
A Scenario-Aware Dataflow Programming Model

Reinier van Kampenhout, Sander Stuijk and Kees Goossens
Eindhoven University of Technology, The Netherlands

{j.r.v.kampenhout,s.stuijk,k.g.w.goossens}@tue.nl

Abstract—The FSM-SADF model of computation allows to
find a tight bound on the throughput of firm real-time applica-
tions by capturing dynamic variations in scenarios. We explore
an FSM-SADF programming model, and propose three different
alternatives for scenario switching. The best candidate for our
CompSOC platform was implemented, and experiments confirm
that the tight throughput bound results in a reduced resource
budget. This comes at the cost of a predictable overhead at run-
time as well as increased communication and memory budgets.
We show that design choices offer interesting trade-offs between
run-time cost and resource budgets.

I. INTRODUCTION

Multi-core platforms have become ubiquitous in embedded
systems. Such platforms offer increased throughput as multiple
tasks can be executed simultaneously. To exploit this and to
reduce the number of devices in a system, multiple applications
can be merged onto one multi-core processor. When applica-
tions have real-time requirements, the execution time of each
application must be isolated from interference by others. It has
been shown that multiple applications of which some have firm
real-time (FRT) requirements can be merged onto a platform
if strict cycle-level composability is supported in the hardware
and system software. This is the case for platforms that use
time-division multiplexing (TDM) to isolate access to shared
resources [1], [2]. The number and type of resources reserved
for an application determines its worst-case execution time
(WCET). If analysis provides tight bounds, fewer resources are
needed and more applications can be merged onto the same
platform. Dynamic application behaviour is a complicating
factor and leads to a WCET that is much longer than the
average execution time.

If we take for example an MPEG decoder that decodes I-
frames and P-frames, the analysis must consider the frame that
takes the most time to decode, even if the amount of frames of
that type is only a fraction of the total. This results in unused
reserved resources. Moreover, if one application implements
both frame decoders, the timing model captures a worst-case
behaviour that can never occur in reality. The first problem can
only be solved by dynamically changing resource reservations,
which makes it hard to give FRT guarantees. Instead we focus
on the second problem, which can be alleviated through a
model of computation (MoC) with an associated programming
model, toolflow, and platform that take dynamic variations
into account at the source code level. If such events are
captured in the MoC, analysis can account for them to derive
tight bounds for each case. Finite-state machine scenario-aware
dataflow (FSM-SADF) does exactly that [3]. This MoC splits
an application into scenarios that each describe a distinct
behaviour. The separate analysis of these scenarios results in
a tighter overall bound on the throughput and thus in a better
resource allocation than other dataflow models [4].

Programming models such as CAL support some form of
data-driven switching at run-time, but offer no natural way
to express and implement FSM-SADF programs [5]. In this
work we propose a programming model that implements FSM-
SADF. It allows intuitive design of scenarios, and applications
can be analysed and mapped with the publicly available SDF3

tool [6]. We explore different implementation alternatives
and select the best candidate for our composable CompSOC
platform. It is implemented in the form of a platform library
that supports run-time scenario detection and switching. Expe-
riments show that no cycles are required for scenario switching
and that there are interesting trade-offs between run-time cost
and resource budgets. Overall, we argue that the programming
model is suitable for dynamic applications because it avoids
over-reservation of resources by responding to data-driven
events.

The outline of the paper is as follows. Related work is
presented in Section II. The MoC and platform are detailed in
Section III. A problem analysis is given in Section IV, different
solutions are explored in Section V. The implementation is
presented in Section VI, experimental results in Section VII.
We conclude with Section VIII.

II. RELATED WORK

A. Models of Computation

To support FRT (streaming) applications on multi-core pro-
cessors, a MoC should support intuitive parallelization while
providing tight WCET bounds through automated analysis.
One way of achieving this is time-triggered (TT) design-time
static scheduling of an application’s tasks [7]. A drawback
of static scheduling it that it is non-work conserving, making
it difficult to respond to events at run time. In fact, the
system always experiences the worst-case execution, which
inherently leads to a waste of resources. Giotto is a TT
programming model which introduces platform independent
timing constructs to create a schedule for TT architectures [8].

A different MoC that supports FRT is dataflow [9].
Dataflow graphs naturally display parallelism, as the actors and
channels essentially describe the control flow of a program.
Example implementations of dataflow are the CAL actor
language and the SDF3 tool [6], [10]. There are many dataflow
flavours, each of which differs in expressiveness, implementa-
tion efficiency and analysability [4]. A number of variants are
analysable for FRT systems, and are work-conserving when
combined with the proper scheduling algorithm. However,
it is still hard to account for dynamic behaviour within an
application. One method proposed to express such variability
is mode-controlled dataflow (MCDF) [2]. When the designated
mode controller fires (executes), only a pre-defined subgraph
of the MCDF graph is executed based on the mode control



a

c

d

e

t1 t2t3

a f g e

t1 t2t4

b
2

2

2

2

22

Fig. 1. Scenarios S1 (top) and S2 of the example application.

output of the controller that is connected to all actors. FSM-
SADF is a similar model [3]–[5], [11]. Because it is flexible
but can still be properly analysed, we consider FSM-SADF
the best candidate to achieve an efficient work-conserving
parallelization.

