
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/303307603

Probabilistic	Model	Checking	for	Uncertain
Scenario-Aware	Data	Flow

Article		in		ACM	Transactions	on	Embedded	Computing	Systems	·	February	2016

DOI:	10.1145/2914788

CITATIONS

0

READS

95

2	authors:

Joost-Pieter	Katoen

RWTH	Aachen	University

344	PUBLICATIONS			8,588	CITATIONS			

SEE	PROFILE

Hao	Wu

RWTH	Aachen	University

5	PUBLICATIONS			13	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Joost-Pieter	Katoen	on	18	May	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/303307603_Probabilistic_Model_Checking_for_Uncertain_Scenario-Aware_Data_Flow?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303307603_Probabilistic_Model_Checking_for_Uncertain_Scenario-Aware_Data_Flow?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joost-Pieter_Katoen?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joost-Pieter_Katoen?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RWTH_Aachen_University?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joost-Pieter_Katoen?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Wu59?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Wu59?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RWTH_Aachen_University?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Wu59?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joost-Pieter_Katoen?enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Probabilistic Model Checking for
Uncertain Scenario-Aware Data Flow

JOOST-PIETER KATOEN, Software Modelling and Verification Group, RWTH Aachen University
HAO WU, Software Modelling and Verification Group, RWTH Aachen University

The Scenario-Aware Dataflow (SADF) model is based on concurrent actors that interact via channels. It com-
bines streaming data and control to capture scenarios while incorporating hard and soft real-time aspects.
To model data-flow computations that are subject to uncertainty, SADF models are equipped with random
primitives. We propose to use probabilistic model checking to analyse uncertain SADF models. We show
how measures such as expected time, long-run objectives like throughput, as well as timed reachability—
can a given system configuration be reached within a deadline with high probability?—can be automatically
determined. The crux of our method is a compositional semantics of SADF with exponential agent execu-
tion times combined with automated abstraction techniques akin to partial-order reduction. We present the
semantics in detail, and show how it accommodates the incorporation of execution platforms enabling the
analysis of energy consumption. The feasibility of our approach is illustrated by analysing several quantita-
tive measures of an MPEG-4 decoder and an industrial face recognition application.

Additional Key Words and Phrases: Data-flow computation, Digital signal processing, Embedded systems,
Energy consumption, Markov (Reward) automata, Model checking

ACM Reference Format:
Joost-Pieter Katoen, Hao Wu, 2016. Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow
ACM Trans. Embedd. Comput. Syst. XX, YY, Article (January 2016), 28 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Synchronous Data Flow. Embedded systems such as smart phones, TV sets and

modern printing devices typically involve intensive multimedia processing. Current
applications require massive data signal processing facilities like photo editing, face
recognition, audio and video streaming, and need to adhere to demanding QoS require-
ments. Such data processing facilities are adequately described in data-flow languages
such as Synchronous Dataflow (SDF, for short) [Lee and Messerschmitt 1987], a lan-
guage which is equally expressive as weighted marked graphs. SDF has been used
extensively [Bhattacharyya et al. 2013; Eker et al. 2003; Sriram and Bhattacharyya
2009] and originates from the field of digital signal processing where a coherent set
of interacting tasks with different execution frequencies are to be performed in a dis-
tributed and pipelined fashion by a number of parallel computing resources as pro-
vided, e.g., by Multi-Processor Systems-on-Chips (MPSoC). Modern embedded applica-
tions are very dynamic in the sense that their execution costs such as memory usage,

This work is supported by the European Union’s Seventh Framework Programme for Research (FP7), under
grant no. 318490 (FP7-ICT-2011-8, the SENSATION project). This work is partially based on the authors’
previous work “Exponentially timed SADF: Compositional semantics, reductions, and analysis.” published
at EMSOFT 2014 in New Delhi, India.
Author’s addresses: Joost-Pieter Katoen/Hao Wu, Software Modelling and Verification Group, Computer Sci-
ence Department, RWTH Aachen University, D-52066, Aachen, Germany, Email: {katoen, hao.wu}@cs.rwth-
aachen.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1539-9087/2016/01-ART $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/220473431_Taming_Heterogeneity_-_The_Ptolemy_Approach?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221535306_Synchronous_Data_Flow_Describing_Signal_Processing_Algorithm_for_Parallel_Computation?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:2 Joost-Pieter Katoen, Hao Wu

energy consumption vary substantially depending on their context (like input data and
quality level).

Uncertainty in Scenario-Aware Data Flow. Data-flow languages [Buck and Lee 1993;
Geilen and Basten 2004; Kahn 1974] are intended as an implementation framework
for such dynamic applications. However, these languages lack facilities for predicting
performance during embedded system design—how to deal with uncertain fluctua-
tions in data availability, data quality etc.—and have rather limited means to describe
dynamic dataflow behaviour. The Scenario-Aware Dataflow (SADF) language [Thee-
len et al. 2008; Theelen et al. 2006; Bhattacharyya et al. 2013] extends SDF so as
to develop adequate scenario-aware performance models of specifications expressed in
other data-flow formalisms. Like most data-flow languages, SADF is based on (asyn-
chronously concurrent) actors that interact via (unbounded) FIFO (first-in, first-out)
channels. The novelty of SADF is its combination of streaming data and control to
capture scenarios, as well as combining both hard and soft real-time aspects. A recent
survey of data-flow formalisms such as SDF and SADF as well as their relationship is
given in [Bhattacharyya et al. 2013]. This paper focuses in particular on the possibility
in SADF to model uncertainty, both in the execution times of processes (called actors)
as well as in the generation of scenarios.

Exponentially timed SADF. This paper considers exponentially timed SADF (called
eSADF), a version of SADF in which the duration of all firings of actors are governed by
negative exponential probability distributions. eSADF can be considered as an exten-
sion of exponentially timed SDF as originally proposed in [Sriram and Bhattacharyya
2009].) Although the restriction to exponential distributions seems a severe restriction
at first sight, there are (at least) three good reasons to consider it. First, this assump-
tion is a rather adequate abstraction when considering that actor firings are typically
subject to random fluctuations (e.g., in hardware) and only mean durations are known.
Technically speaking, the exponential distribution maximises the entropy under these
assumptions. That is to say, if only mean values are known, the statistically most
neutral assumption is to have these phenomena exponentially distributed. Secondly,
series-parallel combinations of exponential distributions (so-called phase-type distri-
butions) can approximate any arbitrary continuous probability distribution with ar-
bitrary precision. Our semantic model and analysis algorithms support the analysis
of these phase-type distributions. Finally, the use of exponential distributions enables
the usage of modern probabilistic model-checking tools for the quantitative analysis of
SADF models.

Compositional semantics. As eSADF is based on asynchronously communicating
actors, firings have exponential durations, and sub-scenario selection is based on
discrete-time Markov chains, Markov automata (MA) [Deng and Hennessy 2013;
Eisentraut et al. 2010] are a natural choice for capturing the semantics of eSADF.
These automata are transition systems in which the target of an interactive transi-
tion is a distribution over states (rather than a single state), and that incorporates
random delay transitions to model firing durations. Non-determinism occurs if several
interactive transitions emanate from a given state. This paper provides a composi-
tional semantics of eSADF using Markov automata. The compositional aspect natu-
rally reflects the logical structure of the eSADF graph, is easily amenable to single
actor replacements—as just the semantics of that actor is to be adapted while the re-
maining automata remain the same—and finally enables component-wise reduction.
The latter technique is important in case the state space of the eSADF graph is too
large to be handled. Our compositional semantics allows for replacing the automaton
for a few actors by an equivalent, but much smaller, automaton. This technique has

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/3567544_Scheduling_dynamic_dataflow_graphs_with_bounded_memory_using_thetoken_flow_model?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221329680_The_Semantics_of_Simple_Language_for_Parallel_Programming?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260037497_On_the_Semantics_of_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254853159_Scenario-aware_dataflow?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254853159_Scenario-aware_dataflow?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :3

e.g., been exploited in [Theelen et al. 2012]. Compositionality in SDF has recently also
been exploited for modular code generation [Tripakis et al. 2013]. Our semantics is
defined using a succinct process algebra for describing MA [Timmer et al. 2012] in a
textual way. As a result, the semantics is relatively easy to comprehend and modular.

Automated abstraction. Markov automata of realistic, industrially-sized eSADF
graphs can be huge and too large to be handled. One of the main causes for this state
space exposition is the highly concurrent character of typical data-flow computations in
which many agents run in parallel. To diminish this effect on the state space growth,
we use confluence reduction [Timmer et al. 2013]—a technique akin to partial-order
reduction—that allows for an on-the-fly reduction of the state space. The key of conflu-
ence reduction is to detect independent concurrent transitions such that for the anal-
ysis only one ordering of concurrent transitions needs to be considered (instead of all
possible orderings). We show that all non-determinism in the MA-semantics of eSADF
arises from the independent execution of actors, and can (in theory) be eliminated us-
ing confluence reduction. As confluence reduction is performed at the language level
(i.e., the process algebra) using conservative heuristics, non-determinism may persist
after reduction, but if so, it does not influence quantitative measures.

Quantitative analysis of eSADF graphs. To analyse eSADF graphs we exploit re-
cently developed algorithms and software tool-support for verifying Markov automata.
The main challenge in MA analysis is the intricate interplay between exponential du-
rations and non-determinism. The latter arises naturally by the concurrent execution
of the different actors. It was recently shown that several measures-of-interest such
as expected time and long-run average objectives can be reduced to efficient analysis
techniques for Markov decision processes [Guck et al. 2014a]. In addition, timed reach-
ability objectives—can a certain system configuration be reached within a deadline
with a high probability?—were shown to be computable by appropriate discretisation
techniques [Guck et al. 2014a], and extensions towards the treatment of costs (mod-
elling energy consumption) in Markov automata have become available [Guck et al.
2014b]. Our MA semantics facilitates the quantitative analysis of eSADF graphs using
these novel and efficient analysis techniques. To sum up, our semantics is conceptu-
ally simple, compositional, and yields a rigorous framework for quantitative analysis
of eSADF.

Case studies. We have developed a prototypical implementation of our approach that
maps eSADF graphs (expressed in the XML-format as supported by the SDF3 tool 1)
onto Markov automata. These MA can then be analysed by the analysis tool presented
in [Guck et al. 2014a]. An extension with confluence reduction enables the minimisa-
tion of MA. This paper shows the feasibility of our approach by presenting two case
studies. The MPEG-4 decoder is a benchmark SADF case from the literature [Theelen
et al. 2006]. We show the effect of confluence reduction and analyse several measures of
interest of the MPEG-4 decoder such as buffer occupancy, throughput, and probability
to reach certain buffer occupancies within a given deadline. We compare the results
to analysis results using the SDF3 tool for SADF and to [Theelen et al. 2012]. As a
second case study we present the analysis of an industrial face recognition applica-
tion. This model is substantially larger than the MPEG-4 decoder as it exhibits a high
degree of parallelism. We study the quantitative effect of including auto-concurrency,
and analyse several metrics. We conclude by presenting an extension of our frame-
work by incorporating execution platforms on which the eSADF agents are supposed
to be executed. This allows for studying the quantitative effect of exploiting multi-core

1See http://www.es.ele.tue.nl/sadf/xml.php.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/235093182_Compositionality_in_Synchronous_Data_Flow_Modular_Code_Generation_from_Hierarchical_SDF_Graphs?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/267477266_Confluence_Reduction_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:4 Joost-Pieter Katoen, Hao Wu

platforms, as well as the quantitative impact of dynamic voltage and frequency scaling
(DVFS) and dynamic power management (DPM). We present an energy analysis of the
MPEG-4 decoder for a simple execution platform.

Organisation of the paper.. Section 2 and 3 introduce eSADF and MA, the opera-
tional model used for our semantics, respectively. Section 4 presents the compositional
eSADF semantics in detail. Section 5 discusses non-determinism, and the quantita-
tive evaluation of eSADF using MA. Section 6 presents the MPEG-4 decoder and the
face recognition case studies. Section 7 presents our approach to incorporate execu-
tion platforms. Section 8 discussed related work and Section 9 concludes. This paper
is based on the conference paper [Katoen and Wu 2014] and extends it with the indus-
trial face recognition case study, the incorporation of the executing platform, and an
energy analysis of the MPEG-4 decoder benchmark.

2. SCENARIO-AWARE DATAFLOW
In this section, we will give a formal definition of an exponentially-timed SADF
(eSADF) graph which is based on [Theelen 2007]. Figure 1 illustrates an SADF graph
of an MPEG4-decoder. We will first define the channels in an eSADF graph, which
can transfer information between the agents (called processes) in eSADF. Based on
the types of the elements that the channels can transfer, the scenarios are defined.
Afterwards, we introduce two distinct kinds of processes, i.e., kernels and detectors.
In order to build an eSADF graph correctly, the processes are connected by channels
which are assumed to be “type-consistent” with the processes’ ports. In the end, we
give the formal definition of an eSADF graph. Let C denote the set of channels.

FD
MC RC

VLD IDCT

c

1

c

1

1
1

1 1

1 1

1
1

11

d d

a

b

d

e

1

1

ScenarioRate I P0 Px
a 0 0 1
b 0 0 x
c 99 0 x
d 1 0 1
e 99 0 x

x P t30, 40, 50, 60, 70, 80, 99u

Fig. 1. An SADF model for an MPEG-4 decoder [Theelen et al. 2006]

DEFINITION 1. (Channel). A channel c P C is a (possibly unbounded) FIFO queue
to carry information modeled by tokens of a certain type (e.g. none, integers, Boolean,
symbols, etc.). Based on these types we distinguish channels by:

— data channels whose type is none, i.e., its tokens are only placeholders and not valued,
and

— control channels whose type is not none.

The justification of having two types of channels is that data channels are like the
channels in traditional SDF [Lee and Messerschmitt 1987], whereas control channels
are key features in (e)SADF to carry the scenario (control) information between pro-
cesses. We therefore have C “ DC Y CC with DC the set of data channels, CC the set of

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/4277232_A_Performance_Analysis_Tool_for_Scenario-Aware_Streaming_Applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221535306_Synchronous_Data_Flow_Describing_Signal_Processing_Algorithm_for_Parallel_Computation?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/277775742_Exponentially_Timed_SADF_Compositional_Semantics_Reductions_and_Analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :5

control channels, and DC X CC “ H. For a control channel cc P CC, we denote by Σcc
the type of cc, which is the set of elements (values of tokens) that can be carried in cc,
e.g. Σcc “ ta, . . . , zu or Σcc “ B “ t0, 1u. Based on these types of channels, we can now
define the scenario for an ordered set C of control channels as follows.

DEFINITION 2. (Scenario) For an ordered set C “ pcc1, . . . , cckq of control channels,
a scenario is an ordered k-tuple pσ1, . . . , σkq where σi is a value of type Σcci for channel
cci P C. The set of possible scenarios for C is denoted by ΣC “ś

ccPC Σcc.

If we consider C “ pcc1, cc2q with k “ 2, Σcc1 “ ts, tu and Σcc2 “ t1, 2u for example, the
possible scenario set ΣC “ tps, 1q, ps, 2q, pt, 1q, pt, 2qu. The set of scenarios can be used to
transfer the control information.

