarios SBS and MBS).

Consider decoding of a Mixed frame. It implies the production of two M-valued
tokens on the control port of detector BDL. By interpreting each of these tokens,
the state machine for scenario M in Figure 7b makes one transition. Hence, BDL
uses subscenario MBL for its first firing and subscenario MBS for its second firing.
In subscenario MBL, BDL sends 2 BL-valued to kernels ARL, IMDCTL and SPFL,
while 90 BS-valued tokens are produced in subscenario MBS. As a result, ARL,
IMDCTL and SPFL first process 2 Long blocks and subsequently 90 Short blocks
as required for Mixed frames.

The example of Mixed frames highlights a unique feature of SADF: reconfigura-
tions may occur during an iteration. An iteration of the MP3 decoder corresponds to



processing frames, while block type dependent variations occur during processing
Mixed frames. Supporting reconfiguration within iterations is fundamentally differ-
ent from assumptions underlying other dynamic dataflow models, including for ex-
ample PSDF. The concept is orthogonal to hierarchical control. Hierarchical control
is also different from other dataflow models with hierarchy such as Heterogeneous
Dataflow [26]. SADF allows pipelined execution of the controlling and controlled
behavior together, while other approaches commonly prescribe that the controlled
behavior must first finish completely before the controlling behavior may continue.

6.2 Analysis

Various analysis techniques exist for SADF, allowing the evaluation of both quali-
tative properties (such as consistency and absence of deadlock) and best/worst-case
and average-case quantitative properties (like minimal and average throughput). We
briefly discuss consistency of SADF graphs. The MPEG-4 decoder is an example
of a class of SADF graphs where each scenario is like a consistent SDF graph and
scenario changes occur at iteration boundaries of these scenario graphs (although
still pipelined). Such SADF graphs are said to be strongly consistent [71], which is
easy to check as it results from structural properties only. The SADF graph of the
MP3 decoder does not satisfy these structural properties (for Mixed frames), but it
can still be implemented in bounded memory. The required consistency property is
called weak consistency [67, 22]. Checking weak consistency requires taking the
possible (sub)scenario sequences as captured by the state machines associated to
detectors into account, which complicates a consistency check considerably.

Analysis of quantitative properties and the efficiency of the underlying tech-
niques depend on the selected type of state machine associated to detectors as well
as the chosen time model. For example, one possibility is to use non-deterministic
state machines, which merely specify what sequences of (sub)scenarios can occur
but not how often. This typically enables worst/best-case analysis. Applying the
techniques in [19, 22, 23] then allows computing that a throughput of processing
0.253 frames per kCycle can be guaranteed for the MPEG-4 decoder. An alternative
is to use probabilistic state machines (i.e., Markov chains), which also capture the
occurrence probabilities of the (sub)scenario sequences to allow for average-case
analysis as well. Assuming that scenarios I, P0, P30, P40, P50, P60, P70, P80 and P99 of
the MPEG-4 decoder may occur in any order and with probabilities 0.12, 0.02, 0.05,
0.25, 0.25, 0.09, 0.09, 0.09 and 0.04 respectively, the techniques in [68] compute
that the MPEG-4 decoder processes on average 0.426 frames per kCycle.

The semantics of SADF graphs where Markov chains are associated to detec-
tors while assuming generic discrete execution time distributions5 has been defined
in [67] by using Timed Probabilistic Systems (TPS) as formal sematic model. Such
transition systems operationalize the behavior with states and guarded transitions

5 This covers the case of constant execution times as so-called point distributions [67, 68].



that capture events like the begin and end of each of the two steps in firing actors
and progress of time. In case an SADF graph yields a TPS with finite state space,
it is amenable to analysis techniques for (Priced) Timed Automata, Markov Deci-
sion Processes, and Markov Chains by defining reward structures as also used in
(probabilistic or quantitative) model checking. In [68], for example, specific proper-
ties of dataflow models in general and SADF in particular are discussed that enable
substantial state-space reductions during such analysis. The underlying techniques
have been implemented in [69] in the SDF3 tool kit [63], covering the computation
of worst/best-case and average-case properties for SADF including throughput and
various forms of latency and buffer occupancy metrics [69].

Other variants of Scenario-Aware Dataflow have been proposed that are sup-
ported by exact analysis techniques using formal sematic models. The techniques
presented in [72, 36, 37] exploit Interactive Marchov Chains (IMC) to combine the
association of Markov chains to detectors with exponentially distributed execution
times, which allows for instance computing the response time distribution of the
MPEG-4 decoder to complete processing the first frame [72]. A further generalisa-
tion of the time model for Scenario-Aware Dataflow with Markov chains associated
to detectors is proposed in [31]. This generalisation is based on the formal sematic
model of Stochastic Timed Automata (STA) and allows for scenario-dependent cost
annotations to compute for instance energy consumption.