B. Composable Platforms

In multi-core processors, an access conflict arises when
tasks on multiple cores access a shared resource simultane-
ously. Many solutions to this problem have been proposed,
most of which rely on resource reservation. We define compos-
ability as isolated actual-case timing behaviour, meaning that
a running application is not influenced by another application
even by a single cycle. The Time-Triggered Architecture (TTA)
is a composable platform on which every thread and every
packet is statically scheduled according to a global clock,
fitting to the TT MoC [7]. A working MP-SoC prototype
featuring a TT network-on-chip (TTNoC) has been presented
[12]. A drawback is that it is difficult to distribute a global
clock to all parts of the system in contemporary chips. The
TTNoC solution is to provide a coarse global time base
on which to synchronize. Building upon the TT concept is
the Precision Timed Machine (PRET). It proposes a micro-
architecture, compiler and programming language with ex-
tensions that should give complete control over the timing
behaviour, but has not been fully implemented yet [13]. The
CompSOC platform has a TT-NoC, inter-task multi-processor
scheduling and supports both the TT and dataflow MoCs
for firm-, soft- and non-real-time applications [1]. We used
CompSOC for this work and describe it further in III-B. A
number of research projects focus on developing platforms
that have composable properties, notably parMERASA [14],
T-CREST [15] and MultiPARTES [16].

III. BACKGROUND

A. FSM Scenario-Aware Dataflow

An FSM-SADF application consists of multiple scenarios
of the application. Each scenario describes a specific be-
haviour, and is expressed in a graph consisting of actors,
channels, initial tokens, and rates. Two example scenario
graphs are shown in Figure 1. Each graph consists of actors
(nodes) that communicate tokens through channels (directed
edges), that each have a production and consumption rate.
Rates are shown at the in- and output ports, but are omitted
when 1. Tokens are units of data and are depicted as black dots
if they are initially present. The rate determines how many

S2S1

Fig. 2. Finite-state machine of the example application.

tokens are produced on or consumed from a channel when a
producer or consumer actor fires. An actor fires if sufficient
input tokens are available on its incoming channels. Upon
firing it consumes all input tokens, executes, and produces all
output tokens. A channel whose source and destination are
the same is called a self-edge. Actors are stateless, that is, no
data is conserved between subsequent firings. Self-edges are
used to model state and to limit multiple simultaneous actor
firings (auto-concurrency). They have an initial token labeled
ti. All initial tokens are persistent, which means that they must
be stored until the next firing of that actor. In an iteration of
a graph, actors are fired (at least once) until all tokens have
returned to their starting position. If the actors are firing we
say the graph is executing, if all tokens returned we say the
iteration has completed. In the example, actor c and g will fire
two times per iteration, and we say that their repetition vector
entry is two.

The example consists of two scenarios, each of which
may be executed indefinitely. The possible transitions between
scenarios are specified by the FSM shown in Figure 2. Some
actors, channels, initial tokens, and rates are different and some
are the same. Actors a and e appear in both scenarios and have
a self-edge with the same initial token (i.e., labeled t1 resp. t2).
Scenario selection is data dependent; in this example actor a is
the designated scenario detector. When a has fired, it indicates
which scenario is active next. If a scenario executes, there is
nothing that stops a from firing again as long as there is enough
space on its outgoing channels. When a detects a scenario other
than the current, a scenario switch occurs. That scenario graph
starts executing, which means one or more scenarios can be
executed in a pipelined manner. Synchronization of persistent
tokens (i.e., initial tokens with the same label that appear in
different scenario graphs) is a concern we will explore in
Section IV.

B. CompSOC Platform

In this work we use the existing CompSOC platform,
which features cycle-accurate composability by means of
virtualization [1], [17]. Each application is assigned its own
virtual platform (VP). Each VP consists of a set of resource
budgets for core computation time, NoC capacity, and memory
capacity and space. A VP can have time budgets on multiple
cores and memories, and each resource is shared and can host
multiple VPs at the same time. Within a VP an application has
full control over its resources. VPs themselves are scheduled
using time division multiplexing (TDM) scheduling, each VP
is assigned a number of time slots. The TDM slot limits
are enforced with the precision of a single clock cycle by
the CoMik microkernel [18]. This guarantees cycle-accurate
composability between VPs, and enables independent design,
verification and execution of applications.

A bundle is an application encapsulated in a VP. Bundles
can be loaded composably at any time in a running system
[19]. Loading a bundle consists of a number of steps. First
the VP is created, i.e. resources are reserved according to the



S0

S2

S1

Fig. 3. Extended FSM with detection scenario S0.

budget descriptors. Then the code (actors) and data (initial
tokens) are loaded into the freshly reserved memories of all
cores on which the application is mapped. After that the
FIFO channels and POSE operating system are initialized
[20]. Channels are in local memory when both producer and
consumer are on the same core. If they are on different cores
however, a channel is set up across the NoC and the FIFO
is placed in a communication memory of the consuming core
or any other shared memory. POSE supports both round robin
and static order (SO) scheduling of dataflow graphs, in this
work we use the latter. The SO scheduler iterates over a list
of actors and checks the firing rules of each of them. If the
rules are satisfied, the actor fires. If not, the scheduler blocks
until they are.