Now we define kernels and detectors, which can be treated as the “executable” pro-
cesses in eSADF. Processes are connected with each other by channels through their
ports. We denote the set of kernels as K, the set of detectors as D with KXD “ H. The
set of processes P “ K YD.

DEFINITION 3. (Kernel). A kernel K is a pair pP,Sq with

— P is a set of ports partitioned into the set PI , PO and PC of input, output and control
ports, respectively;

— S is the scenario setting pΣ, R,Eq (a triple) with:
�Σ “ś

pcPPC
Σpc is the set of scenarios in which K can operate, where Σpc is the type

(set of values) that is allowed to pass through port pc,
�R : ΣˆP Ñ N, the consumption/production rate function, such that Rpσ, pcq “ 1 for
any control port pc and scenario σ,
�E : Σ Ñ Rą0, the execution rate function, i.e., Epσq “ r means that the execution
time of scenario σ by K is exponentially distributed with mean 1{r.
Intuitively, for a kernel K, the possible scenarios in which it can operate are given

by the values of ordered tuples from its control ports. The consumption/production rate
function gives the number of tokens to be consumed or produced after K ’s execution in
such scenarios into K ’s ports accordingly. Since at each time we only need one token
from each control port to select the scenario, Rpσ, pcq equals 1 for every control channel.
For data channels the rate function may be arbitrarily large (but finite).

Detectors are not only an “executable” component similar to a kernel, but are
equipped with more features such as capturing the (sub-)scenario occurrence and send-
ing control information by the generation of control tokens. Detectors do not operate
in scenarios but in sub-scenarios which are determined by scenarios received via the
control ports.

DEFINITION 4. (Detector). A detector D is pair pP,Sq with

— P is a set of ports partitioned into PI , PO and PC (as for kernels). PO is partitioned
into POd and POc , the data and control output ports;

— S is the sub-scenario setting pΣ,Ω, F,R,E, tq with
�Σ “ś

pcPPC
Σpc is the set of scenarios of D,

�Ω , a non-empty finite set of sub-scenarios values,
�F : Σ Ñ M , the random decision function. M is the set of DTMCs pS, ι,P, Φq 2.
Function F associates a DTMC to each scenario σ P Σ. Here, S, ι and P are the finite

2DTMC = Discrete-Time Markov Chain. This is a finite-state automaton in which all transitions are
equipped with a discrete probability.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

:6 Joost-Pieter Katoen, Hao Wu

state space, initial state, and one-step transition probability function, respectively, and
Φ : SÑ Ω the sub-scenario decision function,
�R : ΩˆP Ñ N, the consumption/production rate function, such that Rpω, pcq “ 1 for
any sub-scenario ω and control port pc,
�E : Ω Ñ Rą0, the execution rate time function,
� t : Ωˆ POc Ñ Σpoc , the sub-scenario token production function. tpω, pocq determines
the value of a token to be produced into an output port poc P POc after D’s execution in
sub-scenario ω. Note that Rpω, pocq is the number of valued tokens to be produced.

Intuitively, a detector works in two phases. In the first phase, scenarios of the detec-
tor are determined in the same way as for kernels. After the scenario σ is determined,
i.e. there is at least one scenario token in each control channel, the DTMC of this sce-
nario is entered, which is defined by F pσq PM . The entry point of such DTMC is its last
occupied state. After moving from this state to one of its successor states, the current
sub-scenarios and probabilities of new sub-scenarios can be computed by the functions
Φ and P. This is an important difference with SDF: the next sub-scenario in SADF is
determined probabilistically, so as to model uncertainty. (This should not be confused
with the execution times of actors being randomly distributed.) In the second phase, D
will execute in these sub-scenarios. The rate function R and expected execution time
function E are then defined for such execution. After the execution of the sub-scenario,
the detector D consumes/produces the tokens of its ports. In order to send control in-
formation, the valued tokens defined by function t are produced into control output
ports and the number of such tokens to be produced is defined by R.

In order to define the exponential-time SADF (eSADF) graph, we need a consistent
way to connect the processes by using channels. We define the consistency between the
channels and a process’s ports, which determines whether a channel and two ports are
compatible.

DEFINITION 5. (Type consistency). We call a channel “type consistent” with two
ports in a (two) process(es), if

— the channel is a data channel and it connects a (data) output port of a kernel (detector)
with an input port of same/another process;

— the channel is a control channel and it connects a control output port of a detector
with a control port of same/another process, and in addition the types of the channel
and both ports coincide.

An eSADF graph is type consistent if all its channels are type consistent.

DEFINITION 6. (eSADF graph). An eSADF graph G “ pP, C˚q, where P is a finite
set of processes (vertices), C˚ is the set of “type consistent” channels (edges) of the form
`psrcpcq, tgtpcq˘ where srcpcq, tgtpcq are the source and target ports of channel c P C, with
proper initialization. 3

Example 2.1. Figure 1 illustrates an eSADF graph of an MPEG4-decoder (for the
simple profile [Theelen et al. 2006]). It consists of the kernels VLD, IDCT, MC and
RC and the detector FD. The decoder can process I and P frames in video streams,
which consist of different numbers of macro blocks. This involves operations like Vari-
able Length Decoding (VLD), Inverse Discrete Cosine Transformation (IDCT), Motion
Compensation (MC), and Reconstruction (RC). The kernels VLD and IDCT fire once

3Note that “rate” consistent eSADF can be defined as in [Theelen et al. 2006].

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :7

per macro block in a decoded frame, while MC and RC fire once per frame. The detec-
tor FD detects the frame type occurrences in video streams. If it detects an I frame,
all macro blocks are decoded by VLD and IDCT, and RC will reconstruct the image
(without MC). We assume an image size of 176 ˆ 144 pixels (QCIF), i.e, an I frame
consists of 99 macro blocks (cf. Figure 1 right table). If FD detects a P frame, then MC
computes the correct position of macro blocks from the previous frame out of motion
vectors. We assume that the number of processing motion vectors equals the number
of decoding macro blocks and is 0 or x P t30, 40, 50, 60, 70, 80, 99u representing conser-
vative approximations for a range of real motion vectors [Theelen et al. 2006]. This is
captured by the scenarios P0 and Px as indicated in Figure 1 (right). All parameters
are taken from [Theelen et al. 2006], which are obtained by using a specific profiling
tool.

3. MARKOV AUTOMATA
In this section, we introduce the semantic model, Markov automata (MA), for eSADF.
Briefly speaking, an MA is an extended labeled transition system (LTS) equipped with
both continuous time stochastic and nondeterministic transitions, and hence able to
expresses the complete semantics [Eisentraut et al. 2013] of modelling languages such
as dynamic fault trees [Boudali et al. 2009], domain-specific language AADL [Boz-
zano et al. 2011], and generalised stochastic Petri nets (GSPNs) [Marsan et al. 1984].
The treatment of MA is kept brief here; for a full description we refer to [Eisentraut
et al. 2010; Deng and Hennessy 2013]. The crucial observation is that MA are a very
natural semantic model of eSADF: concurrency can be modelled by non-determinism
(interleaving), exponential delays by Markovian transitions, the probabilistic selection
of sub-scenarios by discrete probabilistic branching, and MA are compositional. To the
best of our knowledge there is no other model that has these characteristics.

The syntax of MA. A distribution µ over a countable set S is a function µ : S Ñ r0, 1s
such that

ř

sPS µpsq “ 1. Let DistrpSq be the set of all distributions over set S.

DEFINITION 7. (Markov automata) A Markov automaton (MA) is a tuple M “
pS, s0, Act, ãÑ,ñq, where

— S is a countable set of states,
— s0 P S is the initial state,
—Act is a countable set of actions,
— ãÑĎ S ˆActˆDistrpSq is the interactive probabilistic transition relation,
—ñĎ S ˆ Rą0 ˆ S is the Markovian transition relation.

The semantics of MA. We let τ P Act denote the invisible internal action and ab-
breviate ps, a, µq P ãÑ as s a

ãÑ µ, which means if we are at the state s, the probability
of reaching state s1 by taking action a is µps1q.Similarly, we abbreviate ps, λ, s1q Pñ
as s λñ s1, which means the probability of moving from state s to s1 within time t is
exponentially distributed and equals 1 ´ e´λt. We call λ the rate of transition s

λñ s1.
Furthermore, we say a state s is Markovian iff s has only outgoing Markovian transi-
tions; it is interactive iff it has only outgoing interactive probabilistic transitions; it is
a hybrid state, otherwise. For states s, s1, we let Rps, s1q “ řtλ | s λñ s1u be the rate be-
tween states s and s1, and let Epsq “ ř

s1PSRps, s1q be the exit rate of s. The probability
of leaving the state s within time t is given by 1´ e´Epsq¨t. If Rps, s1q ą 0 for more than
one state s1, a race exists between such states after leaving s. For a particular state s1,

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/261844454_A_semantics_for_every_GSPN?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260037497_On_the_Semantics_of_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220954441_DFTSim_A_Simulation_Tool_for_Extended_Dynamic_Fault_Trees?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220439407_A_Class_of_Generalized_Stochastic_Petri_Nets_for_the_Performance_Evaluation_of_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220459422_Safety_Dependability_and_Performance_Analysis_of_Extended_AADL_Models?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220459422_Safety_Dependability_and_Performance_Analysis_of_Extended_AADL_Models?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:8 Joost-Pieter Katoen, Hao Wu

the probability of winning the race is given by the branching probability distribution
Pps, s1q “ Rps,s1q

Epsq .

Maximal progress.. If in a state both Markovian transitions and internal tran-
sitions τ are enabled, the maximal progress assumption asserts that internal
transitions τ take precedence over Markovian transitions. This is justified by the
fact that the probability of taking a Markovian transition immediately is zero (as
Prpdelay ď 0q “ 1´ e´λ¨0 “ 0), whereas the internal transition τ happens immediately
(since they cannot be delayed). c

a a
c

b
cµ

λ

τ

2
3

1
3

A sample MA

Closed MA. A closed MA is an MA which is self-contained and
has no further synchronization with other components. For a closed
MA, since all interactive probabilistic transitions are not subject to
any other transitions for synchronization purpose, they cannot be de-
layed. Therefore, we can safely hide them and turn them into inter-
nal transitions τ . A closed MA has no hybrid state due to maximal
progress. All outgoing transitions of a state in a closed MA are ei-
ther interactive probabilistic transitions labelled by τ or Markovian
transitions (cf. Figure 3 (c)). Note that non-determinism exists when
there are multiple internal probabilistic transitions emanating from
one state.

MA Process Algebra (MAPA). To generate an MA, a language based on µCRL [Groote
and Ponse 1995] called MA Process Algebra (MAPA) was introduced in [Timmer et al.
2012]. We use MAPA to define our MA semantics for eSADF.

DEFINITION 8. (Process terms). A process term in MAPA adheres to the syntax:

p ::“ Y ptq | cñ p | p` p | ř

x:D

p | aptq ‚ř
x:D

f : p | pλq ¨ p

Let Prc denote the set of process names,Act denote a countable universe of actions, and
x denote a vector of variables ranging over a (possibly infinite) type domain D. If the
cardinality of x exceeds one, D is a Cartesian product. Observe that this matches the
scenario definition based on types in eSADF graphs and simplifies our MA definition
for eSADF graphs. In the process term Y ptq, Y P Prc is a process name, t is a vector of
data expressions, and Y ptq expresses a process Y initialized by setting its variables to
t. cñ p is a guarded expression, which asserts if the condition c (a boolean expression)
is satisfied, then the process will behave like the process p, otherwise it will do noth-
ing. The operator p1` p2 expresses a non-deterministic choice between the left process
p1 and the right process p2. Further if there is a (possibly infinite) nondeterministic
choice over a data type D, this is denoted by the term Σx:D p. The term aptq ‚ř

x:D
f : p

states that the process can perform an aptq action (an action based on the vector t) and
then resolves a probabilistic choice over D determined by a predefined function f . The
function application f rx :“ ds returns the probability when the variables are evalu-
ated as d P D. The term pλq ¨ p expresses that after an exponentially distributed delay
with rate λ P Rě0, the process will behave like p. We will see later that the MAPA lan-
guage is concise and expressive enough to handle our eSADF semantics, since it allows
processes with different data types and is equipped with both interactive probabilistic
transitions and Markovian transitions. MA can now be obtained by the modular con-
struction using MAPA processes through parallel composition, encapsulation, hiding
and renaming operators [Timmer et al. 2012].

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/2934486_The_syntax_and_semantics_of_mCRL?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/2934486_The_syntax_and_semantics_of_mCRL?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :9

DEFINITION 9. (Parallel process terms) An initial process in parallel MAPA is a
term obeying the syntax:

q ::“ Y ptq | q ‖I q | BEpqq | τHpqq | ρRpqq
Here, Y P Prc is a process name, t is a vector of data expressions, I, E,H Ď Act are sets
of actions, and the function R : Actztτu Ñ Actztτu. A parallel MAPA specification is a
set of MAPA process equations with an initial process q defined by the above rules.

In an initial MAPA process generated by the rules above, q1 ‖I q2 is parallel composi-
tion w.r.t the action set I (defined in [Timmer et al. 2012] with γpa, aq “ a, a P I) and
τHpqq hides the actions in H, i.e., turns all the actions in H into τ and removes their
parameters. Since we only use these two operators later in our definition, we refer for
further information about MA and the MAPA language to [Timmer et al. 2012].

4. COMPOSITIONAL SEMANTICS OF ESADF
In this section, we define an MA semantics for eSADF. The first consideration is to
model the channels and the processes in eSADF separately. This approach is easy to
understand and the MAs for processes are finite whereas the MAs for channels are
countably infinite as channels are unbounded. However, the drawback is the interme-
diate state space caused by the communication between the processes and the chan-
nels. For example, a data channel must either know the current operating scenario of
the process which connects with it through its output port and then notify the pro-
cess whether the tokens are available in such operating scenario or constantly send its
channel status to the process. Hence we model the control channels as FIFO buffers
and the data channel as natural numbers into the process’s definition. As the process’s
behavior merely depends on the token availabilities and/or the contents of these chan-
nels, no further status synchronization between other components is needed. After all
channels are integrated into the corresponding processes, the MAs for processes take
care of the channel’s status update. This is done by using the action synchronization
between processes.

REMARK 1. A kernel is a special kind of detector, in which

(1) no output channel is of type control channel,
(2) its subscenario set is identical with its scenario set, and
(3) for each scenario σ, F pσq is a Markov chain with only one state s P S, Pps, sq “ 1 and

Φpsq “ σ.