When abstracting from the stochastic aspects of execution times and scenario oc-
currences, SADF is still amenable to worst/best-case analysis. Since SADF graphs
are timed dataflow graphs, they exhibit linear timing behavior [44, 77, 19]. This
property facilitates network-level worst/best-case analysis by considering the worst/
best-case execution times for individual actors. For linear timed systems, this is
know to lead to the overall worst/best-case performance. For the class of SADF
graphs with a single detector (often called FSM-based SADF), very efficient perfor-
mance analysis can be done based on a (max,+)-algebraic interpretation of the op-
erational semantics. It allows for worst-case throughput analysis, some latency anal-
ysis and can find critical scenario sequences without explicitly exploring the under-
lying state-space. Instead, the analysis is performed by means of state-space analysis
and maximum-cycle ratio analysis of the equivalent but much smaller (max,+)-
automaton [19, 22, 23]. Reference [22] shows how this analysis can be extended
for weakly-consistent SADF graphs. An alternative to using (max,+)-algebra is
proposed in [60], where the formal semantic model of Timed Automata (TA) is ex-
ploited to enable analyzing various qualitative and quantitative properties.

In case exact computation is hampered by state-space explosion, [71, 69] exploit
an automated translation into process algebraic models expressed in the Parallel
Object-Oriented Specification Language (POOSL) [70], which supports statistical
model checking (simulation-based estimation) of various average-case properties.



6.3 Synthesis

FSM-based SADF graphs have been extensively studied for implementation on (het-
erogeneous) multi-processor platforms [65, 35]. Variations in resource requirements
need to be exploited to limit resource usage without violating any timing require-
ments. The result of the design flow for FSM-based SADF implemented in the SDF3

tool kit [63] is a set of Pareto optimal mappings that provide a trade-off in valid re-
source usages. For certain mappings, the application may use many computational
resources and few storage resources, whereas an opposite situation may exist for
other mappings. At run-time, the most suitable mapping is selected based on the
available resources not used by concurrently running applications [59].

We highlight two key aspects of the design flow of [65, 63]. The first concerns
mapping channels onto (possibly shared) storage resources. Like other dataflow
models, SADF associates unbounded buffers with channels, but a complete graph
may still be implemented in bounded memory. FSM-based SADF allows for effi-
cient compile-time analysis of the impact that certain buffer sizes have on the timing
of the application. Hence, a synthesized implementation does not require run-time
buffer management, thereby making it easier to guarantee timing. The design flow
in [65] dimensions the buffer sizes of all individual channels in the graph sufficiently
large to ensure that timing (i.e., throughput) constraints are met, but also as small
as possible to save memory and energy. It exploits the techniques of [64] to analyze
the trade-off between buffer sizes and throughput for each individual scenario in
the FSM-based SADF graph. After computing the trade-off space for all individ-
ual scenarios, a unified trade-off space for all scenarios is created. The same buffer
size is assigned to a channel in all scenarios. Combining the individual spaces is
done using Pareto algebra [21] by taking the free product of all trade-off spaces and
selecting only the Pareto optimal points in the resulting space. Figure 8 shows the
trade-off space for the individual scenarios in the MPEG-4 decoder. In this appli-
cation, the set of Pareto points that describe the trade-off between throughput and
buffer size in scenario P99 dominate the trade-off points of all other scenarios. Uni-
fying the trade-off spaces of the individual scenarios therefore results in the trade-off
space corresponding to scenario P99. After computing the unified throughput/buffer
trade-off space, the synthesis process in [65] selects a Pareto point with the smallest
buffer size assignment that satisfies the throughput constraint as a means to allocate
the required memory resources in the multiprocessor platform.

A second key aspect of the synthesis process is the fact that actors of the same or
different applications may share resources. The set of concurrently active applica-
tions is typically unknown at compile-time. It is therefore not possible to construct
a single static-order schedule for actors of different applications. The design flow
in [65] uses static-order schedules for actors of the same application, but sharing
of resources between different applications is handled by run-time schedulers with
TDMA policies. It uses a binary search algorithm to compute the minimal TDMA
time slices ensuring that the throughput constraint of an application is met. By min-
imizing the TDMA time slices, resources are saved for other applications. Identifi-
cation of the minimal TDMA time slices works as follows. In [1], it is shown that



Fig. 8: Throughput/buffer size trade-off space for the MPEG-4 decoder.

the timing impact of a TDMA scheduler can be modeled into the execution time
of actors. This approach is used to model the TDMA time slice allocation it com-
putes. Throughput analysis is then performed on the modified FSM-based SADF
graph. When the throughput constraint is met, the TDMA time slice allocation can
be decreased. Otherwise it needs to be increased. This process continues until the
minimal TDMA time slice allocation satisfying the throughput constraint is found.

7 Dynamic Polyhedral Process Networks

The chapter on Polyhedral Process Networks (PPN) [74] deals with the auto-
matic derivation of certain dataflow networks from Static Affine Nested Loop Pro-
grams (SANLP). An SANLP is a nested loop program in which loop bounds, con-
ditions and variable index expressions are (quasi-)affine expressions in the iterators
of enclosing loops and static parameters6. Because many signal processing appli-
cations are not static, there is a need to consider dynamic affine nested loop pro-
grams (DANLP) which differ from SANLPs in that they can contain

1. if-the-else constructs with no restrictions on the condition [61],
2. loops with no condition on the bounds [45],
3. while statements other than while(1) [46],
4. dynamic parameters [79].

Remark In all DANLP programs presented in subsequent Subsections, arrays
are indexed by affine functions of static parameters and enclosing for-loop iterators.
This is why the A is still in the name DANLP.