IV. PROBLEM ANALYSIS

A. Scenario Detection

Two main challenges are addressed in this work: the
programming of scenarios, and the detection and execution
of different scenarios on a composable platform. FSM-SADF
specifies each scenario as a dataflow graph that may share
actors and tokens with other scenarios. Together with the FSM,
this is sufficient to compute the WCET. Both the dataflow
graphs and the FSM must be implemented to obtain an
application executable. Different types of graphs have been
implemented in previous work [2], [5], [21]. The challenge
is in programming an FSM that specifies the order of the
scenarios. A straightforward approach is to keep the scenario
graphs and FSM separated, and implement the latter as a de-
coupled control entity. As scenario detection is data-dependent
however, this controller must perform computations to arrive
at its decision. If we take for example an MPEG decoder,
the detection of an I or P frame depends on the result of the
variable length decoding (VLD). After detection the controller
can start the correct scenario, which also needs information
from the VLD. If control were to be strictly separated from
the data path, the VLD must be executed again, leading to
unnecessary redundant computations. In other words, the VLD
actor is contained in the controller and both scenarios. For each
frame both the controller and one of the scenarios are executed.

We argue that the separation between the FSM and sce-
narios is a powerful formal abstraction, but not suitable for
an efficient implementation. Instead we propose to intertwine
the implementation of the FSM and scenario graphs. While
scenario detection is hidden in the original FSM, we make it
explicit by creating an additional “detection scenario” for the
scenario detector actor. The extended FSM for the example
from Figure 1 is depicted in Figure 3. A scenario S0 that
contains actor a is added, and that actor is removed from the
two other scenario graphs. We see that S0 has two possible
successors that depend on the data: either scenario S1 or S2 is
executed. The implementation of all scenarios is deterministic,

a

b

c

d

eg

f

e a a

f

g ec1

c2

t

S0 S1 S0 S2

S1 S2

S0 S2

Fig. 4. Two-level schedule of the example. The TDM schedule consists of
four slots, separated by horizontal bars, and is repeated three times. Inside
each slot, the scenario SO schedule is executed.

but the switch after S0 is possibly non-deterministic. We will
for now only consider graphs with one detection scenario. In
the MPEG decoder example, the VLD would be encapsulated
in a detection scenario and the I- and P-frame decoders in
two separate scenarios. Thus the VLD is only executed once,
followed by one of the decoders.

B. Timing and Execution

To see what difficulties regarding timing arise during
execution, let us go through an example implementation on a
dual-core system step-by-step. To illustrate dynamic loading,
we choose to wrap each scenario in a separate bundle as if it
were a stand-alone application. Detection scenario S0 executes
every iteration, and is never removed after being loaded. As
soon as it detects either S1 or S2, that bundle is loaded and
starts executing. If it detects a scenario that is currently active,
that scenario can remain in memory and execute in a pipelined
fashion. Otherwise, the current scenario is removed and the
other scenario is loaded. Thus, pipelining of different scenarios
is not possible, which negates some of the benefit of FSM-
SADF.

Actors [a], [c, e], [g, e] are mapped onto core c1, and
[b, d], [f ] on c2. These ordered sets also give the static order
schedules. The VPs that encapsulate the scenarios are sched-
uled using a four slot TDM schedule on each core. The VM
of S0 is scheduled in the first slot on c1, the other three slots
and all four slots on c1 are for the detected scenario. A timing
diagram for the example application is depicted in Figure 4.
At startup, S0 is loaded into memory, indicated by the slice
with pattern on the very left. Then the TDM sequence starts,
indicated by the fat vertical black bar. The first slot on c1 is
assigned to S0, actor a fires and detects scenario S1, which is
scheduled in the next slot. First the scenario bundle is loaded
on both cores (slices with pattern), after which actor b fires
on c2. In the next slot, c fires in parallel to d. Then e fires
and the iteration is complete. The TDM schedule starts over
again, now S2 is detected by a. Both cores are reconfigured,
note that persistent token t3 must be stored for later use and
token t2 must be transferred to S2. Then {f, g, e} can fire. The
next firing of a detects S2 again, which starts another iteration
of the same scenario without reloading. Pipelined execution of
this scenario would have been possible had a fired earlier.

While the duration of actor firings and bundle loading times
are idealized in the figure, they will greatly vary in reality. An
actor firing may take much longer or shorter than the duration
of a slot. Because the SO schedules of all scenarios are
decoupled, these timing differences can lead to inefficiencies.
For instance, detector a could fire multiple times in its slot,
only bounded by the capacity of its outgoing channels to b and



TABLE I. OVERVIEW OF TRADE-OFFS BETWEEN ALTERNATIVES.

Alt. One VP per Graph
iterations

Switch
duration VP size

A Scenario Until switch
Bundle
load or VP
crossing

S0 + (S1 ∪
S2)

B Application Unlimited
Reconfiguring
rates/schedule

∑
Si

C Iteration 1 Bundle load S0 + nS1 +
mS2

f . If these channels are full, a can not fire and the slot reserved
for S0 is unused. If the channel capacity is high, it can fire
often and there can be a large delay between the detection and
execution of a scenario. Conversely, if a does not finish before
the end of its slot, no work can be done in the following three
slots at all. We conclude that execution can only be efficient if
the composition of TDM slots and SO schedules is balanced at
design time. That can only be achieved if the execution time of
actors is tightly bounded, which is a strength of FSM-SADF.

