
Analyzing Synchronous Dataflow Scenarios for Dynamic
Software-defined Radio Applications

Firew Siyoum1, Marc Geilen1, Orlando Moreira2, Rick Nas2, Henk Corporaal1

1Eindhoven University of Technology
2ST-Ericsson Eindhoven

Abstract—Contemporary embedded systems for wireless com-
munications support various radios. A software-defined radio
(SDR) is a radio implemented as concurrent software processes
that typically run on a multiprocessor system-on-chip (MPSoC).
SDRs are real-time streaming applications with throughput
requirements. One efficient approach for timing analysis of
concurrent real-time applications is the dataflow model of com-
putation (MoC). Nonetheless, the dataflow modeling of SDRs is
challenging due to their dynamically changing data processing
workload. A dataflow MoC that is not expressive enough to
capture this dynamism gives pessimistic throughput results. On
the other hand, if it is too expressive and detailed, it may not
be analyzable at all. In this paper, we address the challenge of
dataflow modeling of SDRs such that their timing behavior can be
accurately analyzed to guarantee real-time requirements without
unnecessarily over-allocating MPSoC resources.

The basis of our modeling approach is splitting the dynamic
data processing behavior of a SDR into a group of static modes
of operation. Each static mode of operation is then modeled by
a Synchronous Dataflow (SDF), which we refer to as scenario.
This paper has two main contributions: 1) a scenario-based
dataflow model of Long Term Evolution (LTE), which is the
latest standard in cellular communication, and 2) investigation
of existing throughput analysis techniques of SDF scenarios for
our LTE model. Our results show that scenario-based worst-case
throughput computation is 2 to 3.4 times more accurate than
a state-of-the-art SDF analysis technique. Our investigation also
shows that existing timing analysis techniques of SDF scenarios
have very low run-time that scales very well with increase
in graph size. This makes SDF scenarios suitable in practice
for modeling and analyzing SDRs as well as similar dynamic
applications.

Index Terms—Synchronous Dataflow, Long Term Evolution,
Software-defined Radio, Throughput, Scenario-aware Dataflow

I. INTRODUCTION

Present-day embedded systems for cellular, home and au-
tomotive communications support various wireless communi-
cation standards. We refer to these communication standards
as radios. Smartphones, for instance, include different radios
such as WCDMA, LTE and IEEE 802.11x. Modern radios are
naturally dynamic in the sense that their transmission resource
allocation change with channel conditions. As a result, radios
have variable workload that is driven by control channels and
signals. In addition, radios are real-time streaming applications
with latency and throughput requirements. Therefore, radio de-
signs must be predictable to ensure that temporal requirements
are satisfied in all operating conditions.
The current trend in radio design shows that the implemen-

tation of physical layer functionalities of radios is shifting from
dedicated hardware architectures to software processes for
better flexibility and efficiency [1]. In software-defined radio
(SDR) [2], some or all of the physical layer functionalities of a
radio are implemented as concurrent software processes. These
software processes typically run on a multiprocessor system-
on-chip (MPSoC) for power and performance reasons. MPSoC
architectures of SDR combine homogeneous and heteroge-
neous multiprocessing, including general purpose processors,
vector processors and weakly programmable accelerators.

The mapping of the software processes onto the MPSoC and
allocation of resources, such as memories and interconnects,
is decided at the early stages of the SDR design. After such
design decisions, the system must be analyzed to check if
temporal requirements are met. This is not a trivial task due to
the vastness of the design space and the complexity of SDRs.
As a result, system-level modeling techniques are needed
to efficiently analyze SDRs and ensure predictability. One
established approach in the embedded domain for modeling
and analyzing real-time streaming applications, such as SDRs,
is the dataflow model of computation (MoC) [3].
Dataflow MoCs allow modeling of concurrent streaming

applications as directed task graphs. Modeling and analyzing
SDRs using dataflow MoCs has mainly two complementary
challenges: the dynamism of radios and the scarcity of MPSoC
resources [4]. On one hand, if the selected dataflow MoC is
highly expressive in order to capture the dynamic behavior
in detail, temporal analysis may not be possible at all. On the
other hand, if it is made simplistic for the sake of analyzability,
it may give pessimistic, if not invalid, results. Pessimistic
results lead to unnecessary over-allocation of scarce MPSoC
resources to satisfy temporal requirements. In this paper, we
address the challenge of dataflow modeling of SDRs such that
their timing behavior can be accurately analyzed to guarantee
real-time requirements without unnecessarily over-allocating
MPSoC resources.
The basis of our approach is splitting the dynamic data

processing behavior of a SDR into a group of static modes
of operation. Each static mode of operation is then modeled
by a Synchronous Dataflow (SDF) [5] graph, which we refer
to as scenario [6]. The possible orders of executions of these
scenarios are specified by a finite-state machine (FSM) [7] [8].
In this work, we show the applicability of this MoC for
SDRs by modeling and analyzing the baseband (physical
layer) processing of Long Term Evolution (LTE) [9], which is
the latest standard in cellular communication. This paper has
two main contributions: (1) a scenario-based dataflow model
of the baseband processing of LTE that accurately models
dynamic behavior, and (2) investigation of existing worst-case
throughput analysis techniques of SDF scenarios for our LTE
model.
This scenario-based dataflow modeling is not new [6] [7].