From now on we will only consider the MA semantics of a detector, since the MA
semantics of a kernel can be easily derived from the detector’s semantics (due to Re-
mark 1). Recall that a detector can have more than one data channel (data channel
and/or control channels) connected through its input ports (input ports and/or control
ports) of a single kernel (detector). Moreover, since we integrate the input channels as
variables into their process’s definition, we only consider these channels and the corre-
sponding ports. For simplicity’s sake we assume that the detector, say D, has only one
such data channel and control channel from one detector, say D1 (see following figure).
This is easily generalized to several channels. Detector D has an input data channel
DCpD1,Dq from D1 which is connected through D1’s output port oiD1,D and D’s input port
iD1,D and a control channel CCpD1,Dq from D1 which is connected through D1’s output
port ocD1,D and D’s control port cD1,D. As mentioned earlier, the channels in eSADF
are modeled as variables. Let the variable dcpD1,Dq P N represent the current number of
tokens in data channel DCpD1,Dq. For control channels, we let the variable ccpD1,Dq rep-
resent the current status of control channel CCpD1,Dq where ΣpD1,Dq is the set of values

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

:10 Joost-Pieter Katoen, Hao Wu

of the scenario token which can be stored in CCpD1,Dq. Hence we have ccpD1,Dq P Σ˚cc
pD1,Dq

.
Various operators on these variables are defined, for instance, | ccpD1,Dq | returns the
length of the sequence; headpccpD1,Dqq returns the first element (head) of the sequence;
tailpccpD1,Dqq is only defined for non-empty channels and returns the remaining string
by removing headpccpD1,Dqq, and ccpD1,Dq `̀ ω for ω P Σ˚ denotes concatenation. If clear
from the context, we omit the subscript pD1,Dq. Note that the general definition for
detectors with several data and control channels can be easily derived from this sim-
plified definition, since we can just replace the single variable by a vector of variables.

D D1
ID “ tiu
OD “ H
CD “ tcu

ID1 “ H
OD1 “ toi, ocu
CD1 “ H

CC

DC

i

c

oi

oc

The MA semantics of a detector D consists of two modules: the (sub)scenario module
SM and the function module FM . First, we give the MA definition of scenario module
SM . Since SM only communicates (synchronizes) with FM via requesting and waiting
for sub-scenario decisions, no variable is used in SM . Recall that for each scenario
σ P Σ, pS, ι,P,Φq is a non-empty finite Markov chain pS, ι,Pq associated with a function
Φ : S Ñ Ω. Now we define an MA for pS, ι,P,Φq for each scenario σ P Σ, and then
compose them in parallel. For scenario σ, we assume that S “ tS0, . . . , Snu, n P N and
ι “ S0. We also let the set PostpSq “ t T | PpS, T q ą 0 u for S P S.

Semantics of detectors.. For a better understanding, we distinguish input and out-
put actions: if the synchronization actions are initiated by an MA, these actions are
overlined by “Ď”, and the synchronization actions waiting for the synchronization are
denoted as usual. Note that this notation will not affect the original MA semantics.

DEFINITION 10. (Semantics of a scenario) The semantics of the scenario module
SMσ of detector D in scenario σ is defined by:

SMpS : Sq :“reqpσq ‚ř
T :PostpSq

PpS, T q : SM 1pT q

SM 1pS : Sq :“ subscpωq.SMpSq where ω “ ΦpSq P Ω

The task of SM is to simulate the DTMC embedded in scenario σ to return the
sub-scenario decision which the detector D is going to execute. Since in the original
SADF semantics the sub-scenario [Theelen 2007] is selected by both making a one-
step transition in the DTMC and checking the function Φ, we use an intermediate
state for every original state in the DTMC. To this end, we let SMpSq represent the
behavior of the original state and SM 1pSq represent the behavior of the intermediate
state of S. First, if SM receives the sub-scenario decision request from function module
FM in σ (i.e. action reqpσq), and the last left state in the DTMC for σ is S, we make a
one-step to the intermediate state of S’s successor states (i.e. the intermediate states
of PostpSq) with probabilities determined by P. The behavior of the intermediate state
just returns the sub-scenario decision using ΦpSq, and then behaves like state SMpSq.

EXAMPLE 1. A simple example shows how to translate the DTMC and sub-scenario
decision function (left figure below) in eSADF to an MA (right).

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/4277232_A_Performance_Analysis_Tool_for_Scenario-Aware_Streaming_Applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :11

I P

1
5

1
4

4
5

3
4

ΦεpIq “ I ΦεpP q “ P

I P

I 1 P 1

req
D pεq reqD

pεq

I P4
5

1
5

3
4

1
4

1 1

We now initialize the scenario module of D in scenario σ by setting SMσ “ SMpS :“
S0q, where S0 “ ισ is the initial state of the DMTC of σ.

DEFINITION 11. (Scenario module) The scenario module of detector D is:

SMD “ SMσ1 9 SMσ2 9 ¨ ¨ ¨ 9 SMσn

where 9 equals ‖H (as there is no synchronization between the MAs for the scenarios).

DEFINITION 12. (Functional module) The functional module FM of a detector D
is defined by:

FM pdc : N, cc : Σ˚, subsc : ΩDq :“
p|cc| ě 1^ headpccq “ σ ^ subsc “ Kq ñ reqpσq. ř

ωPΩ

subscpωq.FM pdc, cc, subsc :“ ωq
` ř

ωPΩD

psubsc “ ω ^ dc ě RDpω, iqq
ñ pλωDq.exeDpωq.FMpdc´RDpω, iq, tailpccq, subsc :“ Kq

` ř

ω1PΩD1

exeD1pω1q.FMpdc`RD1pω1, oiq, cc `̀ tD1pω1, ocq, subscq

The tasks of FM are manifold. FM has three parameters: the number of tokens in
data channel dcpD1,Dq, the content of control channel ccpD1,Dq, and the current operating
sub-scenario subsc. One task of FM is to infer both the current scenario of D from the
content of the first scenario token in each control channel and whether the subscenario
is already available (i.e., equal to ω) or undefined (K). If the subscenario is undefined
and the current scenario can be determined (headpccq “ σ), FM will synchronize with
SM to determine the operating sub-scenario in σ (by action reqpσq). After SM returns
the sub-scenario, say ω, FM writes ω into variable subsc. After the sub-scenario is
available (i.e. subsc ‰ K), FM can execute as soon as there are enough data tokens
in dc, which is checked by inspecting the rate function RDpω, iq for port i. If there are
enough tokens, FM can execute, and the execution time is exponentially distributed
with a mean duration of 1{λω. After the execution, FM will synchronize with another
process to update the corresponding channel status (i.e. process the tokens to its output
channels by action exeDpωq action) and consumes the tokens from the input channels
(i.e. updates its own variables’ values). The last task of FM is to let other processes
update their input channel status (i.e. to produce tokens onto the channels which are
the input channels of D) after their executions.

We are now in a position to define the MA semantics of a detector D as the composi-
tion of its functional and scenario module.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

:12 Joost-Pieter Katoen, Hao Wu

DEFINITION 13. (Detector semantics) The semantics of detector D is given by:

MD :“ τID pFMD ‖ID SMDq
where ID “ t reqpσq | σ P Σ u Y tω | ω P Ω u and

FMD “ FMpdc :“ φ˚pDCq, cc :“ ψ˚pCCq, subsc :“ Kq
where φ˚, ψ˚ are the initial content of data channels and control channels in C˚, re-
spectively.

The action set ID includes the sub-scenario request action req with all scenario values
and the sub-scenario return action with all sub-scenario values. As the actions in ID are
only used for synchronizing FMD and SMD, all these actions are made unobservable
by applying τID p¨q.

Semantics of kernels.. The semantics of kernel K is obtained by simplifying the se-
mantics of a detector DK . First, the set of scenarios ΣDk

and the set of sub-scenarios
ΩDK

of DK are identical to K ’s set of scenarios ΣK (i.e., ΣDK
“ ΩDK

“ ΣK). Similarly
the consumption/production rate function R of DK equals R of K. AsK has no control
outports (so does DK), the function t and rate function R are not defined in DK . The
scenario module SM of DK in scenario ω is defined as described in Remark 1 by:

SMpS0q :“ reqpωq.SM 1pS0q
SM 1pS0q :“ subscpωq.SMpS0q

Semantics of eSADF graphs.. Finally, we define the MA semantics for an eSADF
graph. We assume that an eSADF graph consists of a set of detectors tD1, . . . , Dnu, n P
N. For each detector Di (1 ď i ď n) let MA MDi

be its semantics and ActDi the set of
interactive actions in Di.

DEFINITION 14. (eSADF semantics) The MA for eSADF graph G “ pP, C˚q is:

MG :“ τH
`

MD1
‖I1 ¨ ¨ ¨ ‖In´1

MDn

˘

where ‖ is left-associative, Ii “ ActDi`1 X pActD1 Y ¨ ¨ ¨ Y ActDiq for 1 ď i ď n, and
H “ ActD1 Y ¨ ¨ ¨ YActDn .

EXAMPLE 2. The eSADF graph in Figure 2 (left) consists of detector A and kernel
B, control channel CCpA,Bq and data channels DCpB,Bq and DCpB,Aq. Production and
consumption rates equal to 1 are omitted, and the red numbered points indicate the
number of initial tokens in these channels (control channels are initially empty). Kernel
B can execute in scenarios I and P . The execution time of I is exponentially distributed
with mean duration one; P has mean duration 1

2 . The scenario occurrence is decided
by A based on the embedded DTMC (cf. Example 1) and sent to B via the scenario
tokens valued with I and P through channel CCpA,Bq. Since there is no input control
channel for A, A always executes in a default scenario ε. Here we assume the sub-
scenario decision procedure in A will be done immediately.
5. QUANTITATIVE ANALYSIS
Now that we have seen that the behaviours of an eSADF graph and its actors can be
adequately described by means of a Markov automaton (MA), we address how quan-
titative measures on eSADF graphs, e.g., expected time and long-run objectives, as
well as probabilities of certain events happening unto a certain deadline, can be ob-
tained. A detailed treatment of the algorithms is outside the scope of this paper; a full
explanation can be found in [Guck et al. 2014a].

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :13

A

B 1

s0

s1 s2

s3 s4 s5 s6

4

5

1

5

1

4

3

4

4

5

1

5

2 121

⌧

⌧ ⌧

1

Fig. 2. A sample eSADF graph and its (somewhat simplified) MA

5.1. Analysis of Markov Automata
Given a finite-state MA, we consider three quantitative objectives: expected time,
long-run average, and timed (interval) reachability. Expected time objectives focus on
determining the minimal (or maximal) expected time to reach a given set of states.
Long-run objectives determine the fraction of time to be in a set of states when con-
sidering an infinite time horizon. Timed reachability objectives are focused on the
probability to reach a set of states within a given time interval. As MA exhibit non-
determinism, we focus on maximal and minimal values for all three objectives. These
correspond to the best and worst possible resolution of the non-determinism present
in the MA. Expected-time and long-run average objectives can be efficiently reduced to
well-known problems on Markov decision processes such as stochastic shortest path,
maximal end-component decomposition, and long-run ratio objectives. As shown in
[Guck et al. 2014a], the reduction to these well-investigated problems enables the us-
age of efficient analysis techniques such as linear programming, value iteration, and
maximal end-component decomposition, which all have a polynomial time-complexity
in the size of the MA. This all relies on the fact that for optimal expected time or long-
run objectives, the resolution of the non-determinism by extremely simple (so-called
memoryless) policies suffices. Timed reachability objectives however are harder to ob-
tain. The main technical complication here is that the optimal way of resolving the non-
determinism requires policies with infinite—even uncountably large—memory. Intu-
itively this can be seen as follows. Assume that in an MA there is a non-deterministic
choice between two options: either reaching a target state slowly, but almost surely
(i.e., with probability one), or reaching a target soon, but with the risk that the target
is not reached at all (so the target is reach with a probability strictly smaller than
one). Then it makes a difference whether ample time remains to reach the target, or
whether there is almost no time left. In the latter case, the fast but unsafe option is
optimal, whereas in the first case the slow and safe option is optimal. The way around
this is to resort to discretisation. Here, the time interval is split into equally-sized
discretisation steps, each of length δ. The discretisation step is assumed to be small
enough such that with high probability it carries at most one Markovian transition.
This yields a discretised MA, a variant of a semi-MDP, obtained by summarising the
behaviour of the MA at equidistant time points. The analysis of the dMA yields an
approximation of the true timed reachability probability in the MA where the error is
bounded (depending on the discretisation step δ and the largest rate occurring in the
MA). As we will see in the case studies (Section 6), the analysis of timed reachability
objectives therefore is time-consuming.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:14 Joost-Pieter Katoen, Hao Wu

5.2. Confluence Reduction and Non-Determinism
Prior to analysing an MA, we employ a state-space reduction. This is an on-the-fly
technique, meaning that it can be used while generating the MA from a given eSADF
graph. In addition, it is a symbolic technique, that is, it is directly applicable on the
MAPA terms that describe the behaviour of an eSADF graph. Besides being an effec-
tive and efficient state-space reduction technique, confluence reduction—in theory—
can reduce all non-determinism in the MA semantics of an eSADF graph.

Confluence reduction. Confluence reduction [Timmer et al. 2012] reduces the state
space based on commutativity of transitions, removing nondeterministic transitions
caused by parallel composition of independent components. It is similar in spirit as
partial-order reduction. The reduction preserves the three quantitative metrics of in-
terest described above. Based on heuristics to detect confluence in MAPA terms, the
state space is reduced in an on-the-fly manner. Its effect is illustrated in Figure 3,
which gives the MA semantics (b) for a simple stochastic Petri net with immediate
transitions (solid bars) and timed transitions (open bars) (a) and afterwards reduces
the state space (c) by applying confluence reduction. The key observation is that the
commutativity of the immediate transitions t1 and t4, and t2 and t4 is exploited in the
reduction. Confluence reduction yields a reduction of 7 to 4 states.

p1

p2

p3

p4

p5

p6

¨
¨

t1 t2

t3

W “ 1

t5

λ

t6

µ

t4

W “ 2

(a)

t4pτq

t1pτq t1pτq

t4pτq

t2pτq

t4pτqµ

λ

τ

2
3

1
3

(b)

τ
τ

µλ

τ

2
3

1
3

(c)
Fig. 3. (a) a sample GSPN, (b) its MA semantics, and (c) its reduced MA

s t

µ ν”R

τ
T

a
C

a

C

Confluence reduction in a nutshell. The basic idea of confluence re-
duction is to determine the confluent sets of transitions [Timmer et al.
2012]. To obtain these, groups consisting of only confluent interactive
probabilistic transitions should satisfy the following conditions: 1) all
transitions are τ -transitions with Dirac distribution, 2) all transitions
enabled prior to a transition in this group are still enabled after taking
such transition. The diagram left above illustrates the latter constraint.
If transition s

τÑ t is in a group, say T , and if s aÑ µ, then t
aÑ ν must exist such that

µ and ν are related, i.e., all states in the support of µ and ν are connected by transi-
tions from T . Timmer et al. proved that the transitions satisfying the conditions above
connect divergence-sensitive branching bisimilar states [Timmer et al. 2013]. Hence
it is safe to prioritise confluent transitions. As the intermediate states on a confluent
path are bisimilar, they can be aggregated. Confluence reduction is applied on syn-
tactic MAPA terms in an on-the-fly manner thus avoiding a full state space generation
prior to the reduction (as opposed to bisimulation reduction [Theelen et al. 2012] which
requires the construction of a full state space prior to reduction). Case studies show a
state space reduction from 26% to 83% [Timmer et al. 2012]; for the MPEG-4 decoder
and the face recognition case study this is about 66% (cf. Table I).