Another observation is that tokens must progress from S0

to S1 and S2, and persistent token t2 must commute between
S1 and S2. This requires a modification of POSE and the C-
HEAP FIFO library [18]. The time required to transfer tokens
must be accounted for in the analysis of one of the scenarios
or in the OS. If we would allow S1 and S2 to be kept in
memory at the same time, pipelining of multiple scenarios
becomes possible while the resource budget would increase.
This however creates an additional dependency on persistent
token t2, as one scenario might overtake another.

The switching time between scenarios is equal to the
bundle loading time if a scenario other than the current is
detected. When the same scenario is detected, the loaded
scenario can be executed again and the switching time is
reduced to transferring t2 and the token produced by a to the
other VP. It can be derived from [19] that it takes around 21
cycles on average to load one byte of object code. That time is
both bounded and predictable. Thus this implementation offers
a trade-off between the switching time and the increase in
throughput offered by FSM-SADF.

In the example, the schedule results in simultaneous load-
ing of the bundles on both cores. This might not be the case
for other applications. If bundles are loaded on different cores
at separate moments, channels that go across the NoC can be
temporarily disconnected. This is not foreseen in the current
FIFO implementation. If d would finish sooner than c for
example, c2 could be reconfigured while e did not consume
the token from d yet. The producer has disappeared while
the consumer has still not fired. All these fundamental issues
must be addressed in an implementation of the FSM-SADF
programming model.

V. EXPLORING IMPLEMENTATION ALTERNATIVES

From the analysis we conclude that the crux of the imple-
mentation is scenario switching. We will now explore three
alternative implementations of the FSM-SADF programming
model. They vary in the way scenarios are distributed over
virtual platforms. One extreme is to pack all scenarios in one
VP, the other to load a new VP for each iteration. Table I
summarizes the alternatives.

t1

t2t3

t2t4

b

c

d

e1

g

a

f e2

2

2

2

2

22

VP0 VP1

VP2

Fig. 5. One VP is loaded upon a scenario switch, and is swapped when
another scenario is detected. VP crossings are encircled.

t1 t2

t3

t4a

b

c

d
e

f g

2

2

2

2

VP0

[1,0]

[0,1] [0,2]

[1,0]

[2,0]

Fig. 6. All scenarios are contained in one VP, a detection scenario is not
necessary.

A. VP per Scenario

The first alternative has already been discussed in section
IV. Each scenario is packed into a VP, and loaded as soon
as it is detected in S0. Figure 5 shows the distribution of
scenarios over VPs. When another scenario is detected, the
current VP is “paused” as soon as the iteration completes
and its persistent tokens stored. The VP can then be removed
and swapped for another. The resource budgets that must be
reserved for the application consist of the union of the budgets
for each scenario. We assume most resources can be re-used
in all scenarios. Still, this is another detail that must be taken
care of in the implementation

The switching time is equal to either the bundle loading
time or the transfer of tokens to the next scenario. As analysis
must consider the worst-case, the throughput will be based on
the former. The trade-off between the throughput gain of FSM-
SADF and cost for switching must be carefully considered. If
we assume a realistic bundle is at least 10 kB, loading will take
hundreds of thousands of cycles [19]. Besides the scheduling
complications and FIFO implementation issues, this is yet
another drawback. Let us therefore look into a variation already
touched upon, where all scenario VPs are kept in memory at
the same time.

B. VP per Application

This alternative assumes all scenarios are loaded at all
times. We choose to merge both graphs and encapsulate them
in one VP to save resources. In this case not only scenario



detector a but also actor e can be merged, see Figure 6. This
requires variable rates on the outgoing edges of a and incoming
edges of e, note that this is not a standard dataflow graph. In
each iteration a writes to one of the channels with variable rate,
triggering execution of the corresponding scenario graph. The
rates are denoted as {S1, S2} on the edges. In e the scenarios
merge again, the rates must be set correctly to fire when tokens
from the current scenario arrive. The platform supports variable
rates.

Scheduling can now be taken care of within a VP, which
avoids hierarchical scheduling problems. While it is possible
to derive a deadlock-free SO schedule for each scenario, both
the SO schedule and rates must be changed after scenario
detection. If S1 is detected for example, schedules [c, e, a]
and [b, d] must be loaded on c1 and c2 respectively. The
POSE run-time SO scheduler must be extended to allow such
dynamic loading of schedules. Moreover, a cannot fire again
before e has fired, which rules out pipelining. The switching
overhead now consists of the time required to set up the
channel rates and SO schedule. A solution that circumvents
both variable rates and dynamic loading of schedules works as
follows. All actors could be fired each iteration, each of which
only executes the actor function if belongs to the detected
scenario. We will explain this in more detail in section VI.
Thus modified, this alternative does allow pipelining scenarios.