This work extends previous works by presenting a tech-
nique for modeling control information exchanged between
scenarios. In SDRs, the transfer of configurations and data
from one mode of operation to the next is quite common.
In LTE, for instance, a mode detection scenario broadcasts
the type of a received frame to subsequent scenarios for
configuration. We call such type data dependency between
scenarios scenario dependency. Scenario dependencies that are
not properly modeled result in an early start of execution of
processes in subsequent scenarios. This ultimately leads to
invalid worst-case temporal analysis. In this work, we present
a technique to model scenario dependencies between different
SDF graphs, and then show its applicability in our LTE model.

Our investigation on LTE’s baseband processing shows that
the scenario-based worst-case throughput computation is at
least two times more accurate than a state-of-the-art SDF
analysis technique. Our results also show that existing timing
analysis techniques of SDF scenarios have very low run-time
that scales very well with increase in graph size. This makes
SDF scenarios suitable in practice for modeling and analyzing
SDRs as well as similar dynamic applications.
The remaining part of this paper is organized in six sections.

First, Section II recaps dataflow modeling. Then, Section III
presents a scenario-based dataflow model for LTE. Section IV
introduces a new technique for modeling scenario dependen-
cies. Accuracy of throughput analysis techniques for our LTE
model is investigated in Section V. We postpone the review
of related works to Section VI, as preceding sections help to
better present the literature study. Finally, the paper concludes
in Section VII, summarizing this work.

II. PRELIMINARIES

This section recaps the basics of dataflow modeling. It
discusses basic SDF concepts that are important for a complete
understanding of this paper. In this paper, we use N to denote
natural numbers and N

0 natural numbers including zero.

A. Synchronous Dataflow Graph

A Synchronous Dataflow Graph (SDFG) [5] is a directed
graph that can model concurrent tasks. It can capture cyclic
data dependencies between tasks. It also has efficient analysis
techniques to compute throughput and buffer sizes [10] [11].
Due to its analyzability, it is widely used in system-level
design flows for modeling and analyzing real-time streaming
applications, running on MPSoCs [12] [13].

A SDFG consists of actors that are connected through
channels. A channel represents a FIFO buffer through which
actors communicate by sending tokens. A channel may have
some initial tokens at the start. Every channel is exactly
connected to one source actor and one destination actor. The
connection point between an actor and a channel is referred
to as a port. Each port of an actor is annotated with a fixed
number, called the port rate.
An actor models a given system task, for example a software

process. The duration of one complete execution of an actor is
termed as its execution time, measured in any preferred time-
unit. When an actor fires, i.e. starts execution, it reads tokens
from all of its input ports. At the end of the execution, it
produces tokens in all of its output ports. For each port of an
actor, the number of tokens consumed or produced in every
single execution of an actor is fixed, and it is equal to the port
rate. A formal definition of SDFG is given in Definition 1.

Definition 1 (SDFG). A SDFG is a tuple G = (A,C,X , I),
comprising a set of actors A, a set of channels C, execution
times of actors X : A → N

0 and initial tokens of channels
I : C → N

0. Given the set of all ports P , port rate of G is
denoted as R : P → N.

An example SDFG consisting of three actors (x,y, z) and
four channels is shown in Figure 1. In SDFG schematics, a
black dot represents the number of initial tokens in a channel.

x
1 2 12

y z
1

1

11

X (y) = 3X (x) = 1 X (z) = 2

1
1

1

Fig. 1. Example SDFG: Graph A

The execution of a SDFG is a timed simulation of the
executions of its actors. A property that ensures a deadlock-
free execution of a SDFG is consistency. A SDFG is called
consistent if the initial tokens configuration can be restored
after a finite numbers of firings of its actors. For example, for
Figure 1, the numbers of firings of actors x, y and z that bring
the graph back to its original state are 2, 1 and 2, respectively.
This can be conveniently written in vector form as [2, 1, 2].
This vector is termed as the repetition vector of the SDFG.
The repetition vector determines one complete execution of
the graph, referred to as iteration, as defined in Definition 2.

Definition 2 (Iteration). An iteration is defined as an execution
of a SDFG where each actor fires exactly as many times as
its entry in the repetition vector.