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/267477266_Confluence_Reduction_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :15

Non-determinism in eSADF. Non-determinism in our MA semantics only arises from
the execution of independent concurrent actors in eSADF graphs:

THEOREM 1. Non-determinism only occurs between sub-scenario decision actions
from different, independent processes. All these transitions are confluent, i.e., they yield
the same (Markovian) state. The probability distribution to reach such states is inde-
pendent from the resolution of the non-determinism.

The proof sketch of this result is provided in [Katoen and Wu 2014] and confirms a
similar result in [Theelen et al. 2006] for an alternative SADF semantics. The key
point is that, since the enabled probabilistic choice among sub-scenarios is instanta-
neous, the transitions representing the time progress can not be enabled before all
such enabled probabilistic transitions4. Since these enabled probabilistic transitions
are independent, they are confluent to the state where the Markovian transitions are
enabled. Whereas in SADF [Theelen et al. 2006] timed transitions are deterministic
(since it always takes the earliest finished execution time of a process), in eSADF they
are probabilistic and resolved by the race condition. Thanks to the above result, con-
fluence reduction can potentially reduce all non-determinism from the MA semantics
of an eSADF graph. As heuristics are used, this is not always established in practice,
but then the above result guarantees that worst and best case quantities coincide.

6. CASE STUDIES
In this section, we provide two case studies: an eSADF of the MPEG-4 decoder bench-
mark and an eSDF5 of a real-life face recognition application (that we obtained from
an industrial partner). Different system metrics, such as throughput of different ker-
nels (actors), channel buffer occupancies and response delay are obtained from the
quantitative analysis of the resulting MA.

6.1. The MPEG-4 Decoder Benchmark
We consider the eSADF graph of an MPEG4-decoder as given in Figure 1 (page 4).
Applying confluence reduction to the MA of the MPEG-4 decoder reduces the state
space by about a factor 3:

Table I. MA size for sample eSADF graphs

before red.before red. with conf. red

Example 2
#states 19 7

Example 2
#transitions 19 7

MPEG-4
#states 61918 20992

MPEG-4 #transitions 81847 40910MPEG-4
#non-det. state 4 1

Face
recognition

#states 106784 29440Face
recognition #transitions 154688 77344

Note that non-determinism for the MPEG-4 decoder is not completely eliminated by
confluence reduction, as heuristics are used to detect confluent transitions.

Our MA semantics allows for determining several performance metrics for the
MPEG-4 decoder in a fully automated manner. We illustrate this for various quan-
titative measures of the MPEG-4 decoder example.

4In SADF this is ensured by action-urgency; here by maximal progress.
5Since SDF is a subclass of SADF, our eSADF semantics is readily applicable to eSDF.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/277775742_Exponentially_Timed_SADF_Compositional_Semantics_Reductions_and_Analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:16 Joost-Pieter Katoen, Hao Wu

Buffer occupancy. We consider two long-run properties: the average number of tokens
and the probability distribution of tokens in a channel. The average buffer occupancy of

Table II. Average buffer occupancy in each MPEG-4 channel

av. #tokens idct-rc vld-mc vld-idct mc-rc rc-mc
MaMa 38.2584 27.7168 1.3118 0.2071 0.7929

SDF3 42.2215 24.2215 1.18198 0.4412 0.8574

p2p1 p3 p4 p5

each channel of the MPEG-4 decoder is shown in Table II. (This includes a comparison
with the results obtained for the MPEG-4 decoder with the SDF3 tool, using determin-
istic execution times.) From the results, we observe that the channels of IDCT-RC and
VLD-MC have a much higher average occupancy than the other three. This is due to
the fact that in case of the I frame and Px frames, IDCT and VLD need to execute only
one time, whereas RC and MC need to compute 99 and x times, respectively. Hence
the tokens can accumulate in both channels waiting for processing. The average num-
ber of tokens in channels MC-RC and RC-MC together is one. This is due to the cyclic
channels between MC and RC, which guarantees that MC and RC execute at the same
rate. 6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80 90 100

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

Tokens

Buffer occupancy distribution

vld-mc
idct-rc

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 1 2 3 4 5 6 7 8 9 10 11 12

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

Buffer occupancy distribution

Tokens

vld-idct

Fig. 4. Token distribution in three MPEG-4 channels

The token distributions of three data channels are shown in Figure 4. The peak val-
ues for channels VLD-MC and IDCT-RC are caused by conservatively approximating
the motion vectors (cf. Section 6.1) by fixed numbers (i.e, x P t30, 40, 50, 60, 70, 80, 99u).
Further, the average number of tokens in channel VLD-IDCT is 0.57, which is possibly
due to that VLD will produce at most one token to the channel VLD-IDCT at each
time. Thus, the probability of having more than three tokens in channel VLD-IDCT is
very low, whereas the probability of VLD-IDCT being empty is quite high (ě 0.65).

Expected time. The second property considered is the expected time and time-
bounded reachability probability for a channel to reach its 50% (p6) and 90% capacity,
respectively. In our evaluation, we let the maximal number of tokens in the channel
to be the capacity of that channel. Afterwards, we mark such states as target states
where the current number of tokens in the channel is more than 50% and 90% of its ca-
pacity, respectively. Here, we only the show the result in 50% case of channel VLD-MC
in Figure 5.

6Note that this does not hold for SDF3 which hints at a possible flaw in this tool.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Time-bounded reachablity probabilities to reach vld-mc’s 50% capacity

Pr
ob

ab
ili

tie
s

Time units (kCycles)

>=50% of vld-mc’s cap

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Pr(Ex_rc-1 <= T)

Time-bounded Response Probabilities of RC’s First Execution

 P
ro

ba
bi

lit
ie

s

Time units (kCycles)

Fig. 5. Time-bounded reachability probabilities to reach VLD-MC’s 50% capacity (left) / First response
probabilities of RC within time t (right)

Response delay. We exploit time-bounded reachability objectives for response time
estimation. This allows for answering questions such as “what is the expected time
until a process finishes its first execution?” or “what is the probability of a process
responses for the first time within time t?”. It is equal to compute the expected time
or time-bounded reachability probabilities from the initial state to those states where
the process has just finished its first execution. Taking RC for example, we get 1152.617
(kCycle) as the answer to the first question and Figure 5 to the second (p7). Since there
is probability 0.12 to have a P0 frame which means a still video frame, RC just copies
it from MC, the probability of RC finishes its first execution within time 0 is 0.12.

Throughput and inter-firing latency. We compute the throughput of a kernel by the
following approach. First, we compute the long-run average probability (Pσ) of a kernel
executing in scenario σ P Σ. This can be done by adding a Boolean variable to the
kernel’s MAPA definition and set the Boolean to true when the execution condition is
satisfied and set it to false when the execution finishes. Since the expected execution
time (Eσ) of a kernel in scenario σ is known, the throughput of this kernel is computed
as sum of the long-run average probability Pσ divided by the expected time Eσ for each
scenario σ:

Tr “
ÿ

σPΣ

`

lim
tÑ8

Pσ ¨ t
Eσ

¨ 1

t

˘ “
ÿ

σPΣ

Pσ
Eσ

“
ÿ

σPΣ

λσPσ .

The results for the MPEG-4 decoder are shown in Table III.
Table III. Throughput of each kernel in MPEG-4 decoder

Throughput IDCT VLD MC RC

MaMa 0.0423732 0.0423732 0.000746128 0.000746128

SDF3 0.0437919 0.0437919 0.000745268 0.000745268

p9p8 p10 p11

Analogously, the average inter-firing delay (In) can be computed as:

In “
ÿ

σPΣ

` p1´ Pσq
ř

σPΣ Pσ ¨ λσ
¨ Pσ
ř

σPΣ Pσ

˘

.

We take MC as an example and compute the In of MC as 1460.5 (1341.8 in SDF3) kCy-
cles. The verification times to check the various properties is indicated in Table IV. The
numbers in brackets are the run times of SDF3 (where n.a. stands for not applicable).

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

:18 Joost-Pieter Katoen, Hao Wu

All experiments have been conducted on a machine with an 48-core CPU at 2.1GHz
and 192GB memory.

Table IV. Verification time of properties 8

p1 p2 p3 p4 p5 p6
489m (6s) 592m (3.4s) 141m (11.4s) 11m (2.7s) 10.4m (12.7s) 14.7h (n.a)

p7 p8 p9 p10 p11
456m (n.a) 24.87m (4.76s) 18.48m (6.56s) 4.45m (13.02s) 5.1m (3.2s)

6.2. Face Recognition

A

B C

E

F G I J K L M N O

P

Q R S

T

U

V

W

Y

2
150
150

HD

X

2

150

150

2

2 2

1

1 641501

1 150

1

1
64

64

64

64

64 1

1

1

1

1

2

1 1 1 1 1 1 1 1
1

1

1

1

1

27 27

27 27

1

1

1

1

26

26

1

26

26

26
26

2

2 2

2

1 1

Fig. 6. The SDF model for face recognition application

The face recognition example. In this case study, we apply our approach to an SDF
model (see Figure 6) of a real-life application of face recognition. The SDF models the
processing of a single frame in a two-dimensional picture. Due to confidentiality is-
sues, we have anonymised all actor names; the rest of the graph is as provided to us
by an industrial partner. The SDF consists of 25 kernels. For the sake of readability,
production/consumption rates equal to 1 are omitted; furthermore, the initial num-
ber of tokens in a channel is marked by a black dot attached a number. Note that an
SDF graph can be considered as an SADF graph without detector and every kernel
executes in a default scenario (no sub-scenarios and no probabilistic selection of such
sub-scenarios). We can thus apply our approach without any problems to SDF graphs.
There is however one difference: SADF does not allow auto-concurrency whereas SDF
does. In Figure 6, the actors in which auto-concurrency is disallowed (hence we omit-
ted the self-loop with rate 1 in such actors for simplicity) are marked as blue, while the

8These verification times seem prohibitive, but exploit algorithms that allow for analysing MA with
non-determinism.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :19

actors (i.e., actor D, H, and X) in which auto-concurrency is allowed are marked red.
Auto-concurrency amounts to the simultaneous firing of an actor (provided the firing
condition is multiply enabled). Auto-concurrency can be expressed in our MA seman-
tics as the parallel composition of multiple enabled copies of the actor process. Due
to the fact that a process with multiple (say n) Markovian delays λ (representing the
firings) enabled in parallel is equivalent—in the sense of branching bisimulation—to
a process which evolves with rate n¨λ to its successor, and then evolves subsequently
with rate pn´1q¨λ and so forth, see Figure 7. Thus, the execution rate in the original
MA definition of such actor with auto-concurrency becomes multiple times (= number
of enabled copies of the actor) the original rate. This allows us to quantitatively assess
the impact of auto-concurrency on the face recognition example in Figure 6 In our ex-

� · · ·

=⇒ λ

=⇒ λ

=⇒ λ

parallel composition of copiesn

≈br

n · λ

(n − 1) · λ
=⇒

=⇒
=⇒ λ

···

Fig. 7. Treating auto-concurrency in the MA semantics of SDF

periments, we evaluate the SDF without auto-concurrency for actors D, H, and X, and
provide a quantitative comparison between the two versions. The state space of the
MA is about 1,000,000 states (see Table I) and can be reduced by confluence reduction
by a factor 66%. The computation time of the throughput of each actor varies from 3 to
10 minutes, and the computation of the token distribution for each case takes about 1
to 2 minutes. As indicated before, the most time-consuming property to compute is the
probability of reaching a (critical) situation within a given time-bound, which varies
from minutes to a few hours depending on the given time-bounds.

Throughput. We first compute the throughput of each actor in the SDF graph. We
observe that all the actors except the “auto-concurrent” actors D, H, X and E have
the same throughput. This throughput is the base throughput of the SDF graph. It
follows that the throughput of D, E is 150 times, H 64 times, and X 26 times the base
throughput, respectively. On the other hand, the SDF’s throughput is increased by a
factor 1.5 when auto-concurrency is exploited. Thus, auto-concurrency increases the
throughput by about 50%. The results are listed in Table. V. Note that since in SDF
the actors have only one default scenario, the inter-firing latency of an actor is simply
the reciprocal of its throughput.

Table V. Throughput of each actor in the face recognition application

Throughput A-C/F/G/I-W/Y D & E H X

Auto-Concurrency 0.1226 18.390 7.8469 3.187
No-Auto-Concurrency 0.08805 13.20900 5.6361 2.289

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

:20 Joost-Pieter Katoen, Hao Wu

Table VI. Average tokens and token distribution in different channels

Average Buffer Occupancy c-d d-f d-e g-h h-i v-x u-x

Auto-Concurrency 82.16925 82.05888 0.09196 62.35874 63.57629 0.06694 25.57622

No-Auto-Concurrency 101.28171 101.20245 0.06605 54.37433 54.10945 0.64911 25.23185

Token distribution 0 1-149 150

Auto-Concurrency 0.00466 0.00601 0.10025
No-Auto-Concurrency 0.00335 0.00431 0.35377

c-d/d-f
Token distribution 0 1

Auto-Concurrency 0.908041 0.09196
No-Auto-Concurrency 0.93395 0.066048

d-e

Buffer occupancy. As for the MPEG-4 decoder, we determine the average number of
tokens and the distribution of tokens in different representative channels. The out-
comes are shown in Table VI and VII. Observe that channel c-d and d-f have almost
the same average number of tokens, and the probability of having one token in channel
d-e is much higher than for e-d (one token is either in e-d or d-e). This is due to the
heavy workload at actor D. Moreover, we observe that without auto-concurrency, more
tokens will accumulate in some channels in average, but this does not always occur.
For some channels, such as u-x, there is almost no impact on the average number of
tokens. The distribution of different number of tokens in channel c-d, d-f, d-e, v-x
and d-e is also given. We see that the probability distribution is monotonically decreas-
ing or increasing, and the large probability (such as 0.99 in v-x and 0.969 in h-i) is at
marginal values (0 or 64).

Table VII. Token distribution in channels v-x & h-i when using auto-concurrency

0

0.001

0.002

0.003

0.004

0 2 4 6 8 10 12 14 16 18 20 22 24 26

1.0

...
Number of tokens in channel v-x

Pr
ob

ab
ilit

y

(0.99) channel v-x

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 8 16 24 32 40 48 56 64

1.0...

(0.969)

Number of tokens in channel h-i

Pr
ob

ab
ilit

y

channel h-i

Table VIII. The expected time (a), time-bounded reachability to critical situation (b), and response delay of actor B (c)

Expected Time (x-u) 50% cap. 92% cap.