Persistent tokens can be dealt with in the following way.
We impose the restriction (for all alternatives) that persistent
tokens may only occur in multiple scenarios if they are on
channels with the same producer and consumer. In that case,
these actors and the persistent token can be merged, see e and
t2 in the example. Tokens that appear in one only scenario pose
no problem. The resource budgets of this alternative are larger
compared to that of alternative A. Firstly, all actors must be
loaded in local instruction memory. The exact size difference
depends on the application, but remember that the union of
the scenario resource budgets must be considered in alternative
A. Secondly, all channels are always present in the data and
communication memories. Note however that all tokens on
self-edges must be stored in a (remote) memory in the solution
from Section V-A as well. This alternative trades resource-
budgets against switching time. Minor modifications to the OS
and FIFO library are necessary.

C. VP per Iteration

The third alternative is another variation on alternative
A, now a new VP is loaded for each scenario iteration and
executed only once. The major advantage over solution V-A
is that different scenarios can be pipelined. However, the
switching time is now always equal to the time required for
loading a bundle. It could be reduced by having one instance of
each scenario on standby, at the cost of an increased resource
budget. The overall budget must consider the footprint of the
maximum number of scenarios that can be pipelined. In the
example, this can be nS1 and mS2, where n and m must be
found through graph analysis.

D. Trade-offs

An overview of the alternatives discussed in this section is
given in Table I. The choice between the first two depends
on both the application and the platform. For applications

with large, dissimilar scenarios that are not switched often,
alternative A may be the best choice. It reduces the resource
budgets, especially those of instruction memory, at the penalty
of a longer switching time. The implementation effort of
this alternative is considerable, as tokens must be transferred
between scenarios and scheduling is inefficient if the SO and
TDM schedules are not properly balanced. Applications with
that fit into the instruction memory and have frequent scenario
switches will benefit from alternative B. The resource budgets
must accommodate the complete application, but switching
time is minimal. We suggested a more optimal implementation
that avoids variable rates and run-time loading of schedules.
The third alternative allows the same level of pipelining as
the second, but has a longer switching time or a higher
resource budget and will not be considered further. Inside
each alternative, minor design choices offer a trade-off between
switching time, resource budget and implementation cost. For
real-time streaming applications we argue that alternative B
is the best choice, and implemented it for this work. The
decisive factors is the low switching time which is key for
profiting from FSM-SADF. The high cost for switching of the
first alternative can only be amortized by huge reductions in
the throughput bound, which seems unlikely.

VI. IMPLEMENTATION

We implemented the FSM-SADF programming model
based on alternative B described in Section V. Our solution
consists of an intuitive method to write down FSM-SADF
applications, an extension of the existing toolflow with an
algorithm to merge scenarios into one executable graph, and
a run-time extension of the CompSOC platform to support
execution of the graph [22].

A. Programming Model

For the development of FSM-SADF applications we pro-
pose a two-way programming scheme. The first step requires
the identification of scenarios in a dataflow graph. Tools such
as benchmarking suites may help, but the essential design
decisions are made by the developer. Creating too many
scenarios leads to a large overhead in terms of resource budgets
or switching time, too few might negate the benefits of FSM-
SADF. Once scenarios are identified, the resulting scenario
graphs and FSM must be written down in the existing XML
notation scheme of SDF3. The resulting graphs for the example
application are given in Listing 1. Note that the listing is
greatly simplified, both in length (the original file is 285 lines)
and detail (e.g. port numbers on channels are omitted). The
programmer has manual control over every detail, but can
apply a script to generate repetitive structures such as actors
and channels. Further note that it is not necessary to add
detection scenario S0, because the FSM is implemented by
merging all scenarios later on. The only addition to the existing
SDF3 XML format is the scenario detector label, see actor a
in Listing 1. The second step is programming the bodies of the
dataflow actors in C, taking advantage of the POSE operating
system and libraries provided with the platform. Each actor
body can consist of multiple functions, the in- and output
arguments of which must be mapped to actor ports, see Listing
2.



Listing 1 Simplified notation of scenario graphs and FSM.
1: <applicationGraph name="smap">
2: <scenariograph name="scenario1">
3: <actor name="a">
4: <port name="fab_0"rate="1"type="out"/>
5: ...
6: </actor>
7: ...
8: <channel name="fab14"srcActor="a"dstActor="b"/>
9: ...

10: </scenariograph>
11: <scenariograph name="scenario2">
12: ...
13: </scenariograph>
14: <fsm initialstate="s1"detector="a">
15: <state name="s1"scenario="scenario1">
16: <transition destination="s1"/>
17: <transition destination="s2"/>
18: </state/>
19: ...
20: </fsm>
21: </applicationgraph>

Listing 2 Pseudo-code to connect function arguments to actor
ports.

1: fifo_in = os_get_data_in_ptrs()
2: fifo_out = os_get_data_out_ptrs()
3: function_body(fifo_in, fifo_out)

B. Toolflow

The scenario and FSM are the input to the SDF3 toolchain,
together with a description of the architecture. SDF3 is exten-
sively documented and can analyse the throughput of FSM-
SADF applications [6]. It supports code generation for the
CompSOC platform, and generates multiple scheduling and
binding solutions [1]. The developer selects one of these, after
which the “scenario-merge” transformation is applied, that was
newly developed for this work and first described in Section
V. It merges the scenarios to obtain a single graph that can be
encapsulated in a VP as described in Section V-B. The pseudo-
code of the algorithm merging the scenario graphs is given in
Listing 3. The algorithm for merging the channels is similar
and can easily be derived.