6 The corresponding tool is called PNgen [75], and is part of the Daedalus design frame-
work [48], http://daedalus.liacs.nl.



7.1 Weakly Dynamic Programs

Whereas condition statements in an SANLP must be affine in static parameters and
iterators of enclosing loops, if conditions can be anything in a DANLP. Such pro-
grams have been called Weakly Dynamic Programs (WDP) in [61]. A simple exam-
ple of a WDP is shown in Figure 9. The question here is whether the argument of
function F3 originates from the output of function F2 or function F1.

In the case of an SANLP, the input-output equivalent PPN is obtained by:

1. Converting the SANLP – by means of an array analysis [15, 16] – into a Single
Assignment Code (SAC) used in the compiler community and the systolic array
community [33]

2. Deriving from the SAC a Polyhedral Reduced Dependence Graph (PRDG) [55]
3. Constructing the PPN from the PRDG [40, 55, 11]

While in an SAC every variable is written only once, in a Dynamic Single As-
signment Code (dSAC) every variable is written at most once. For some variables, it
is not known at compile time whether or not they will be read or written. For a WDP
not all dependences are known at compile time and therefore, the analysis must be
based on the so-called Fuzzy Array Dataflow Analysis (FADA) [17]. This approach
allows the conversion of a WDP to a dSAC. The procedure to generate the dSAC is
out of the scope. The dSAC for the WDP in Figure 9 is shown in Figure 10.

Parameter C in the dSAC of Figure 10 is emerging from the if-statement in line
8 of the original program shown in Figure 9. This if-statement also appears in the
dSAC in line 14. The dynamic change of the value of C is accomplished by the
lines 18 and 21 in Figure 10. The control variable ctrl(i) in line 18 stores the
iterations for which the data dependent condition that introduces C is true. Also,
the variable ctrl(i) is used in line 21 to assign the correct value to C for the
current iteration. See [61] for more details.

The dSAC can now be converted to two graph structures, namely the Approxi-
mate Reduced Dependence Graph (ADG), and the Schedule Tree (STree). The ADG
is the dynamic counterpart of the static PRDG. Both the PRDG and the ADG are
composed of processes N, input ports IP, output ports OP, and edges E [55, 11].
They contain all information related to the data dependencies between functions in

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 [x(i), t(i)] = F1(...);
5 end
6
7 for i = 1:1:N,
8 if t(i) <= 0,
9 [x(i)] = F2( x(i) );
10 end
11 [...] = F3( x(i) );
12 end

Fig. 9: Pseudo code of a simple Weakly Dynamic Program.



the SAC and the dSAC, respectively. However, in a WDP some dependencies are
not known at compile time, hence the name approximate. Because of this, the ADG
has the additional notion of Linearly Bounded Set (LBS), as follows.

Let be given four sets of functions S1 = { f 1
x (i) | x = 1..|S1|, i ∈ Zn}, S2 =

{ f 2
x (i) | x = 1..|S2|, i ∈ Zn}, S3 = { f 3

x (i) | x = 1..|S3|, i ∈ Zn}, S4 = { f 4
x (i) | x =

1..|S4|, i ∈ Zn}, an integral m × n matrix A and an integral n-vector b. An LBS is
a set of points LBS = { i ∈ Zn | A.i ≥ b,

i f S1 6≡ /0 ⇒ ∀ x=1..|S1|, f 1
x (i)≥ 0,

i f S2 6≡ /0 ⇒ ∀ x=1..|S2|, f 2
x (i)≤ 0,

i f S3 6≡ /0 ⇒ ∀ x=1..|S3|, f 3
x (i)> 0,

i f S4 6≡ /0 ⇒ ∀ x=1..|S4|, f 4
x (i)< 0 }.

The set of points B = { i ∈ Zn | A.i ≥ b } is called linear bound of the LBS and
the set S = S1 ∪ S2 ∪ S3 ∪ S4 is called filtering set. Every f j

x (i) ∈ S can be an
arbitrary function of i.

Consider the dSAC shown in Figure 10. The exact iterations i are not known
at compile time because of the dynamic condition at line 14 in the dSAC. That
is why the notion of linearly bounded set is introduced, by which the unknown
iterations i are approximated. So, NDN2 is the following LBS: NDN2 = {i ∈ Z | 1≤
i ≤ N ∧ 8 ≤ N ≤ 16, t 1(i) ≤ 0}. The linear bound of this LBS is the polytope
B = {1≤ i≤ N∧8≤ N ≤ 16} that captures the information known at compile time

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 ctrl(i) = N+1;
5 end
6 for i = 1:1:N,
7 [out_0, out_1] = F1(...);
8 [x_1(i)] = opd(out_0);
9 [t_1(i)] = opd(out_1);
10 end
11
12 for i = 1:1:N,
13 [t_1(i)] = ipd(t_1(i));
14 if t_1(i) <= 0,
15 [in_0] = ipd(x_1(i));
16 [out_0] = F2(in_0);
17 [x_2(i)] = opd(out_0);
18 [ ctrl(i) ] = opd( i );
19 end
20
21 C = ipd( ctrl(i) );
22 if i = C,
23 [in_0] = ipd(x_2(C));
24 else
25 [in_0] = ipd(x_1(i));
26 end
27
28 [out_0] = F3(in_0);
29 [...] = opd(out_0);
30 end

Fig. 10: Dynamic Single Assignment Code for the example if Figure 9.



about the bounds of the iterations i. The variable t 1(i) is interpreted as an unknown
function of i called filtering function whose output is determined at run time.