Auto-Concurrency 0.54090 0.77189
No-Auto-Concurrency 0.28206 0.31735

Response Delay (actor B)

Auto-Concurrency 8.5836532
No-Auto-Concurrency 12.248275

(a)

(b)

(c) Probability until channel x-u reach 50%/92% cap. within a time-bound t

time unit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50

Pr
ob

ab
ili

ty

50 % (13) 92% (24) 92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

X2U NO AC

X2U AC

0.5408987 0.77189408 0.05 9.924957733E-05 0.20 5.678024061E-08 0.05 0.00591308 0.10 5.949084842E-07

0.28206389 0.31734599 0.10 0.01937007 0.40 0.0042594094 0.10 0.07352959 0.20 0.0016955
0.15 0.10972173 0.60 0.1786897010 0.15 0.20779643 0.30 0.04572558
0.20 0.25366118 0.65 0.2812165663 0.20 0.36406517 0.40 0.21878647
0.22 0.31623086 0.70 0.3954717947 0.21 0.39480005 0.45 0.34369804
0.24 0.37830155 0.71 0.4186873263 0.22 0.42493116 0.47 0.39554691
0.26 0.43837843 0.72 0.4418145419 0.23 0.4543334 0.50 0.47208339
0.27 0.46733198 0.73 0.4647719629 0.24 0.48290743 0.51 0.49684789
0.28 0.49543349 0.74 0.4874836958 0.25 0.51057529 0.52 0.52109489
0.29 0.52261266 0.75 0.5098791237 0.26 0.53727884 0.53 0.54475692
0.30 0.54881807 0.76 0.5318956049 0.27 0.56297678 0.54 0.56777598
0.31 0.57401339 0.77 0.5534762448 0.28 0.58764257 0.55 0.59010431
0.32 0.59817717 0.78 0.5745700868 0.29 0.61126155 0.56 0.61170285
0.33 0.62129819 0.79 0.5951349025 0.30 0.63383006 0.57 0.63254361
0.34 0.64337616 0.80 0.6151321398 0.31 0.6553526 0.58 0.65260573
0.35 0.66441838 0.81 0.6345309664 0.32 0.67584198 0.59 0.67187582
0.36 0.68443912 0.82 0.6533077222 0.33 0.69531583 0.60 0.69034643
0.37 0.70345835 0.83 0.6714419457 0.34 0.71379755 0.62 0.7248941
0.38 0.72150018 0.84 0.6889203029 0.35 0.73131381 0.64 0.75630146
0.39 0.73859236 0.85 0.7057337550 0.40 0.80552281 0.66 0.78468266
0.40 0.75476545 0.86 0.7218772867 0.42 0.8296083176 0.68 0.8101968
0.45 0.82301573 0.87 0.7373514405 0.44 0.8509160751 0.70 0.833029
0.47 0.84507918 0.88 0.7521580735 0.46 0.8697177014 0.72 0.85338002
0.50 0.87342103 0.89 0.7663050394 0.48 0.8862705652 0.74 0.87145751
0.50 0.873421029 0.90 0.7798008504 0.5 0.9008150059 0.76 0.88746637
0.55 0.9100699422 0.95 0.8379999644 0.55 0.9297971917 0.78 0.9016060769

0.60 0.9364224522 1.0 0.8823752727 0.6 0.950508891 0.8 0.9140660701

0.65 0.9552191173 1.10 0.9396918803 0.65 0.9652152114 0.85 0.9389959423

0.70 0.9685468726 1.2 0.9698045448 0.7 0.9756075094 0.9 0.9568973217

1.3 0.9850872631 0.75 0.9829248909 0.95 0.9696537991

1.4 0.9926934175 0.8 0.9880631687 1.0 0.9786924912

1.5 0.9964368176 1.05 0.9850696727

1.6 0.9982671587 1.1 0.9895546179

1.7 0.9991586768 1.2 0.9949045013

Expected Time (x-u) 50% cap. 92% cap.

Auto-Concurrency 0.54090 0.77189
Non-Auto-Concurrency 0.28206 0.31735

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

50 % (13) 92% (24) 92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

X2U NO AC

X2U AC

0.5408987 0.77189408 0.05 9.924957733E-05 0.20 5.678024061E-08 0.05 0.00591308 0.10 5.949084842E-07

0.28206389 0.31734599 0.10 0.01937007 0.40 0.0042594094 0.10 0.07352959 0.20 0.0016955
0.15 0.10972173 0.60 0.1786897010 0.15 0.20779643 0.30 0.04572558
0.20 0.25366118 0.65 0.2812165663 0.20 0.36406517 0.40 0.21878647
0.22 0.31623086 0.70 0.3954717947 0.21 0.39480005 0.45 0.34369804
0.24 0.37830155 0.71 0.4186873263 0.22 0.42493116 0.47 0.39554691
0.26 0.43837843 0.72 0.4418145419 0.23 0.4543334 0.50 0.47208339
0.27 0.46733198 0.73 0.4647719629 0.24 0.48290743 0.51 0.49684789
0.28 0.49543349 0.74 0.4874836958 0.25 0.51057529 0.52 0.52109489
0.29 0.52261266 0.75 0.5098791237 0.26 0.53727884 0.53 0.54475692
0.30 0.54881807 0.76 0.5318956049 0.27 0.56297678 0.54 0.56777598
0.31 0.57401339 0.77 0.5534762448 0.28 0.58764257 0.55 0.59010431
0.32 0.59817717 0.78 0.5745700868 0.29 0.61126155 0.56 0.61170285
0.33 0.62129819 0.79 0.5951349025 0.30 0.63383006 0.57 0.63254361
0.34 0.64337616 0.80 0.6151321398 0.31 0.6553526 0.58 0.65260573
0.35 0.66441838 0.81 0.6345309664 0.32 0.67584198 0.59 0.67187582
0.36 0.68443912 0.82 0.6533077222 0.33 0.69531583 0.60 0.69034643
0.37 0.70345835 0.83 0.6714419457 0.34 0.71379755 0.62 0.7248941
0.38 0.72150018 0.84 0.6889203029 0.35 0.73131381 0.64 0.75630146
0.39 0.73859236 0.85 0.7057337550 0.40 0.80552281 0.66 0.78468266
0.40 0.75476545 0.86 0.7218772867 0.42 0.8296083176 0.68 0.8101968
0.45 0.82301573 0.87 0.7373514405 0.44 0.8509160751 0.70 0.833029
0.47 0.84507918 0.88 0.7521580735 0.46 0.8697177014 0.72 0.85338002
0.50 0.87342103 0.89 0.7663050394 0.48 0.8862705652 0.74 0.87145751
0.50 0.873421029 0.90 0.7798008504 0.5 0.9008150059 0.76 0.88746637
0.55 0.9100699422 0.95 0.8379999644 0.55 0.9297971917 0.78 0.9016060769

0.60 0.9364224522 1.0 0.8823752727 0.6 0.950508891 0.8 0.9140660701

0.65 0.9552191173 1.10 0.9396918803 0.65 0.9652152114 0.85 0.9389959423

0.70 0.9685468726 1.2 0.9698045448 0.7 0.9756075094 0.9 0.9568973217

1.3 0.9850872631 0.75 0.9829248909 0.95 0.9696537991

1.4 0.9926934175 0.8 0.9880631687 1.0 0.9786924912

1.5 0.9964368176 1.05 0.9850696727

1.6 0.9982671587 1.1 0.9895546179

1.7 0.9991586768 1.2 0.9949045013

Expected Time (x-u) 50% cap. 92% cap.

Auto-Concurrency 0.54090 0.77189
Non-Auto-Concurrency 0.28206 0.31735

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

50 % (13) 92% (24) 92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

X2U NO AC

X2U AC

0.5408987 0.77189408 0.05 9.924957733E-05 0.20 5.678024061E-08 0.05 0.00591308 0.10 5.949084842E-07

0.28206389 0.31734599 0.10 0.01937007 0.40 0.0042594094 0.10 0.07352959 0.20 0.0016955
0.15 0.10972173 0.60 0.1786897010 0.15 0.20779643 0.30 0.04572558
0.20 0.25366118 0.65 0.2812165663 0.20 0.36406517 0.40 0.21878647
0.22 0.31623086 0.70 0.3954717947 0.21 0.39480005 0.45 0.34369804
0.24 0.37830155 0.71 0.4186873263 0.22 0.42493116 0.47 0.39554691
0.26 0.43837843 0.72 0.4418145419 0.23 0.4543334 0.50 0.47208339
0.27 0.46733198 0.73 0.4647719629 0.24 0.48290743 0.51 0.49684789
0.28 0.49543349 0.74 0.4874836958 0.25 0.51057529 0.52 0.52109489
0.29 0.52261266 0.75 0.5098791237 0.26 0.53727884 0.53 0.54475692
0.30 0.54881807 0.76 0.5318956049 0.27 0.56297678 0.54 0.56777598
0.31 0.57401339 0.77 0.5534762448 0.28 0.58764257 0.55 0.59010431
0.32 0.59817717 0.78 0.5745700868 0.29 0.61126155 0.56 0.61170285
0.33 0.62129819 0.79 0.5951349025 0.30 0.63383006 0.57 0.63254361
0.34 0.64337616 0.80 0.6151321398 0.31 0.6553526 0.58 0.65260573
0.35 0.66441838 0.81 0.6345309664 0.32 0.67584198 0.59 0.67187582
0.36 0.68443912 0.82 0.6533077222 0.33 0.69531583 0.60 0.69034643
0.37 0.70345835 0.83 0.6714419457 0.34 0.71379755 0.62 0.7248941
0.38 0.72150018 0.84 0.6889203029 0.35 0.73131381 0.64 0.75630146
0.39 0.73859236 0.85 0.7057337550 0.40 0.80552281 0.66 0.78468266
0.40 0.75476545 0.86 0.7218772867 0.42 0.8296083176 0.68 0.8101968
0.45 0.82301573 0.87 0.7373514405 0.44 0.8509160751 0.70 0.833029
0.47 0.84507918 0.88 0.7521580735 0.46 0.8697177014 0.72 0.85338002
0.50 0.87342103 0.89 0.7663050394 0.48 0.8862705652 0.74 0.87145751
0.50 0.873421029 0.90 0.7798008504 0.5 0.9008150059 0.76 0.88746637
0.55 0.9100699422 0.95 0.8379999644 0.55 0.9297971917 0.78 0.9016060769

0.60 0.9364224522 1.0 0.8823752727 0.6 0.950508891 0.8 0.9140660701

0.65 0.9552191173 1.10 0.9396918803 0.65 0.9652152114 0.85 0.9389959423

0.70 0.9685468726 1.2 0.9698045448 0.7 0.9756075094 0.9 0.9568973217

1.3 0.9850872631 0.75 0.9829248909 0.95 0.9696537991

1.4 0.9926934175 0.8 0.9880631687 1.0 0.9786924912

1.5 0.9964368176 1.05 0.9850696727

1.6 0.9982671587 1.1 0.9895546179

1.7 0.9991586768 1.2 0.9949045013

Expected Time (x-u) 50% cap. 92% cap.

Auto-Concurrency 0.54090 0.77189
Non-Auto-Concurrency 0.28206 0.31735

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

50 % (13) 92% (24) 92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

X2U NO AC

X2U AC

0.5408987 0.77189408 0.05 9.924957733E-05 0.20 5.678024061E-08 0.05 0.00591308 0.10 5.949084842E-07

0.28206389 0.31734599 0.10 0.01937007 0.40 0.0042594094 0.10 0.07352959 0.20 0.0016955
0.15 0.10972173 0.60 0.1786897010 0.15 0.20779643 0.30 0.04572558
0.20 0.25366118 0.65 0.2812165663 0.20 0.36406517 0.40 0.21878647
0.22 0.31623086 0.70 0.3954717947 0.21 0.39480005 0.45 0.34369804
0.24 0.37830155 0.71 0.4186873263 0.22 0.42493116 0.47 0.39554691
0.26 0.43837843 0.72 0.4418145419 0.23 0.4543334 0.50 0.47208339
0.27 0.46733198 0.73 0.4647719629 0.24 0.48290743 0.51 0.49684789
0.28 0.49543349 0.74 0.4874836958 0.25 0.51057529 0.52 0.52109489
0.29 0.52261266 0.75 0.5098791237 0.26 0.53727884 0.53 0.54475692
0.30 0.54881807 0.76 0.5318956049 0.27 0.56297678 0.54 0.56777598
0.31 0.57401339 0.77 0.5534762448 0.28 0.58764257 0.55 0.59010431
0.32 0.59817717 0.78 0.5745700868 0.29 0.61126155 0.56 0.61170285
0.33 0.62129819 0.79 0.5951349025 0.30 0.63383006 0.57 0.63254361
0.34 0.64337616 0.80 0.6151321398 0.31 0.6553526 0.58 0.65260573
0.35 0.66441838 0.81 0.6345309664 0.32 0.67584198 0.59 0.67187582
0.36 0.68443912 0.82 0.6533077222 0.33 0.69531583 0.60 0.69034643
0.37 0.70345835 0.83 0.6714419457 0.34 0.71379755 0.62 0.7248941
0.38 0.72150018 0.84 0.6889203029 0.35 0.73131381 0.64 0.75630146
0.39 0.73859236 0.85 0.7057337550 0.40 0.80552281 0.66 0.78468266
0.40 0.75476545 0.86 0.7218772867 0.42 0.8296083176 0.68 0.8101968
0.45 0.82301573 0.87 0.7373514405 0.44 0.8509160751 0.70 0.833029
0.47 0.84507918 0.88 0.7521580735 0.46 0.8697177014 0.72 0.85338002
0.50 0.87342103 0.89 0.7663050394 0.48 0.8862705652 0.74 0.87145751
0.50 0.873421029 0.90 0.7798008504 0.5 0.9008150059 0.76 0.88746637
0.55 0.9100699422 0.95 0.8379999644 0.55 0.9297971917 0.78 0.9016060769

0.60 0.9364224522 1.0 0.8823752727 0.6 0.950508891 0.8 0.9140660701

0.65 0.9552191173 1.10 0.9396918803 0.65 0.9652152114 0.85 0.9389959423

0.70 0.9685468726 1.2 0.9698045448 0.7 0.9756075094 0.9 0.9568973217

1.3 0.9850872631 0.75 0.9829248909 0.95 0.9696537991

1.4 0.9926934175 0.8 0.9880631687 1.0 0.9786924912

1.5 0.9964368176 1.05 0.9850696727

1.6 0.9982671587 1.1 0.9895546179

1.7 0.9991586768 1.2 0.9949045013

Expected Time (x-u) 50% cap. 92% cap.

Auto-Concurrency 0.54090 0.77189
Non-Auto-Concurrency 0.28206 0.31735

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

92 AC tb 92 NO AC tb 50 AC tb 50 NO AC tb

50% cap. with auto-concurrency

50% cap. without auto-concurrency

92% cap. with auto-concurrency

92% cap. without auto-concurrency

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :21

Expected time. In this part, we consider the expected time and time-bounded reach-
ability to certain critical situations, such as 50% or 90% channel’s capacity is reached.
We can see from the Figure VIII (c) that in absence of auto-concurrency a large dif-
ference between the probability of reaching 50% and 90% within a given time-bound
is obtained. If auto-concurrency is used, the curves of reaching 50% and 92% channel
capacity are tight together, which means that if a channel reaches 50% capacity, it
will reach 92% of its capacity soon thereafter. If no auto-concurrency used, the period
between these two situations becomes significantly larger.