The arguments of all functions are formatted as (source,
destination). The first scenario graph is copied into the new
merged graph after which we iterate over all actors of all other
scenarios. If the actor is already in the merged graph, we add
any ports that it does not yet have, and otherwise we add the
whole actor. The graph resulting from executing “scenario-
merge” on the example application is the one depicted in
Figure 6. As noted, execution is not trivial as some channel
rates are data-dependent and can be zero. The rates and SO
schedule should be changed after scenario detection. Consider
for example a switch from S1 to S2. Actor a detects the switch
and should write its tokens on the channel to f rather than to
b. To do that, the production rate of a on that channel should
temporarily be made zero. Then the SO schedule of S2 should
be loaded.

We propose a solution that deals with both these problems

Listing 3 Pseudo-code of the scenario-merge algorithm.
1: merged=scenario[0]
2: for i = 1 to num_scenario−1 do
3: for j = 0 to scenario[i].num_actors−1 do
4: current=scenario[i].actor[j]
5: new=find_actor(current, merged)
6: if !new then
7: add_actor(current, merged)
8: else
9: for k = 0 to current.num_ports−1 do

10: if !find_port(current.port[k], new) then
11: add_port(current.port[k], new)
12: end if
13: end for
14: end if
15: end for
16: end for

at once by firing all actors in each iteration, even if they do
not belong to the detected scenario. In this way, both the
rates and schedule do not need to be changed. We modify
the run-time wrapper that encapsulates actors to implement
this scheme. When a detector actor has detected the scenario,
its wrapper will forward scenario identifier to all succeeding
actors. It also produces all tokens specified by the rate on
the outgoing channels, even if empty tokens must be inserted.
The wrapper of each non-detector actor inspects the scenario
identifier before executing the actor body. If the actor is part
of the indicated scenario, the actor body is executed. If the
actor does not belong to the detected scenario, the rest of
the token(s) is empty and the body is not executed. Either
way, the actor produces all tokens on each outgoing edge
according to the rate, even if they are empty. Tokens on
self-edges are automatically preserved if not overwritten. This
solution preserves standard dataflow behaviour and is platform-
independent. No special edges are necessary, and scenarios can
be pipelined without ever overtaking one another.

The challenge is to send the scenario identifier from the
detector to the succeeding actors. Numerous solutions are
possible. Firstly, an extra channel with rate one could be added
from the detector to each actor. This adds as many FIFOs as
there are non-detector actors, which is especially expensive
if these are mapped to different cores. A second option is to
re-use existing FIFOS and extend all tokens with a scenario
identifier field. Although this leaves the graph and rates intact,
it is wasteful if tokens are small and rates high. Thirdly, we
can also re-use the channels by increasing the rate with one.
This is wasteful if tokens are large, and becomes cumbersome
for repetition vectors larger than one. A fourth option is
to piggy-back scenario identifiers in existing FIFOs without
changing the rates. Then the scenario can be transferred only
once per iteration, and no space is wasted. However, this has
implications on the FIFO buffer sizing and must be consistent
across the toolchain. It also requires fundamental changes
to the FIFO library which makes it unfit for other dataflow
flavours. The last three options can be optimized by calculating
a (minimum) spanning tree of the dataflow graph and sending
the tokens over those channels only.

We selected the second option because it is straightforward
and is compatible with other dataflow types. The changes to the



merged scenario graph are minimal, the token size on channels
that are not self-edges must be increased by one word to
facilitate a scenario identifier field. The obvious disadvantage
of sending the scenario many times with small tokens and high
rates can be negated with a simple optimization. In such cases
the greatest common denominator (gcd) of the production and
consumption rate can be calculated. If both rates are divided
by the gcd and the token size is multiplied with the gcd, the
same data can be transferred with reduced overhead.

C. Platform

At run-time our FSM-SADF implementation executes as
a SDF graph, except for three new system calls in the actor
wrappers. The pseudo code for a wrapper is given in Listing
4. The first new system call is os_get_scenario, which extracts
the scenario identifier from the incoming channel(s). Obtaining
pointers to the in- and outgoing FIFOs are obtained is already
part of POSE. The next new system call os_in_scenario checks
if the actor is in the current scenario. If it is, the function body
is executed. Finally the new os_set_scenario call forwards the
scenario on all outgoing non-self edges.

Listing 4 Pseudo-code of a wrapper that contains a regular
actor.

1: scenario = os_get_scenario()
2: fifo_in = os_get_data_in_ptrs()
3: fifo_out = os_get_data_out_ptrs()
4: if os_in_scenario(scenario) then
5: function_body(fifo_in, fifo_out)
6: end if
7: os_set_scenario(scenario)

The wrapper for a scenario actor is slightly different, as the
scenario identifier is produced by the actor body. This means
only the call to os_set_scenario is necessary. All wrappers
are generated by the toolflow, together with the instantia-
tion and memory map of all FIFOs and code to initialize
CoMik and POSE. The implementation of os_get_scenario and
os_set_scenario system calls is straightforward: they need to
iterate over all consumed respectively produced tokens in each
channel.