The STree contains all information about the execution order amongst the func-
tions in the dSAC. The STree represents one valid schedule between all these func-
tions called global schedule. From the STree a local schedule between any arbitrary
set of the functions in the dSAC can be obtained by pruning operations on the STree.
Such a local schedule may for example be needed when two or more processes are
merged [62]. The STree is obtained by converting the dSAC to a syntax tree using
a standard syntax parser, after which all the nodes and edges that are not related to
nodes Fi, i.e., F1, F2, and F3 in Figure 10 [61]. Figure 11 depicts a summary.

The difference between the ADG in Figure 11a and the transformed ADG in
Figure 11b is that an ADG may have several input ports connected to a single output
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port whilst in the transformed ADG every input port is connected to only one single
output port (in accordance with the Kahn Process Network semantics [34]). Parsing
the STree in Figure 11c top-down from left to right generates a program that gives a
valid execution order (global schedule) among the functions F1, F2 and F3 which
is the original order given by the dSAC. The process network in Figure 11d may
be the result of a design space exploration, and some optimizations. For example,
process P2 is constructed by grouping nodes N1 and N3 in the ADG in Figure 11b.
Because the behavior of process P2 is sequential (by default), it has to execute the
functionality of nodes N1 and N3 in sequential order. This order is obtained from
the STree in Figure 11c. See [61] for details.

In a (static) PPN, there are two models of FIFO communication [73], namely
in-order communication and out-of-order communication. In the first model, the
order in which tokens are read from a FIFO channel is the same as the order in
which they have been written to the channel. In the second model, that order is
different. In a PPN that is input-output equivalent to a WDP, there are two more
FIFO communication models, namely in-order with coloring and out-of-order with
coloring. This is necessary because the number of tokens that will be written to a
channel and read from that channel is not known at compile time [61].

Buffer sizes can be determined using the procedure given in [74, 75]. It how-
ever needs a conservative strategy (i.e., an over-estimation) due to the fact that the
rate and the exact amount of data tokens transferred over a particular data channel
is unknown at compile-time. Such over-estimation can be achieved by modifying
the iteration domains of all input/output ports, such that all dynamic if-conditions
defining any of these iteration domains always evaluate to true.

7.2 Dynamic Loop-Bounds

While loop bounds in an SANLP have to be affine functions of iterators of enclosing
loops and static parameters, loop bounds in a DANLP program can be dynamic.
Such programs have been called Dynloop programs in [45]. A simple example of
a Dynloop program is shown in Figure 12a.

A Dynloop program can be cast in the form of a WDP, see Subsection 7.1.
The WDP corresponding to the Dynloop program in Figure 12a is shown in Fig-
ure 12b. The maximum value of f (), denoted by max f in line 5 in Figure 12b is
substituted for the upper bound of the loop at line 4 in Figure 12a. The value of
max f can be determined by studying the range of function f ()7. As in Subsec-
tion 7.1, a dSAC can now be obtained by means of a FADA [17]. This analysis
introduces parameters to deal with the dynamic structure in the WDP. The values of
these parameters have to be changed dynamically. This is done by introducing for
every such parameter, a control variable that stores the correct value of the param-
eter for every iteration. However, the straightforward introduction of control values

7 If that is not possible, then an alternative way to estimate max f is given in [45].



1 %parameter N 1 10;
2
3 for j = 1 to N,
4 for i = 1 to f(...),
5 y[ i ] = F1()
6 end
7 end
8 [...] = F2( y[5] ),

1 %parameter N 1 10;
2
3 for j = 1 to N,
4 X[j] = f(...)
5 for i = 1 to max f,
6 if i <= X[j],
7 y[i] = F1()
8 end
9 end
10 end
11 [] = F2( y[5] )

a) Example of a Dynloop program b) Equivalent Weakly Dynamic Program

Fig. 12: A Dynloop program and its equivalent WDP program.

as done in Subsection 7.1 violates the dSAC condition that every control variable
is written at most once. To obtain a valid dSAC, an additional dataflow analysis for
the control variables is necessary, resulting in additional control variables [45].

The final dSAC is shown in Figure 13 where it has been assumed that the variable
y(5) has been initialized to zero. The control variables must be initialized with
values that are greater than the maximum value of the corresponding parameters.
For the example at hand, parameter c1 ∈ [1..N], and c2 ∈ [1..max f]. Therefore, the
corresponding control variables are initialized as follows:

∀i : 1≤ i≤ max f : ctrl c1[i] = N+1,
ctrl c2[i] = max f+1.