Response delay. In the property of response delay, we consider the first response
until the actor B, which is the most significant actor in the SDF, since it is the “last”
actor in the SDF to finish one cycle of all the tasks of actors. Again, from the Table. VIII
(b) we can conclude that auto-concurrency improves the response delay by about 30%.

7. EXTENSION OF ESADF WITH HARDWARE PLATFORM
In this section, we will introduce our extended model of eSADF by incorporating the
hardware platform. Adopting eSADF as model of computation (MoC) as before, we
extend our system to additional models: the model of architecture (MoA), the model of
computation and communication (MoCC), and the model of performance (MoP). Our
approach is illustrated in Figure 8, and details are provided below.

eSADF modelModel of
Computation

Architecture-Aware
eSADF

Model of
Computation &
Communication

CA-MPSoC

Markov Reward
Automata

Model of
Performance

Performance
evaluation

Model of
Architecture

extended MA with
action/state reward

Tile T0

PE
DM

CA

NI FIFOs

Tile T1

PE
DM

CA

NI FIFOs

Network

the idle period is longer than such break-even time, the
system will get energy benefit.

Now, we give the energy model of computation based
on the PE’s modes. Since we consider DVFS with only
two frequency levels: low and high, together with the sleep,
idle, and running status, there are 5 modes of PE: sleep, low
frequency & idle, high frequency & idle, low frequency &
running and high frequency & running. The mode transition
system is described in Fig. 4. We omit the transition actions
for concise sake.

Idle_f_low running_f_low

running_f_highIdle_f_high

Sleep

Figure 4. The modes of our PE model

In each mode, the outgoing edges can be seen as non-
deterministic decisions. For instance, if the PE is running in
a low frequency idle mode, 3 decision can be made: 1) after
a certain time in idle (the conditions are omitted here, and
will be explained later on), we can put it into sleep mode (by
taking the “put sleep” transition), 2) if there is a task incom-
ing, we can execute this task with the current low frequency,
or 3) we decide to higher the frequency level and execute
this task in a higher frequency. Note that, for each mode and
each mode transition, we can assign a energy consumption
rate if the system stays in a certain mode and a total energy
consumption amount if the transition is taken from one mode
to another mode. The details will be explained, when we are
deriving the MoP from our MoA.

(need more formal definition of energy model of MoA)

3. Architecture-aware eSADF - MoC&C

In this section, we add the CA to our MoC which results
an architecture-aware eSADF model. This model does not
only model the computation but also the communication of
applications (hence, we also call it the model of computation
and communication (MoC&C)). This intermediate model
will be translated together with MoA into our model of
performance (MoP) for further analysis.

The eSADF model of CA Same as in [10], a CA3 can be
represented by an (partiall) actor in an eSADF shown in
Fig. 5. The self-loop channel with one initial token guaran-
tees the firing ordering of the actor. Note that, since CA lies

3This CA represents a sending CA, where the direction of channels will
reverse, if it is a receiving CA.

between the DM and NI FIFOs, each channel between two
actors in the eSADF of MoC requires a CA actor. The rate
of CA (except for the self-loop channel) is always one word,
since each firing of CA will transfer one word4 from DM to
NI-FIFOs, if it is a sending CA, or one word from NI-FIFO
to DM, if it is a receiving CA. The left-hand side of the CA
represents the data transfer process between the DM and CA,
where the initial token number Bb is the buffer size requested
in DM by the PE. The right-hand side represents the data
transfer process between the CA and NI-FIFOs, where the
Bc is the depth of the NI-FIFOs.

CA
Bb Bc

1 1

1

Figure 5. The eSADF actor of CA

The execution time of CA For each channel, the CA
needs 2 cycles to finish the following two tasks, respectively.
First, CA checks whether there is data to be transferred and
then performs the transfer. Since the CA asks the channels in
a round robin fashion, the execution time of CA is computed
by:

tca “ 2 ˆ #CH .

Where the #CH denotes the number of channels.
(give an CA-eSADF example of MPEG-4 decoder)

4. Markov Reward Automata - MoP

In this section, we introduce the semantic model, Markov
reward automata (MRA) [7], which extends Markov au-
tomata (MA) [5, 3] with state reward and transition reward,
as the model of performance (MoP) in our work. Briefly
speaking, an MRA is an extended labeled transition system
(LTS):

• equipped with both continuous time stochastic and non-
deterministic transitions,

• for each state a cost/gain reward is assigned, which
indicates the cost/gain per time unit, if the system stay
in that sate,

• for each transition a transition reward is assigned in
order to indicate the cost/gain if this transition is taken.

Extended from MA, the MRA is able to expresses the
complete semantics [4] of modelling languages such as dy-
namic fault trees [1], domain-specific language AADL [2],
generalised stochastic Petri nets (GSPNs) [9].

4E.g., one word may equals to 4 pixels in an encoder application.

4

Energy model of PE

Hardware platform
the idle period is longer than such break-even time, the
system will get energy benefit.

Now, we give the energy model of computation based
on the PE’s modes. Since we consider DVFS with only
two frequency levels: low and high, together with the sleep,
idle, and running status, there are 5 modes of PE: sleep, low
frequency & idle, high frequency & idle, low frequency &
running and high frequency & running. The mode transition
system is described in Fig. 4. We omit the transition actions
for concise sake.

Idle_f_low running_f_low

running_f_highIdle_f_high

Sleep

Figure 4. The modes of our PE model

In each mode, the outgoing edges can be seen as non-
deterministic decisions. For instance, if the PE is running in
a low frequency idle mode, 3 decision can be made: 1) after
a certain time in idle (the conditions are omitted here, and
will be explained later on), we can put it into sleep mode (by
taking the “put sleep” transition), 2) if there is a task incom-
ing, we can execute this task with the current low frequency,
or 3) we decide to higher the frequency level and execute
this task in a higher frequency. Note that, for each mode and
each mode transition, we can assign a energy consumption
rate if the system stays in a certain mode and a total energy
consumption amount if the transition is taken from one mode
to another mode. The details will be explained, when we are
deriving the MoP from our MoA.

(need more formal definition of energy model of MoA)

3. Architecture-aware eSADF - MoC&C

In this section, we add the CA to our MoC which results
an architecture-aware eSADF model. This model does not
only model the computation but also the communication of
applications (hence, we also call it the model of computation
and communication (MoC&C)). This intermediate model
will be translated together with MoA into our model of
performance (MoP) for further analysis.

The eSADF model of CA Same as in [10], a CA3 can be
represented by an (partiall) actor in an eSADF shown in
Fig. 5. The self-loop channel with one initial token guaran-
tees the firing ordering of the actor. Note that, since CA lies

3This CA represents a sending CA, where the direction of channels will
reverse, if it is a receiving CA.

between the DM and NI FIFOs, each channel between two
actors in the eSADF of MoC requires a CA actor. The rate
of CA (except for the self-loop channel) is always one word,
since each firing of CA will transfer one word4 from DM to
NI-FIFOs, if it is a sending CA, or one word from NI-FIFO
to DM, if it is a receiving CA. The left-hand side of the CA
represents the data transfer process between the DM and CA,
where the initial token number Bb is the buffer size requested
in DM by the PE. The right-hand side represents the data
transfer process between the CA and NI-FIFOs, where the
Bc is the depth of the NI-FIFOs.

CA
Bb Bc

1 1

1

Figure 5. The eSADF actor of CA

The execution time of CA For each channel, the CA
needs 2 cycles to finish the following two tasks, respectively.
First, CA checks whether there is data to be transferred and
then performs the transfer. Since the CA asks the channels in
a round robin fashion, the execution time of CA is computed
by:

tca “ 2 ˆ #CH .

Where the #CH denotes the number of channels.
(give an CA-eSADF example of MPEG-4 decoder)

4. Markov Reward Automata - MoP

In this section, we introduce the semantic model, Markov
reward automata (MRA) [7], which extends Markov au-
tomata (MA) [5, 3] with state reward and transition reward,
as the model of performance (MoP) in our work. Briefly
speaking, an MRA is an extended labeled transition system
(LTS):

• equipped with both continuous time stochastic and non-
deterministic transitions,

• for each state a cost/gain reward is assigned, which
indicates the cost/gain per time unit, if the system stay
in that sate,

• for each transition a transition reward is assigned in
order to indicate the cost/gain if this transition is taken.

Extended from MA, the MRA is able to expresses the
complete semantics [4] of modelling languages such as dy-
namic fault trees [1], domain-specific language AADL [2],
generalised stochastic Petri nets (GSPNs) [9].

4E.g., one word may equals to 4 pixels in an encoder application.

4

Extend eSADF with hardware platform

(multi-core SoC with communication assist)

f high_idle

f low_idle f low_act

f high_act 1.2v (1400MHz)

P = 0.12 W
1.0v (1032.7MHz)

P = 0.5 W

P = 0.25 W P = 1.0 W

El→h
tr = 4.0 µJ

Eh→l
tr = 4.0 µJ

Fig. 8. An overview of our approach extended to hardware platform

7.1. The Hardware Platform (MoA)
Since eSADF abstracts the software applications as MoC, we need a predicable model
of architecture (MoA) which is suit able for modeling the hardware platform. There
are various approaches [Castrillon and Leupers 2013]; we adopt the approach of CA-
MPSoC introduced in [Shabbir et al. 2010a; Shabbir et al. 2010b] due to:

- The concept of communication assist (CA) clearly and concisely decouples the com-
putation and communication tasks, and analysis can be performed easily and more
predictable;

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/281631131_Programming_Heterogeneous_MPSoCs_Tool_Flows_to_Close_the_Software_Productivity_Ga?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:22 Joost-Pieter Katoen, Hao Wu

- The CA for a tile-based MPSoC has been implemented (hardware coded) and shown
to be up-to 44% smaller compared to existing DMA controllers [Shabbir et al. 2010a;
Shabbir et al. 2010b];

- An eSADF model for the CA can be easily integrated/extended into the SADF model
for the application, and hence an intermediate architecture aware CA-based SADF
can be derived for further use.

The CA-MPSoC proposed in [Shabbir et al. 2010a; Shabbir et al. 2010b] is illustrated
in Figure 9. We briefly explain the CA-MPSoC; for implementation details of such
platform please refer to [Shabbir et al. 2010a; Shabbir et al. 2010b]. The CA-MPSoC

Tile T0

PE
DM

CA

NI FIFOs

Tile T1

PE
DM

CA

NI FIFOs

Network

Fig. 9. The CA-based hardware platform

consists of tiles which are connected by a network. Each tile (e.g tile T0) contains a
processing element (PE), a communication assist (CA), data memory (DM), and net-
work interface (NI) FIFOs. These NI FIFOs are connected by the partial point-to-point
network, which does not require any storage and provides a directly data transfer from
the DM of one tile to anther.

Processing element and data memory. The PE executes the tasks (i.e., the actors)
which are deployed to it. Following the ideas of [Shabbir et al. 2010a; Shabbir et al.
2010b], we assume PEs to have no caches and being non-preemptive. Furthermore,
in order to predicate the energy consumption of the synthesized system, the PE is
assumed to provide energy optimisation strategies, such as dynamic voltage frequency
scaling (DVFS) and/or dynamic power management (DPM). The DM is dual-ported,
and directly connected to CA to avoid unpredictable arbiter.

Communication assist. The CA is the interface to transfer data between tiles. The
benefit of CA is that it decouples the communication from computation which eases
our performance analysis. Let us explain a typical scenario to show how the CA works.
We assume that tile T0 runs the producer actor and tile T1 runs the consuming actor.
First the PE of T0 asks the CA for space in DM and CA will allocate the space for
PE. After the execution, T0 releases the space and CA will transfer the produced data
via NI FIFO point-to-point through the network. The CA of T1 receives the data and
places it in the memory (DM) of T1. The PE of T1 which is executing as the consumer
actor asks the CA for the availability of data and processes the data which is returned
by the CA. Since the real hardware implementation is out of the scope of our work, we
omit this part here and refer to the original work.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :23

The energy model of MoA. In order to predicate the energy consumption of hardware
platforms on which the eSADF graph is deployed, we define the energy model of our
MoA. Due to the separation of computation and communication tasks, we can natu-
rally divide the energy model into two parts: the computation energy and communica-
tion energy consumption. Obviously, we consider the computation energy consumption
happens mainly in the PE, while the communication energy consumption takes mainly
place in the CA.

The energy model of PE. In our model, we consider a modern PE equipped with DVFS
and/or DPM to reduce both dynamic and static power consumption. DVFS reduces the
energy consumption of PE by dynamic scaling the voltage and the frequency of PE. We
consider in our model the inter-task DVFS, which allows the frequency to be changed
only after a task is finished on this PE. We does not take the intra-task DVFS into
account due to its complexity. DPM reduces the energy consumption by allowing the
processor to get into sleep mode after a certain idle period. The sleep mode has a much
lower static power consumption than the idle mode. Note that the break-even time is
the key factor in DPM, since only the idle period is longer than such break-even time,
the system will get energy benefit.

7.2. Architecture-aware eSADF - MoCC
In this section, we add the CA to our MoC which results an architecture-aware eSADF
model. This model does not only model the computation but also the communication
of applications (hence, we also call it the model of computation and communication
(MoCC)). This intermediate model will be translated together with MoA into our model
of performance (MoP) for further analysis.

The eSADF model of CA. As in [Shabbir et al. 2010a], a CA9 can be represented by an
(partial) actor in an eSADF shown in Figure 10. The self-loop channel with one initial
token guarantees the firing ordering of the actor. Note that, since CA lies between the
DM and NI FIFOs, each channel between two actors in the eSADF of MoC requires a
CA actor. The rate of CA (except for the self-loop channel) is always one word, since
each firing of CA will transfer one word10 from DM to NI-FIFOs, if it is a sending CA,
or one word from NI-FIFO to DM, if it is a receiving CA. The left-hand side of the
CA represents the data transfer process between the DM and CA, where the initial
token number Bb is the buffer size requested in DM by the PE. The right-hand side
represents the data transfer process between the CA and NI-FIFOs, where the Bc is
the depth of the NI-FIFOs.

eSADF modelModel of
Computation

Architecture-Aware
eSADF

Model of
Computation &
Communication

CA-MPSoC

Markov Reward
Automata

Model of
Performance

Performance
evaluation

Model of
Architecture

extended MA with
action/state reward

Tile T0

PE
DM

CA

NI FIFOs

Tile T1

PE
DM

CA

NI FIFOs

Network

the idle period is longer than such break-even time, the
system will get energy benefit.

Now, we give the energy model of computation based
on the PE’s modes. Since we consider DVFS with only
two frequency levels: low and high, together with the sleep,
idle, and running status, there are 5 modes of PE: sleep, low
frequency & idle, high frequency & idle, low frequency &
running and high frequency & running. The mode transition
system is described in Fig. 4. We omit the transition actions
for concise sake.