VII. EXPERIMENTAL RESULTS

We evaluated our implementation regarding resource bud-
get requirements and run-time overhead by considering two
test setups on a duo-core platform. The first comprises the
CoMik hypervisor, modified POSE OS, and the example
application described in the previous sections. Actor bodies are
filled with NOP instructions to simulate a computational load.
The application switches between scenarios every iteration.
Actor d is mapped to core c2, all other actors to c1. The second
setup is similar, but with the original POSE and no scenario
switching, so all actor bodies are executed each iteration. All
timing measurements are cycle-accurate, the calling overhead
of which was subtracted from the results. The experiments are
expected to show the exact difference between our FSM-SADF
programming model and the unmodified platform. Firstly, we
measured the time between the exit of each actor wrapper and
the arrival in the next. This does not include the time required
for any system calls in the wrapper. We measured no timing

TABLE II. OVERVIEW OF RESOURCE BUDGETS.

Setup TDM slots I-mem [bytes] D-mem [bytes]

FSM-SADF 1 + 6 5072 1525
SDF 2 + 7 4040 1310

S0 1 + 1 577 187
S1 3 + 1 2308 748
S2 6 + 1 1731 561
S0+(S1∪S2) 7 + 2 2885 935

difference between the two setups. This shows that the POSE
modifications do not affect the scheduling of actors. More
importantly, it shows there is no time penalty for a scenario
switch. Hence, the switching time of our implementation is
zero.

Next we determined the static computation cost of our
proposed solution. As shown in Listing 4, three new system
calls are made in each regular wrapper. The os_in_scenario
system call iterates through an array with the actor identi-
fiers of the given scenario. Thus, the overhead depends on
the number of actors in the scenario. We measured a static
component of 72 cycles for the function call plus 60 cycles
per array entry. The os_get_scenario function is more complex,
it iterates over all incoming channels and checks if it a self-
edge. These must be skipped, as they do not contain a scenario
identifier. The scenario identifier of the consumed tokens of all
other channels is inspected. We measured a static component
of 148 cycles plus 38 to skip over a self-edge, 55 for each
non-self FIFO, and 57 per token. For example, this system
call costs 148 + 38 + 55 + 2 ∗ 57 = 355 cycles in actor b.
Similarly, os_set_scenario iterates over all outgoing channels.
Here we measured a static component of 142 plus 38 for a self-
edge, 56 for a non-self FIFO, and 45 per token. Calling this
function in actor b costs 142+38+2∗56+8∗45 = 652 cycles.
Altogether the execution time of the system calls depends on
the scenario size and the number of consuming and producing
FIFOs that an actor has, and can easily be calculated.

To show the benefit of our approach, we processed the
example FSM-SADF application with the SDF3 toolflow. First
we annotated the graph with artificial execution times. All
actors are assigned an execution time of 1·105 cycles, except c
and d which both get 15 ·105 cycles and f which gets 30 ·105.
We also created a synchronous dataflow (SDF) application that
captures both scenarios at the same time, i.e. it has a graph
that resembles S2 in Figure 1 but f is replaced by bf and
g by cdg. The execution time of bf is equal to max (τb, τf )
with τi the execution time of an actor, and that of cdg to
max (τc + τd, τg). The values of τc and τd are added because
these are not separate actors anymore and cannot be mapped
on separate resources. We compensated for that by selecting
an FSM-SADF mapping in which these actors are also on the
same core. The throughput constraint was set to 2 · 10−10,
which means an iteration must be completed every 5 · 109
cycles. There are 10 TDM slots with a length of 4 ·105 cycles
each. For both applications, the mapping resulting in the lowest
number of TDM slots was selected. The results are shown in
the first two rows of Table II. The number of TDM slots is
listed as c1 + c2. We see that the throughput constraint can
be satisfied with 7 slots using FSM-SADF versus 9 slots with
SDF. The advantage in TDM slots cannot be used to quantify
our approach directly because the application is artificial, but
we argue that the setup reflects realistic real-time (streaming)



applications. We conclude that the FSM-SADF programming
model can offer a tight bound on throughput that enables to
save resources compared to SDF, but the actual benefit depends
on the application.

As for the memory, we compared the two setups in terms
of instruction and data memory. Channels are are placed
in communication memories if they connect actors mapped
to different cores, and are allocated on the heap otherwise.
Therefore we added the usage of communication memories
and heap to the data memory. Looking again at the first two
rows of Table II, we conclude that the implementation of this
simple example has a cost of 1032 bytes of instruction memory
and 215 bytes of data memory. The modifications to the POSE
OS furthermore add 900 bytes of instruction memory per core
(not shown in the table). The relative increase in the memory
budget is meaningless as the actors are empty, but the absolute
cost gives a realistic indication of the cost for a graph of
this size. Overall, the run-time costs are minimal even for
our trivial example. The predictable computation cost added
to each actor is easily nullified by the 8 · 105 cycles that are
gained. The increase in memory and communication budgets
will be negligible for realistic applications.