1 %parameter N 1 10;

2 for j = 1 to N,
3 X[j] = f()
4 for i = 1 to max_f,
5 if i <= X[j],
6 y_1[j,i] = F1()
7 ctrl_c1[i] = j
8 ctrl_c2[i] = i
9 end
10 ctrl c1 1[j,i] = ctrl c1[i]
11 ctrl c2 1[j,i] = ctrl c2[i]
12 end
13 end
14 if max f >= 5,
15 c1 = ctrl c1 1[N, 5]
16 c2 = ctrl c2 1[N, 5]
17 else
18 c1 = N + 1
19 c2 = max f + 1
20 end
21 if c1 <= N & c2 == 5,
22 in_0 = y_1[c1,c2]
23 else
24 in_0 = 0
25 end
26 [...] = F2( in_0 )

Fig. 13: Final dSAC



For brevity, the initialization is not shown in Figure 13. After applying the standard
linearization [73], and its extension of Subsection 7.1, and estimating buffer sizes
as also described Subsection 7.1, the resulting PPN is as shown in Figure 14.

7.3 Dynamic While-Loops

While only while(1) loops are allowed in an SANLP program, in a DANLP
program any while-loop is acceptable. Such DANLP programs have been called
While-Loop Affine Programs (WLAP) in [46]. There are a number of publications
that address the problem of while loops parallelization [53, 54, 10, 27, 28, 8, 24, 2].
The approach presented here has the advantage that it

• supports both task-level and data-level parallelism,
• generates also parallel code for multi-processor systems with distributed mem-

ory,
• provides an automatic data-dependence analysis procedure,
• exposes and utilizes all available parallelism.

An example is shown in Figure 15a. The question is again from where for exam-
ple function F7 gets its scalar argument x. Because this is not known at compile-
time, a FADA analysis [17] is necessary to find all data dependencies. The approach
to convert a WLAP program to an input-output equivalent PPN goes in four steps:

1. All data-dependency relations in the initial WLAP program have to be found by
applying FADA analysis on it. Recall that the result of the analysis is approxi-
mated, i.e., it depends on parameters which values are determined at run-time.

2. Based on the results of the analysis, the initial WLAP is transformed into a dSAC
representation, see Subsection 7.1. Parameters that are introduced by the FADA
appear in the dSAC, and their values are assigned using control variables.

1      for j = 1 to N,

2        read(i1, in_1)

3        for i = 1 to max_f,

4          if i <= in_1,

5            y_1[j,i] = F1()

6            ctrl_c1[i] = j

7            ctrl_c2[i] = i

8          endif

9         if j=N and i=5

10           out_1 = ctrl_c1[i]  

11           out_2 = ctrl_c2[i]  

12           out_3 = y_1[ctrl_c1[i], ctrl_c2[i]]

13           write(o1, out_1)

14           write(o2, out_2)

15           write(o3, out_3)

16         endif

17       endfor

18     endfor

Process P2

i1

i3

i2

1      if max_f >= 5,

2        read(i1, in_1)

3        read(i2, in_2)

4        read(i3, in_3)

5      else

6        in_1 = N+1

9      if in_1 <= N & in_2 == 5,

11     else

12       in_4 = 0

13     endif

14     [] = F2( in_4 )

8      endif
7        in_2 = max_f+1

10       in_4 = in_3

Process P3Process P1

o1

1      for j = 1 to N,

2        out_1 = f();

3        write(o1, out_1);

4      endfor

i1

o3

o2

o1

Fig. 14: The final PPN derived from the program in Figure 13.



3. The control variables are generated in a way that extends the methods in Subsec-
tion 7.1 and Subsection 7.2 to be applicable for WLAP programs as well [46].

4. The topology of the corresponding PPN is derived as well as the code to be
executed in the processes of the PPN.

The result of step 2 for the example in Figure 15a is shown in Figure 15b. The
iterator w is associated with the while loop and is initialized with value 0, meaning
that the while loop has never been executed. The parameter α captures the value
of the for-loop iterator in the enclosing while-loop and is initialized to N + 1. The
parameter β is the upper bound of the while-loop iterator w. Because α ∈ [1..N] and
β ≥ 1, the above initializations satisfy the condition that their values are never taken
by the corresponding parameters. It follows from line 23 in Figure 15b that control
variable ctrl x 5 is initialized to ctrl x 5 = (N+1,0) at line 3 in Figure 15b.

Where does control variable ctrl x 5 come from? It comes from the construc-
tion of the dSAC. The procedure to derive the dSAC is largely based on [17] and
its extension in Subsection 7.2. The problem is again that the dSAC resulting from
the FADA analysis is not a proper dSAC because it violates the property that every
variable is written at most once. The relation between writing to and reading from
the control variables must be identified by performing a dataflow analysis for the
control variables, where the writings to them occur inside a while-loop. To that end,

1 &parameter EPS 0.005

2 for i = 1 to N,
3 y[i] = F1()
4 x = F2( y[i] )
5 while ( x >= EPS )
6 x = F3()
7 for j = i+1 to N+1,
8 y[j] = F4( y[j-1] )
9 x = F5( x, y[j] )
10 end
11 y[i] = F6( x )
12 end
13 out = F7( x )
14 end