Idle_f_low running_f_low

running_f_highIdle_f_high

Sleep

Figure 4. The modes of our PE model

In each mode, the outgoing edges can be seen as non-
deterministic decisions. For instance, if the PE is running in
a low frequency idle mode, 3 decision can be made: 1) after
a certain time in idle (the conditions are omitted here, and
will be explained later on), we can put it into sleep mode (by
taking the “put sleep” transition), 2) if there is a task incom-
ing, we can execute this task with the current low frequency,
or 3) we decide to higher the frequency level and execute
this task in a higher frequency. Note that, for each mode and
each mode transition, we can assign a energy consumption
rate if the system stays in a certain mode and a total energy
consumption amount if the transition is taken from one mode
to another mode. The details will be explained, when we are
deriving the MoP from our MoA.

(need more formal definition of energy model of MoA)

3. Architecture-aware eSADF - MoC&C

In this section, we add the CA to our MoC which results
an architecture-aware eSADF model. This model does not
only model the computation but also the communication of
applications (hence, we also call it the model of computation
and communication (MoC&C)). This intermediate model
will be translated together with MoA into our model of
performance (MoP) for further analysis.

The eSADF model of CA Same as in [10], a CA3 can be
represented by an (partiall) actor in an eSADF shown in
Fig. 5. The self-loop channel with one initial token guaran-
tees the firing ordering of the actor. Note that, since CA lies

3This CA represents a sending CA, where the direction of channels will
reverse, if it is a receiving CA.

between the DM and NI FIFOs, each channel between two
actors in the eSADF of MoC requires a CA actor. The rate
of CA (except for the self-loop channel) is always one word,
since each firing of CA will transfer one word4 from DM to
NI-FIFOs, if it is a sending CA, or one word from NI-FIFO
to DM, if it is a receiving CA. The left-hand side of the CA
represents the data transfer process between the DM and CA,
where the initial token number Bb is the buffer size requested
in DM by the PE. The right-hand side represents the data
transfer process between the CA and NI-FIFOs, where the
Bc is the depth of the NI-FIFOs.

CA
Bb Bc

1 1

1

Figure 5. The eSADF actor of CA

The execution time of CA For each channel, the CA
needs 2 cycles to finish the following two tasks, respectively.
First, CA checks whether there is data to be transferred and
then performs the transfer. Since the CA asks the channels in
a round robin fashion, the execution time of CA is computed
by:

tca “ 2 ˆ #CH .

Where the #CH denotes the number of channels.
(give an CA-eSADF example of MPEG-4 decoder)

4. Markov Reward Automata - MoP

In this section, we introduce the semantic model, Markov
reward automata (MRA) [7], which extends Markov au-
tomata (MA) [5, 3] with state reward and transition reward,
as the model of performance (MoP) in our work. Briefly
speaking, an MRA is an extended labeled transition system
(LTS):

• equipped with both continuous time stochastic and non-
deterministic transitions,

• for each state a cost/gain reward is assigned, which
indicates the cost/gain per time unit, if the system stay
in that sate,

• for each transition a transition reward is assigned in
order to indicate the cost/gain if this transition is taken.

Extended from MA, the MRA is able to expresses the
complete semantics [4] of modelling languages such as dy-
namic fault trees [1], domain-specific language AADL [2],
generalised stochastic Petri nets (GSPNs) [9].

4E.g., one word may equals to 4 pixels in an encoder application.

4

Energy model of PE

Hardware platform
the idle period is longer than such break-even time, the
system will get energy benefit.

Now, we give the energy model of computation based
on the PE’s modes. Since we consider DVFS with only
two frequency levels: low and high, together with the sleep,
idle, and running status, there are 5 modes of PE: sleep, low
frequency & idle, high frequency & idle, low frequency &
running and high frequency & running. The mode transition
system is described in Fig. 4. We omit the transition actions
for concise sake.

Idle_f_low running_f_low

running_f_highIdle_f_high

Sleep

Figure 4. The modes of our PE model

In each mode, the outgoing edges can be seen as non-
deterministic decisions. For instance, if the PE is running in
a low frequency idle mode, 3 decision can be made: 1) after
a certain time in idle (the conditions are omitted here, and
will be explained later on), we can put it into sleep mode (by
taking the “put sleep” transition), 2) if there is a task incom-
ing, we can execute this task with the current low frequency,
or 3) we decide to higher the frequency level and execute
this task in a higher frequency. Note that, for each mode and
each mode transition, we can assign a energy consumption
rate if the system stays in a certain mode and a total energy
consumption amount if the transition is taken from one mode
to another mode. The details will be explained, when we are
deriving the MoP from our MoA.

(need more formal definition of energy model of MoA)

3. Architecture-aware eSADF - MoC&C

In this section, we add the CA to our MoC which results
an architecture-aware eSADF model. This model does not
only model the computation but also the communication of
applications (hence, we also call it the model of computation
and communication (MoC&C)). This intermediate model
will be translated together with MoA into our model of
performance (MoP) for further analysis.

The eSADF model of CA Same as in [10], a CA3 can be
represented by an (partiall) actor in an eSADF shown in
Fig. 5. The self-loop channel with one initial token guaran-
tees the firing ordering of the actor. Note that, since CA lies

3This CA represents a sending CA, where the direction of channels will
reverse, if it is a receiving CA.

between the DM and NI FIFOs, each channel between two
actors in the eSADF of MoC requires a CA actor. The rate
of CA (except for the self-loop channel) is always one word,
since each firing of CA will transfer one word4 from DM to
NI-FIFOs, if it is a sending CA, or one word from NI-FIFO
to DM, if it is a receiving CA. The left-hand side of the CA
represents the data transfer process between the DM and CA,
where the initial token number Bb is the buffer size requested
in DM by the PE. The right-hand side represents the data
transfer process between the CA and NI-FIFOs, where the
Bc is the depth of the NI-FIFOs.

CA
Bb Bc

1 1

1

Figure 5. The eSADF actor of CA

The execution time of CA For each channel, the CA
needs 2 cycles to finish the following two tasks, respectively.
First, CA checks whether there is data to be transferred and
then performs the transfer. Since the CA asks the channels in
a round robin fashion, the execution time of CA is computed
by:

tca “ 2 ˆ #CH .

Where the #CH denotes the number of channels.
(give an CA-eSADF example of MPEG-4 decoder)

4. Markov Reward Automata - MoP

In this section, we introduce the semantic model, Markov
reward automata (MRA) [7], which extends Markov au-
tomata (MA) [5, 3] with state reward and transition reward,
as the model of performance (MoP) in our work. Briefly
speaking, an MRA is an extended labeled transition system
(LTS):

• equipped with both continuous time stochastic and non-
deterministic transitions,

• for each state a cost/gain reward is assigned, which
indicates the cost/gain per time unit, if the system stay
in that sate,

• for each transition a transition reward is assigned in
order to indicate the cost/gain if this transition is taken.

Extended from MA, the MRA is able to expresses the
complete semantics [4] of modelling languages such as dy-
namic fault trees [1], domain-specific language AADL [2],
generalised stochastic Petri nets (GSPNs) [9].

4E.g., one word may equals to 4 pixels in an encoder application.

4

Extend eSADF with hardware platform

(multi-core SoC with communication assist)

f high_idle

f low_idle f low_act

f high_act 1.2v (1400MHz)

P = 0.12 W
1.0v (1032.7MHz)

P = 0.5 W

P = 0.25 W P = 1.0 W

El→h
tr = 4.0 µJ

Eh→l
tr = 4.0 µJ

Fig. 10. The eSADF actor of CA

9This CA represents a sending CA, where the direction of channels will reverse, if it is a receiving CA.
10E.g., one word equals 4 pixels in an encoder application.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:24 Joost-Pieter Katoen, Hao Wu

The execution time of CA. For each channel, the CA needs 2 cycles to finish the fol-
lowing two tasks, respectively. First, CA checks whether there is data to be transferred
and then performs the transfer. Since the CA asks the channels in a round robin fash-
ion, the execution time of CA is computed by:

tca “ 2ˆ#CH .

Where the #CH denotes the number of channels.

7.3. Markov reward automata - MoP
In this section, we introduce the semantic model, Markov reward automata
(MRA) [Guck et al. 2014b], which extends Markov automata (MA) [Eisentraut et al.
2010; Deng and Hennessy 2013] with state rewards and transition rewards, as the
model of performance (MoP) in our work. Briefly speaking, an MRA is an extended
labeled transition system (LTS):

— equipped with both continuous time stochastic and nondeterministic transitions,
— for each state a cost/gain reward is assigned, which indicates the cost/gain per time

unit, if the system stay in that sate,
— for each transition a transition reward is assigned in order to indicate the cost/gain

if this transition is taken.

DEFINITION 15. (Markov reward automata) A Markov reward automaton
(MRA) is a tuple M “ pS, s0, Act, ãÑ,ñ, ρ, ηq, where pS, s0, Act, ãÑ,ñq is an MA, and

— ρ : S Ñ Rě0 is the state-reward function,
— η : S ˆActY tχu ˆDistrpSq Ñ Rě0 is the transition-reward function.

Note that, since we also need to define the transition reward on outgoing Markovian
transitions, a “equivalent” rewriting function γ is defined in order to translate the out-
going Markovian rates of a state to be an action followed by a distribution (similar to
interactive probabilistic transition). The γ function takes a Markovian state and at-
taches it with an action χpEpsqq together with the exit rate Epsq in it and then followed
by a distribution which is identical to Ps. An example of rewriting function γ over the
outgoing Markovian transitions of a state is shown in Figure 11.

1

2

!(3)
1/3

2/3

"

Fig. 11. The γ function in MRA

7.4. Case study - MPEG-4 decoder with hardware platform
To exhibit our approach proposed above, we conduct a case study on the MPEG-4 de-
coder introduced earlier together with a hardware model of MPSoC based on Samsung
Exynos 4210. Since we are mostly interested in the energy consumption, we make some
simplifications in our model: 1) comparing with the (average) execution time of actors
in MPEG-4 which is about 10 to 400 kCycle and CA takes only 2 to 10 cycles, we ignore
the communication part (i.e. the CA actors) in our experiment, 2) when modelling of
DVFS, we assume only two voltage-frequency levels, i.e., the lowest voltage of 1V with
1032.7 MHz and the highest voltage of 1.2V with 1400 MHz, 3) the DPM mechanism

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/260037497_On_the_Semantics_of_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :25

is omitted, since Samsung Exynos 4210 does not support this feature. Note that, if the
communication and DPM need to be considered, we are able to add the CA/DPM into
the system but with more effort as mentioned previously. In our platform, we assume
there are only 2 processors, and each processor can run in different frequency inde-
pendently. The energy model is shown in Figure 12, and the energy consumption of
the hardware platform of Samsung Exynos 4210 is computed by utilising the following
formula given in [Park et al. 2013] as:

Pcpu “ 0.446 νprocV
2

cpufcpu ` 0.1793Vcpu ´ 0.1527

where νproc is the total utilisation and we set in idle state νproc “ 0.2 and in running
state νproc “ 1.

Each processor’s behaviour is modelled by an MRA, in which the energy consumption
is modelled by the state reward, and the energy consumed by downscaling/upscaling
in DVFS is modelled by the transition reward. Each actor in the eSADF of MPEG-
4 decoder can be deployed to the processors by using synchronisation. Note that, we
assume a fully dynamic scheduling rather than a static one in our model. We also
restrict the scenarios in the MPEG-4 decoder to only I, P0 and P50-frames.

f high_idle

f low_idle f low_act

f high_act 1.2v (1400MHz)

P = 0.12 W
1.0v (1032.7MHz)

P = 0.5 W

P = 0.25 W P = 1.0 W

El→h
tr = 4.0 µJ

Eh→l
tr = 4.0 µJ

Fig. 12. The energy model of PE based on Samsung Exyons 4210

The experimental results are summarized in Table IX. As before, we apply conflu-
ence reduction. First, we evaluate the maximal and minimal power consumption by
computing the max/min long-run reward in the resulting MA. Then, we compute the
maximal and minimal throughput of actors IDCT and RC (note that, VLD has the
same throughput as IDCT, and MC has the same throughput as RC). The throughput
here is the number of firing times in one ms of such actor. From the result that the
difference between the minimal and maximal throughputs of RC is much smaller than
the difference between the maximal and minimal energy consumption, there should
exist a balanced scheduler which can keep the energy consumption reasonably low,
while the throughput is still acceptable. The last property we compute is the energy
consumed when the MPEG-4 decoder finishes its first iteration. This is computed by
the expected cumulative reward from the initial state to the goal states.

Table IX. The experimental results of MPEG-4 decoder with hardware platform

#states #transitions Power cons. Thr. IDCT Thr. RC Exp. energy 1 iter.

215851 314609
Min 0.746337 (W) 21.975093 0.415335 1.581342 (mJ)

215851 314609
Max 1.528917 (W) 30.279699 0.563065 2.423743 (mJ)

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/260584898_Accurate_Modeling_of_the_Delay_and_Energy_Overhead_of_Dynamic_Voltage_and_Frequency_Scaling_in_Modern_Microprocessors?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:26 Joost-Pieter Katoen, Hao Wu

8. RELATED WORK
SADF semantics. Whereas we consider exponentially timed SADF—akin to expo-

nentially timed SDF [Sriram and Bhattacharyya 2009]—and use Markov automata
as semantic model, the original works on SADF focus on a real-time semantics us-
ing so-called Timed Probabilistic Systems (TPS) [Theelen et al. 2008; Theelen 2007;
Theelen et al. 2006]. TPS have deterministic delays, and discrete probabilistic branch-
ing. A direct comparison of analysis results is thus not possible. The compositional
nature of our semantics together with the memoryless property of exponential dis-
tributions yields a simple and lean semantics. In contrast, the TPS semantics has to
account for actors that are enabled at the same time; this occurs in our framework with
probability zero. In addition, the probability measure of Zeno paths for MA obtained
from eSADF graphs is zero. This avoids a special (an typically intricate) treatment
so as to exclude Zeno paths from the analysis. The simplicity of our semantics allows
for considering kernels as simplified detectors, and providing a relatively straightfor-
ward formal proof (sketch) of the absence of non-determinism—confirming the result
in [Theelen et al. 2006] for their TPS semantics. Finally, confluence reduction allows
for an on-the-fly state space reduction which (to the best of our knowledge) does not
exist for the TPS semantics. As time in deterministically timed systems has a global
synchronising character, efforts to apply partial-order reduction to timed systems have
not been very successful.

Model checking SADF. Earlier work [Theelen et al. 2012] exploited the CADP tool-
set for model checking eSADF. There are various benefits and differences with the ap-
proach in this paper. First, we provide a full formal definition of the eSADF semantics.
Secondly, the operational model in [Theelen et al. 2012] is better suited for SDF than
for SADF. In particular, it does not natively support probabilistic choices (as needed for
random sub-scenario selection in SADF). Using MA, there is no need for awkward—
and incomplete—transformations [Rettelbach 1995] to delete probabilistic branching
as applied in [Theelen et al. 2012]. This results in smaller models. In addition, us-
ing MA a much richer palette of quantitative measures can be supported whereas
CADP only supports transient and steady-state measures. In fact, the absence of non-
determinism allows for a full-fledged model checking of stochastic versions of CTL. Fi-
nally, confluence reduction is an on-the-fly technique whereas bisimulation reduction
(as applied in [Theelen et al. 2012]) is not. As shown in the following table

no red. with red. red. factor
[Theelen et al. 2012] 121430 20664 5.88

Our work 47266 16042 2.95

the use of MA yields smaller models (without reduction), whereas confluence reduction
outperforms branching bisimulation used in [Theelen et al. 2012] while preserving
three quantitative measures addressed in this paper.