To compare the implementation with alternative A de-
scribed in Section V, we also used SDF3 to obtain TDM slot
allocations for the individual scenarios. Memory budgets are
not exact but extrapolated from the second setup described at
the start of this section. The switching cost was modelled by
multiplying the combined size of data and instruction memory
with 21 cycles as described in Section IV-B, and included in
scenario S0. The results can be found in the last four rows
of Table II. We see that S0 needs two slots to execute and
load a scenario, and that the application uses as many slots
as the SDF solution. In other words, the benefit of the tighter
bound throughput is negated by the cost for switching. The
total memory budget is lower than that of the other two,
although implementation overhead is not included. If the size
of the application increases, the cost for switching will rapidly
increase and affect the throughput. Based on these numbers
we conclude that this alternative is indeed only relevant if the
memory budget is leading, or if the bundle loading time can
be reduced significantly

VIII. CONCLUSION

The FSM-SADF model of computation can account for
dynamic variations in an application, which results in a
tighter throughput bound compared to SDF while it is still
analysable. In this work we propose a programming model
that allows intuitive implementation of FSM-SADF programs.
To efficiently switch scenarios, we argue that the scenario
graphs and FSM should be intertwined. Implementation trade-
offs that we identified concern scheduling, resource budgets,
scenario switch time, scenario pipelining, and effort for run-
time modifications. We explored three implementation alter-
natives and concluded that encapsulating all scenarios in one
VP is the most beneficial choice on this platform. It features
minimal switching time, allows pipelining, and is compatible
with other dataflow types. To avoid variable rates and changing
the SO schedule dynamically we proposed to fire all actors

each iteration. Experiments confirm that there is no switching
time, but a predictable run-time cost is added to the wrapper
of each actor. The increase in the memory and communication
budgets is negligible for realistic applications. We show that
the tight bound on throughput offered by FSM-SADF reduces
the number of required TDM slots and thus the overall resource
budget. A model of the 1st alternative shows that it has no
througput benefit compared to SDF, but the memory budget is
lower.

ACKNOWLEDGMENTS

This work was partially funded by projects CATRENE
CA505 BENEFIC, CA703 OpenES, CT217 RESIST; ARTEMIS
621429 EMC2 and 621353 DEWI.

REFERENCES

[1] K. Goossens et al., “Virtual Execution Platforms for Mixed-time-
criticality Systems: The CompSOC Architecture and Design Flow,”
SIGBED Rev., 2013.

[2] O. Moreira and H. Corporaal, Scheduling Real-Time Streaming Appli-
cations onto an Embedded Multiprocessor. Springer, 2014.

[3] B.D. Theelen et al., “A scenario-aware data flow model for combined
long-run average and worst-case performance analysis,” in MEM-
OCODE, 2006.

[4] S. Stuijk et al., “Scenario-aware dataflow: Modeling, analysis and
implementation of dynamic applications,” in SAMOS, 2011.

[5] F. Siyoum, “Worst-case temporal analysis of dynamic streaming appli-
cations,” Ph.D. dissertation, TUE, 2014.

[6] S. Stuijk et al., “SDF3: SDF For Free,” in ACSD, 2006.
[7] H. Kopetz, Real-Time Systems. Springer, 2011.
[8] T. A. Henzinger et al., “Giotto: a time-triggered language for embedded

programming,” IEEE Proceedings, 2003.
[9] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data

flow programs for digital signal processing,” IEEE Transactions, 1987.
[10] J. Eker and J. W. Janneck, “Cal language report: Specification of the

cal actor language,” UC Berkeley, Tech. Rep., 2003.
[11] M. Geilen et al., “Predictable dynamic embedded data processing,” in

SAMOS, July 2012.
[12] H. Kopetz et al., “Composability in the time-triggered system-on-chip

architecture,” in SOC, 2008.
[13] D. Broman et al., “Precision timed infrastructure: Design challenges,”

in ESLsyn, 2013.
[14] T. Ungerer et al., “parMERASA - Multi-core Execution of Parallelised

Hard Real-Time Applications Supporting Analysability,” in DSD, 2013.
[15] Martin Schoeberl et al., “T-CREST: time-predictable multi-core archi-

tecture for embedded systems,” Elsevier Journal on Sys. Arch., 2015.
[16] S. Trujillo et al., “MultiPARTES: multi-core partitioning and vir-

tualization for easing the certification of mixed-criticality systems,”
Microprocessors and Microsystems, 2014.

[17] K. Goossens et al., “Æthereal Network on Chip: Concepts, Architec-
tures, and Implementations,” IEEE Des. Test, 2005.

[18] A. Nelson et al., “CoMik: A Predictable and Cycle-Accurately Com-
posable Real-Time Microkernel,” in DATE, 2014.

[19] S. Sinha et al., “Composable and predictable dynamic loading for time-
critical partitioned systems,” in DSD, 2014.

[20] A. Hansson et al., “Design and implementation of an operating system
for composable processor sharing,” Microproc. and Microsystems, 2011.

[21] A. B. Nejad et al., “A Unified Execution Model for Multiple Computa-
tion Models of Streaming Applications on a Composable MPSoC,” in
Elsevier Journal of Systems Architecture, 2013.

[22] S. Goossens et al., “The CompSOC design flow for virtual execution
platforms,” in FPGAworld. ACM, 2013.