1 %parameter EPS 0.005

2 w = 0
3 ctrl_x_5 = (N+1,0)
4 for i = 1 to N,
5 y_1[i] = F1()
6 in_2 = y_1[i]
7 x_2[i] = F2( in_2 )
8 while (in_w = σx(〈W ,(i,w)〉) >= EPS),
9 w = w + 1
11 x_3[i,w] = F3()
11 for j = i+1 to N+1,
12 in_4 = σy(〈S4,(i,w, j)〉)
13 y_4[i,w,j] = F4( in_4 )
14 in_5_x = σx(〈S5,(i,w, j)〉)
15 in_5_y = y_4[i,w,j]
16 x_5[i,w,j] =

F5( in_5_x, in_5_y )
17 ctrl x 5 = (i,w)
18 end
19 in_6 = σx(〈S6,(i,w)〉)
20 y_6[i,w] = F6( in_6 )
21 end
22 ctrl x 5 [i] = ctrl x 5
23 (α,β) = ctrl x 5 [i]
24 in_7 = σx(〈S7,(i,α,β )〉)
25 out = F7( in_7 )
26 end

a) An example of a WLAP program b) The corresponding final dSAC

Fig. 15: Example of a while-loop affine program and its corresponding dynamic
single assignment program.



P1

P2y_1[]

P4

y_4[]

W

x_2[] P7

x_2[]

P3

P5

P6

ctrl_x_5_[]

y_6[]

Fig. 16: The PPN for the program in Figure 15.

an additional control variable ctrl x 5 is introduced right after the while-loop,
see line 22 in Figure 15b. The new control variable is written at every iteration of
for-loop i and takes the value either of control variable ctrl x 5 assigned on the
last iteration of the while-loop, or its initial value, if the while-loop is not executed.
A static Exact Array Dataflow Analysis (EADA) [15] can be performed on this new
control variable ctrl x 5 . This is possible because the new control variable is not
surrounded by the dynamic while-loop, i.e., it is outside the while-loop.

Step 4 constructs the PPN from the dSAC. The PPN corresponding to the dSAC
in Figure 15b is depicted in Figure 16. It consists of 8 processes and 18 channels.
The processes P1–P7 correspond to the functions F1–F7 in Figure 15. Process W
corresponds to the while condition at line 8 of the dSAC in Figure 15b.

The code for processes W , P5, and P7 is shown in Figure 17. Process W is an
example of a process detecting the termination of the while-loop at line 5 in Fig-
ure 15a. Process P5 is an example of a process executing a function enclosed in the
while-loop. Process P7 is an example of a process that runs a function outside the
while-loop, and has a data dependency with a function inside the while-loop.

7.4 Parameterized Polyhedral Process Networks

Parameters that appear in an SANLP program are static. In a DANLP, parame-
ters can be dynamic. A Polyhedral Process Network (PPN) that is input-output
equivalent to a DANLP program is called a Parameterized Polyhedral Process Net-
work, which is abbreviated to P3N. The formal definition of a P3N is given in [79],
and is only slightly different from the definition in [74]. Although the consistency of
a P3N has to be checked at run-time, still some analysis can be done at compile-time.

Remark. There are two assumptions here. First, dynamic conditions, dynamic
loop bounds and dynamic while-loops are left out to focus only on dynamic param-
eters. Second, values of the dynamic parameters are obtained from the environment.

An example P3N is shown in Figure 18. Figure 18a is a static PPN of which
process P3 is shown in Figure 18b. Figure 18c presents a P3N version of the PPN in



1 %parameter EPS 0.005

2 w = 0
3 for i = 1 to N,
4 while(1),
5 w = w + 1
6 if (w > 2) then w = 2
7 if (w == 1),
8 read(P2, 1, in w)
9 else
10 read(P5, 2, in w)
11 end
12 out_w = (in_w >= EPS)
13 write(P3, 3, out w)
14 write(P4, 4, out w)
15 write(P5, 5, out w)
16 write(P6, 6, out w)
17 if (!out_w) <break>
18 end
19 end

a) Code of process W

1 w = 0
2 for i = 1 to N,
3 read(P5, 1, in c)
4 if (in_c.β>=1 &&

1<= in_c.α <= i),
5 read(P5, 2, in 7)
6 else
7 read(P2, 3, in 7)
8 end
9 out = F7( in_7 )
10 end

1 w = 0
2 ctrl_x_5 = (N+1,0)
3 for i = 1 to N,
4 while(1),
5 w = w + 1
6 if (w > 2) then w = 2
7 read(W, 1, in w)
8 if (!in_w) <break>
9 for j = i+1 to N+1,
10 if (j == i+1),
11 if (w == 1),
12 read(P3, 2, in 5 x)
13 else
14 read(P5, 3, in 5 x)
15 en
16 else
17 read(P5, 4, in 5 x)
18 end
19 read(P4,5, in 5 y)
20 out 5 = F5( in_5_x, in_5_y )
21 ctrl x 5 = (i,w)
22 if (j == N+1),
23 write(P5, 6, out 5)
24 else
25 write(P5, 7, out 5)
26 endif
27 end
28 end
29 out_5_c = ctrl x 5
30 out 5 x = out_5
31 write(P7, 8, out 5 c)
32 write(P7, 9, out 5 x)
33 end

b) Code of process P7 c) Code of process P5

Fig. 17: Processes W , P5, and P7 after linearization.