Energy analysis by model checking. Several models and model-checking approaches
have been extended towards the treatment of costs, or dually: rewards. Prominent ex-
amples are priced timed automata and Markov reward chains. Like in MA, states are
equipped with a reward that grows linearly depending on the state residence time.
Markov reward chains are extensions of DTMCs in which a reward is earned on visit-
ing a state (no dependency on state residence times). [Norman et al. 2005] applied this
model class so as to quantify the impact of various DPM schemes. This has been done
using the PRISM model checker. This paper applies a similar analysis on continuous-
time probabilistic models that include non-determinism. Our semantics and analysis
algorithms allows similar analyses for all eSADF models. Recently, [Ahmad et al. 2015]
provided a mapping from SADF (together with an execution platform) onto timed au-

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/2749259_Probabilistic_Branching_in_Markovian_Process_Algebras?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254853159_Scenario-aware_dataflow?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/4277232_A_Performance_Analysis_Tool_for_Scenario-Aware_Streaming_Applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220102610_Using_probabilistic_model_checking_for_dynamic_power_management?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Probabilistic Model Checking for Uncertain Scenario-Aware Data Flow :27

tomata, and using the timed automata model checker UPPAAL, the authors showed
how to determine the schedulability of SADF graphs. An extension of this approach
with prices enables the verification of timed energy usage.

9. CONCLUSION AND FUTURE WORK
We presented a compositional semantics of eSADF, SADF in which all executions take
exponential time. The semantics is provided in terms of Markov automata, a formal
model that naturally fits all the ingredients of eSADF. Two case studies have been pro-
vided that illustrate achievable state space reductions using confluence reduction and
obtaining quantitative assertions about eSADF graphs in a fully automated manner.
The incorporation of the execution platform into our framework is shown to enable
energy analysis.

Future work consists of considering more realistic execution platforms, the com-
parison of different deployment strategies of SADF actors, and the use of parametric
verification to synthesise maximal (or minimal) execution times from high-level speci-
fications.

ACKNOWLEDGMENTS

References
Waheed Ahmad, Philip K. F. Hölzenspies, Mariëlle Stoelinga, and Jaco van de Pol. 2015. Green Computing:

Power Optimisation of VFI-Based Real-Time Multiprocessor Dataflow Applications. In Euromicro Conf.
on Digital System Design (DSD). IEEE Computer Society, 271–275.

Shuvra S. Bhattacharyya, Ed F. Deprettere, and Bart D. Theelen. 2013. Dynamic Dataflow Graphs. In Hand-
book of Signal Processing Systems. Springer, 905–944.

Hichem Boudali, A. P. Nijmeijer, and Mariëlle Stoelinga. 2009. DFTSim: A Simulation Tool for Extended
Dynamic Fault Trees. In SpringSim. SCS/ACM.

Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen, Thomas Noll, and Marco Roveri.
2011. Safety, Dependability and Performance Analysis of Extended AADL Models. Computer Journal
54, 5 (2011), 754–775.

J.T. Buck and Edward A. Lee. 1993. Scheduling dynamic dataflow graphs with bounded memory using the
token flow model. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1.
429–432.

Jeronimo Castrillon and Rainer Leupers. 2013. Programming Heterogeneous MPSoCs: Tool Flows to Close
the Software Productivity. Springer.

Yuxin Deng and Matthew Hennessy. 2013. On the Semantics of Markov Automata. Information and Com-
putation 222 (2013), 139–168.

Christian Eisentraut, Holger Hermanns, Joost-Pieter Katoen, and Lijun Zhang. 2013. A Semantics for Every
GSPN. In Petri Nets (LNCS), Vol. 7927. Springer, 90–109.

Christian Eisentraut, Holger Hermanns, and Lijun Zhang. 2010. On Probabilistic Automata in Continuous
Time. In IEEE Symp. on Logic in Computer Science (LICS). IEEE, 342–351.

Johan Eker, Jörn Janneck, Edward Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Stephen Neuendorffer, Sonia
Sachs, and Yuhong Xiong. 2003. Taming Heterogeneity - The Ptolemy Approach. Proc. IEEE 91, 1 (2003),
127–144.

Marc Geilen and Twan Basten. 2004. Reactive Process Networks. In EMSOFT. ACM, 137–146.
Jan Friso Groote and Alban Ponse. 1995. The Syntax and Semantics of µCRL. In Algebra of Communicating

Processes. Springer, 26–62. http://dx.doi.org/10.1007/978-1-4471-2120-6z 2
Dennis Guck, Hassan Hatefi, Holger Hermanns, Joost-Pieter Katoen, and Mark Timmer. 2014a. Analysis of

Timed and Long-run Objectives for Markov Automata. Logical Methods in Computer Science 10 (2014),
1–29.

Dennis Guck, Mark Timmer, Hassan Hatefi, Enno Ruijters, and Mariëlle Stoelinga. 2014b. Modelling and
Analysis of Markov Reward Automata. In Int. Symp. on Automated Technology for Verification and
Analysis (ATVA) (LNCS), Vol. 8837. Springer, 168–184.

Gilles Kahn. 1974. The Semantics of Simple Language for Parallel Programming. In IFIP Congress. 471–
475.

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/2934486_The_syntax_and_semantics_of_mCRL?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/2934486_The_syntax_and_semantics_of_mCRL?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/3567544_Scheduling_dynamic_dataflow_graphs_with_bounded_memory_using_thetoken_flow_model?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/3567544_Scheduling_dynamic_dataflow_graphs_with_bounded_memory_using_thetoken_flow_model?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/3567544_Scheduling_dynamic_dataflow_graphs_with_bounded_memory_using_thetoken_flow_model?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/261844454_A_semantics_for_every_GSPN?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/261844454_A_semantics_for_every_GSPN?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221329680_The_Semantics_of_Simple_Language_for_Parallel_Programming?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221329680_The_Semantics_of_Simple_Language_for_Parallel_Programming?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260037497_On_the_Semantics_of_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260037497_On_the_Semantics_of_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220473431_Taming_Heterogeneity_-_The_Ptolemy_Approach?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220473431_Taming_Heterogeneity_-_The_Ptolemy_Approach?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220473431_Taming_Heterogeneity_-_The_Ptolemy_Approach?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220954441_DFTSim_A_Simulation_Tool_for_Extended_Dynamic_Fault_Trees?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220954441_DFTSim_A_Simulation_Tool_for_Extended_Dynamic_Fault_Trees?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221442811_On_Probabilistic_Automata_in_Continuous_Time?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/264312451_Analysis_of_Timed_and_Long-Run_Objectives_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220459422_Safety_Dependability_and_Performance_Analysis_of_Extended_AADL_Models?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220459422_Safety_Dependability_and_Performance_Analysis_of_Extended_AADL_Models?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220459422_Safety_Dependability_and_Performance_Analysis_of_Extended_AADL_Models?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/281631131_Programming_Heterogeneous_MPSoCs_Tool_Flows_to_Close_the_Software_Productivity_Ga?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/281631131_Programming_Heterogeneous_MPSoCs_Tool_Flows_to_Close_the_Software_Productivity_Ga?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

:28 Joost-Pieter Katoen, Hao Wu

Joost-Pieter Katoen and Hao Wu. 2014. Exponentially Timed SADF: Compositional Semantics, Reductions,
and Analysis. In Int. Conf. on Embedded Software (EMSOFT). ACM.

Edward A. Lee and David G. Messerschmitt. 1987. Synchronous Data Flow: Describing Signal Processing
Algorithm for Parallel Computation. In COMPCON. IEEE, 310–315.

Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. 1984. A Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems. ACM TOCS 2, 2 (1984), 93–122.

Gethin Norman, David Parker, Marta Z. Kwiatkowska, Sandeep K. Shukla, and Rajesh Gupta. 2005. Using
probabilistic model checking for dynamic power management. Formal Asp. Comput. 17, 2 (2005), 160–
176. http://dx.doi.org/10.1007/s00165-005-0062-0

Sangyoung Park, Jaehyun Park, Donghwa Shin, Yanzhi Wang, Qing Xie, Massoud Pedram, and Naehyuck
Chang. 2013. Accurate Modeling of the Delay and Energy Overhead of Dynamic Voltage and Frequency
Scaling in Modern Microprocessors. IEEE Trans. on CAD of Integrated Circuits and Systems 32, 5
(2013), 695–708.

Michael Rettelbach. 1995. Probabilistic Branching in Markovian Process Algebras. Computer Journal 38, 7
(1995), 590–599.

Ahsan Shabbir, Akash Kumar, Sander Stuijk, Bart Mesman, and Henk Corporaal. 2010a. CA-MPSoC: An
Automated Design Flow for Predictable Multi-processor Architectures for Multiple Applications. Jour-
nal of Systems Architecture - Embedded Systems Design 56, 7 (2010), 265–277.

Ahsan Shabbir, Sander Stuijk, Akash Kumar, Bart D. Theelen, Bart Mesman, and Henk Corporaal. 2010b.
A predictable communication assist. In 7th Conf. on Computing Frontiers. ACM, 97–98.

Sundararajan Sriram and Shuvra S. Bhattacharyya. 2009. Embedded Multiprocessors: Scheduling and Syn-
chronization. CRC Press.

Bart D. Theelen. 2007. A Performance Analysis Tool for Scenario-Aware Streaming Applications. In QEST.
269–270.

Bart D. Theelen, Marc Geilen, Twan Basten, Jeroen Voeten, Stefan Valentin Gheorghita, and Sander Stuijk.
2006. A scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In MEMOCODE. IEEE, 185–194.

Bart D. Theelen, Marc Geilen, Sander Stuijk, Stefan Valentin Gheorghita, Twan Basten, Jeroen Voeten, and
A. Ghamarian. 2008. Scenario-aware dataflow. Technical Report ESR-2008-08. TU Eindhoven.

Bart D. Theelen, Joost-Pieter Katoen, and Hao Wu. 2012. Model checking of Scenario-Aware Dataflow with
CADP. In DATE. IEEE, 653–658.

Mark Timmer, Joost-Pieter Katoen, Jaco van de Pol, and Mariëlle Stoelinga. 2012. Efficient Modelling and
Generation of Markov Automata. In Int. Conf. on Concurrency Theory (CONCUR) (LNCS), Vol. 7454.
Springer, 364–379.

Mark Timmer, Jaco van de Pol, and Mariëlle Stoelinga. 2013. Confluence Reduction for Markov Automata.
In FORMATS (LNCS), Vol. 8053. Springer, 243–257.

Stavros Tripakis, Dai N. Bui, Marc Geilen, Bert Rodiers, and Edward A. Lee. 2013. Compositionality in
synchronous data flow: Modular code generation from hierarchical SDF graphs. ACM Trans. Embedded
Comput. Syst. 12, 3 (2013), 83:1–83:26.

Received ; revised ; accepted

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

https://www.researchgate.net/publication/2749259_Probabilistic_Branching_in_Markovian_Process_Algebras?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/2749259_Probabilistic_Branching_in_Markovian_Process_Algebras?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254023603_Model_checking_of_Scenario-Aware_Dataflow_with_CADP?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/215707938_A_predictable_communication_assist?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220439407_A_Class_of_Generalized_Stochastic_Petri_Nets_for_the_Performance_Evaluation_of_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220439407_A_Class_of_Generalized_Stochastic_Petri_Nets_for_the_Performance_Evaluation_of_Multiprocessor_Systems?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/224648424_A_Scenario-Aware_Data_Flow_model_for_combined_long-run_average_and_worst-case_performance_analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220339438_CA-MPSoC_An_automated_design_flow_for_predictable_multi-processor_architectures_for_multiple_applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254853159_Scenario-aware_dataflow?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/254853159_Scenario-aware_dataflow?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/4277232_A_Performance_Analysis_Tool_for_Scenario-Aware_Streaming_Applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/4277232_A_Performance_Analysis_Tool_for_Scenario-Aware_Streaming_Applications?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221535306_Synchronous_Data_Flow_Describing_Signal_Processing_Algorithm_for_Parallel_Computation?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/221535306_Synchronous_Data_Flow_Describing_Signal_Processing_Algorithm_for_Parallel_Computation?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/239665911_Embedded_multiprocessors_Scheduling_and_synchronization?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/235093182_Compositionality_in_Synchronous_Data_Flow_Modular_Code_Generation_from_Hierarchical_SDF_Graphs?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/235093182_Compositionality_in_Synchronous_Data_Flow_Modular_Code_Generation_from_Hierarchical_SDF_Graphs?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/235093182_Compositionality_in_Synchronous_Data_Flow_Modular_Code_Generation_from_Hierarchical_SDF_Graphs?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/277775742_Exponentially_Timed_SADF_Compositional_Semantics_Reductions_and_Analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/277775742_Exponentially_Timed_SADF_Compositional_Semantics_Reductions_and_Analysis?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260584898_Accurate_Modeling_of_the_Delay_and_Energy_Overhead_of_Dynamic_Voltage_and_Frequency_Scaling_in_Modern_Microprocessors?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260584898_Accurate_Modeling_of_the_Delay_and_Energy_Overhead_of_Dynamic_Voltage_and_Frequency_Scaling_in_Modern_Microprocessors?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260584898_Accurate_Modeling_of_the_Delay_and_Energy_Overhead_of_Dynamic_Voltage_and_Frequency_Scaling_in_Modern_Microprocessors?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/260584898_Accurate_Modeling_of_the_Delay_and_Energy_Overhead_of_Dynamic_Voltage_and_Frequency_Scaling_in_Modern_Microprocessors?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220102610_Using_probabilistic_model_checking_for_dynamic_power_management?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220102610_Using_probabilistic_model_checking_for_dynamic_power_management?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/220102610_Using_probabilistic_model_checking_for_dynamic_power_management?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/267477266_Confluence_Reduction_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==
https://www.researchgate.net/publication/267477266_Confluence_Reduction_for_Markov_Automata?el=1_x_8&enrichId=rgreq-b253dc8e45bd454dedf77d93a404768a-XXX&enrichSource=Y292ZXJQYWdlOzMwMzMwNzYwMztBUzozNjMwMzEwNjc0MTQ1MjhAMTQ2MzU2NDc1OTYwNg==

Online Appendix to:
Probabilistic Model Checking for
Uncertain Scenario-Aware Data Flow

JOOST-PIETER KATOEN, Software Modelling and Verification Group, RWTH Aachen University
HAO WU, Software Modelling and Verification Group, RWTH Aachen University

c© 2016 ACM. 1539-9087/2016/01-ART $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. XX, No. YY, Article , Publication date: January 2016.

View publication statsView publication stats

https://www.researchgate.net/publication/303307603