Figure 18a. Process P3 of the P3N in Figure 18c is shown in Figure 18d. The PPN
and the P3N have the same dataflow topology. Processes P2 and P3 in the P3N in
Figure 18c are reconfigured by two parameters M and N whose values are updated
from the environment at run-time using process Ctrl and FIFO channels ch7, ch8,
and ch9. The P3N in Figure 18c may be derived from a sequential program, yet it can
also be constructed from library elements as in [30] or using the approach of [12].

Reference [74] explains that a parametric polyhedron P(p) is defined as P(p) =
{(w,x1, ...,xd)∈Qd+1 | A ·(w,x1, ...,xd)

T ≥ B ·p+b} with A∈Zm×d ,B∈Zm×n and
c ∈ Zm. For nested loop programs, w is to be interpreted as the one-dimensional
while(1) index, and d as the depth of a loop nest. For a particular value of w,
the polyhedron gets closed, i.e., it becomes a polytope. The parameter vector p is
bounded by a polytope Pp = {p ∈ Qn | C ·p ≥ d}. The domain DP of a process is
defined as the set of all integral points in its underlying parametric polyhedron, i.e.,
DP = PP(p)∩Zd+1. The domains DIP and DOP of an input port IP and an output
port OP, respectively, of a process are subdomains of the domain of that process.

The following four notions play a role in the operational semantics of a P3N:



P1

OP5

P3

P2

OP6

IP1

IP2

IP3

ch4 ch3

ch2

ch1

for (i=0; i<=10; i++) {

   for (j=0; j<=8; j++) {

      if (i<=5 && j>=4)

         READ(in1, IP1);

      else

         READ(in1, IP2);

      READ(in2, IP3);

      out = F3(in1, in2);

      WRITE(out, OP5);

      WRITE(out, OP6);

}}

OP5

ch1

Process P3

OP6

IP3

ch2

ch3

IP1

IP2

a) Example of a PPN b) Process P3 in the PPN in subfigure a)

P1

OP5

P3

P2

OP6

IP1

IP2

IP3

ch4 ch3

ch2

ch1

Ctrl

IP7 

(M)

ch7

OP7

(M) 

IP8
(N) 

IP9

OP1

OP2

ch8

ch9

OP9

OP8

(M) 

IP10
(N) 

IP11

1  while(1) {

2     READ(M, IP8)

3     READ(N, IP9)

4     for (i=0; i<=M; i++) {

5        for (j=0; j<=N-2*i; j++) {

6           if (i<=N)

7              READ(in1, IP1);

8           else

9              READ(in1, IP2);

10         READ(in2, IP3);

11         out = F3(in1, in2);

12         WRITE(out, OP5);

13         WRITE(out, OP6);

}}}

OP5

ch1

Process P3

IP8

IP9

OP6

IP3

ch8

ch9

ch2

ch3

IP1

IP2

c) Example Parameterized PPN d) Process P3 in the P3N in subfigure c)

Fig. 18: (a) An example of a PPN, (b) process P3 in the PPN, (c) an example of a
P3N, and (d) process P3 in the P3N.

• A process iteration of process P is a point (w,x1, ...,xd) ∈ DP, where the fol-
lowing operations are performed sequentially: reading a token from each IP for
which (w,x1, ...,xd) ∈ DIP, executing process function FP, and writing a token to
each OP for which (w,x1, ...,xd) ∈ DOP.

• A process cycle CYCP(S,p) ⊂ DP is the set of lexicographically ordered points
∈ DP for a particular value of w = S ∈ Z+. The lexical ordering is typically
imposed by a loop nest.

• A Process execution EP is a sequence of process cycles denoted by CYCP(1,p1)→
CYCP(2,p2)→ ...→ CYCP(k,pk), where k→ ∞.

• A point QP(S,pi)∈CYCP(S,pi) of process P is a quiescent point if CYCP(S,pi)∈
EP and ¬(∃(w,x1, ...,xd) ∈ CYCP(S,pi) : (w,x1, ...,xd)≺ QP(S,pS).



Thus, process P can change parameter values at the first process iteration of
any process cycle during the execution. The notion of quiescent points as being
the points at which values of the parameters p can change appears also in [47].

The behavior of the control process Ctrl is given in Figure 19a. Process Ctrl starts
with at least one valid parameter combination (lines 1-2) and then reads parameters
from the environment (lines 3-4) every pre-specified time interval. For every incom-
ing parameter combination, the process function Eval (line 5) checks whether the
combination of parameter values is valid. The implementation of function Eval
is given in Figure 19b. If the combination is valid, then function Eval returns the
current parameter values (M, N). Otherwise, the last valid parameter combination
(propagated through M new, N new in this example) is returned. After the eval-
uation of the parameter combination, process Ctrl writes the parameter values to
output ports (lines 6-8) when all channels ch7, ch8, and ch9 have at least one buffer
place available. When at least one channel buffer is full, the incoming parameters
combination is discarded and the control process continues to read the next parame-
ters combination from the environment. Furthermore, the depth of the FIFOs of the
control channels determines how many process cycles of the dataflow processes are
allowed to overlap. Valid parameter values lead to the consistent execution of a P3N,
i.e., without deadlocks and with bounded memory (FIFOs with finite capacity).

To illustrate the consistency problem, consider channel ch3 connecting processes
P2 and P3 of the P3N given in Figure 18c. The access of processes P2 and P3 to
channel ch3 is depicted in Figure 20. Consistency requires that, for each correspond-
ing process cycle of both processes CYCP2(i,Mi) and CYCP3(i,Mi,Ni), the number
of tokens produced by process P2 to channel ch3 must be equal to the number of
tokens consumed by process P3 from channel ch3. For example, if (M,N) = (7,8),
P2 produces 25 tokens to ch3 and P3 consumes 25 tokens from the same channel
after one corresponding process cycle of both processes. It can be verified that P2
produces 13 tokens to ch3 while P3 requires 20 tokens from it in a corresponding

1  M_new = M_init

2  N_new = N_init

    while(1) {

3     READ_PARM(M, IP10)

4     READ_PARM(N, IP11)

5     [M_new, N_new] =

          Eval(M, N, M_new, N_new)

6     WRITE_PARM(M_new, OP7)

7     WRITE_PARM(M_new, OP8)

8     WRITE_PARM(N_new, OP9)

    }

OP7 ch7

Ctrl

IP10

IP11

OP8

OP9
ch8

ch9

[M_new, N_new]

Eval(M, N, M_old, N_old) {

   // Checking Parameters

   par_ok = Check(M, N);

   if (par_ok) {

      return (M, N)

   } else {

      return (M_old, N_old)

}}

Eval

a) Process Ctrl b) Process Function Eval

Fig. 19: (a) Control process Ctrl and (b) process function Eval.



while(1){

   READ(M, IP7);

   for (i=0; i<=3*M+3; i++) {

   ...

   WRITE(out, OP3)

}}

while(1){

   READ(M, IP8);

   READ(N, IP9);

   for (i=0; i<=M; i++) {

      for (j=0; j<=N-2*i; j++) {

      ...

      READ(in2, IP3)

      ...

}}}

OP3 IP3

ch3

P2 P3

Fig. 20: Which combinations (M, N) do ensure consistency of P3N?

process cycle when (M,N) = (3,7). Thereby, in order to complete one execution
cycle of P3 in this case, it will read data from ch3 which will be produced during
the next execution cycle of P2. Evidently this leads to an incorrect execution of the
P3N. From this example, it is clearly seen that the incoming values of (M,N) must
satisfy certain relation to ensure the consistent execution of the P3N.

Although the consistency of a P3N has to be checked at run-time, still some
analysis can be done at design-time. This is because input ports and output ports of
a process cycle are parametric polytopes. The number of points in a port domain
equals the number of tokens that will be written to a channel or read from a channel
depending on whether the port is an output port or an input port, respectively. The
condition |DCYC

OP | = |DCYC
IP | can be checked by comparing the number of points in

both port domains. The counting problem can be solved in polynomial time using
the Barvinok library [76, 74]. In general, the number of points in domain DX =
PX (p)∩Zd+1, where X stand for either a process P, an input port IP, or an output
port OP, is a set of quasi-polynomials [74].

For the example in Figure 20, the difference |DCYC
OP | − |DCYC

IP | is,{
(1+N +N ·M−M2)− (3M+4) = 0 if (M,N) ∈C1
(1+ 3

4 N + 1
4 N2 + 1

4 N− 1
4 · {0,1}N)− (3M+4) = 0 if (M,N) ∈C2

where C1 = {(M,N) ∈ Z2 |M ≤ N∧2M ≥ 1+N}, C2 = {(M,N) ∈ Z2 | 2M ≤ N},
and {0,1}N is a periodic coefficient with period 28. If in this example the range of
the parameters is 0≤M,N ≤ 100, then there are only 10 valid parameter combina-
tions. If 0 ≤ M,N ≤ 1000, then there are 34 valid parameter combinations, and if
0≤M,N ≤ 10000, then the number of valid combinations is 114.

The symbolic subtraction of the quasi-polynomials can result in constant zero,
non-zero constant, or a quasi-polynomial. In the first case, consistency is always pre-
served for all parameters within the range. In the second case, all parameters within
the range are invalid, because they violate the consistency condition. In the third
case, a quasi-polynomial remains, and only some parameter combinations within
the range are valid for the consistency condition. The equations can be solved at de-

8 {0,1}N is 0 or 1 depending on whether N is even or odd, respectively



sign time, and all valid parameter combinations are put in a table which is stored in a
function Check. At run-time, the control process only propagates those incoming pa-
rameter combinations that match an entry in the table. Alternatively, function Check
evaluates the difference between the two quasi-polynomials against zero with in-
coming parameter values at run-time. When using a table, the execution time of the
P3N is almost equal to the execution time of the corresponding PPN. On the other
hand, evaluation the polynomials at run-time overlaps the dataflow processing. For
medium and high workloads (execution latency of the processes) the overhead is
negligible. See [79] for further details.

8 Summary

This chapter reviewed several DSP-oriented dataflow models of computation that
focus on representing dynamic dataflow behavior. As signal processing systems are
developed and deployed for more complex applications, exploration of such gener-
alized dataflow modeling techniques is of increasing importance. This chapter com-
plemented the discussion in [30], which focuses on the relatively mature class of
decidable dataflow modeling techniques, and builds on the dynamic dataflow prin-
ciples introduced in certain specific forms [20, 14].
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