B. The Time-stamp Vector

The purpose of this section is to show how the total
number of initial tokens in a SDFG affects the performance of
throughput analysis techniques, discussed later in Section V.
In temporal analysis of SDFGs, we are interested in com-

pletion times of iterations. This is because the number of
iterations that can be completed per given time interval is
a measure of the throughput of the graph. The collection of
tokens that exist after each iteration of the graph is the same
as the initial tokens configuration. Define a vector γ that has
exactly one entry for every initial token in the graph, to record
the production times of initial tokens after each iteration.
Vector γ is referred to as a time-stamp vector. The length
of the time stamp vector |γ| is equal to the total number of
initial tokens of the graph. However, the entries in this vector
change between iterations.
A useful mathematical tool to analyze the timing evolution

of the time-stamp vector of a SDFG is the (max,+) alge-
bra [14]. In self-timed execution of a given SDFG, an actor
fires as soon as it has sufficient input tokens. Hence, the start
time of an actor’s firing is determined by the tardiest input
token, i.e. the maximum of the production times of all input
tokens. The end time of an actor’s firing can be obtained by
adding its execution time on its start time. As a result, the
entire timing behavior of a self-timed execution of a SDFG
can be analyzed using (max,+) expressions.
The time-stamp vector of the kth iteration of the graph

is denoted γk. The relationship between any two consecutive
iterations is expressed by a matrix multiplication in (max,+)
algebra, i.e. γk+1 = M · γk where k ∈ N

0. M is referred
to as the matrix of the graph and has a size of |γ| × |γ|.
An algorithm to compute the matrix of a SDFG is provided
in [15]. The matrix of SDFG A, shown in Figure 1, and its
time-stamp vectors for the first three iterations are as follows.

M =

[

2 3 2
5 6 5
7 8 7

]

and γ0, γ1, γ2, γ3 =

[

0
0
0

]

,

[

3
6
8

]

,

[

10
13
15

]

,

[

17
20
22

]

The self-timed execution of a SDFG reaches a periodic
phase after a finite number of transient iterations [10]. For
the SDFG A of Figure 1, the periodic phase starts after the
first iteration (after γ1). The period of this periodic phase is
7 time-units (the difference between consecutive time-stamp
vectors), and hence, the graph has a maximum throughput of
1

7
iterations/time-unit.
For exact computation of time-stamp vectors, we start from

a zero vector γ0. However, approximations (upper-bounds to
γ) are also possible. This is done by starting from a selected
γ0, called a reference schedule or a delay [15]. This technique

is referred to as delay-period approximation. As shown later in
Section V, the technique allows faster throughput computation,
since it makes the entire timing behavior periodic.
The time-stamp vector is a timing interface that separates

iterations of a SDFG. It can also analyze a sequence of
iterations of different SDFGs. To achieve this, γ has to be
extended first to cover all initial tokens that are common
between these graphs. This approach is used to compute the
throughput of dataflow MoCs that model dynamic applications
through a set of SDFGs. One such dataflow model is discussed
next in Section II-C.

C. Synchronous Dataflow Scenarios

Real-life streaming applications, such as multimedia codecs
and SDRs, go through different operating modes, depending
on the processed data. A scenario refers to a single mode
of operation of the application [6]. When an application is
executing at a given scenario, its computation and communi-
cation characteristics mostly remain invariable. Hence, each
scenario can be modeled by a static dataflow model, such as
a SDFG. We refer to a SDFG that models a single scenario
of an application a scenario graph.
A sequence of operating modes of an application is modeled

by a sequence of executions of the corresponding scenario
graphs. These executions can also be pipelined in time. All
possible scenario sequences of an application are represented
by a finite-state machine (FSM), as defined in Definition 3.

Definition 3 (Finite-state machine (FSM)). Given a set S of
scenario graphs, a finite state machine f on S is a tuple
f = (Q, q0, δ, Σ). Q is a set of states, q0 ∈ Q is an initial
state, δ is a transition relation between two states, δ ⊆ Q×Q,
and Σ is scenario labeling, Σ : Q → S.

Scenario graphs along with a FSM can be used to capture
the dynamic behavior of an application [15] [8]. For example,
let two SDFGs A and B represent two different scenarios
of an application. Assume also that the application switches
arbitrarily between these two scenarios. Figure 2 shows a FSM
that captures this dynamic behavior. This modeling approach
is referred to as FSM-based Scenario-aware Dataflow (FSM-
SADF) [15] [8], as defined in Definition 4.

s1s0

Q = {s0, s1}q0 = s0,
Σ(s0) = A,
δ = {(s0, s0), (s0, s1),

Σ(s1) = B

(s1, s0), (s1, s1)}

Fig. 2. Example of a FSM

Definition 4 (FSM-SADF). An FSM-SADF model is a tuple
F = (S, f), consisting of a set of scenario graphs S and a
finite-state machine f on S.

The FSM-SADF is a class of Scenario-aware Dataflow
(SADF) model [6]. In FSM-SADF, scenario transitions are
non-deterministically specified by a finite-state machine, in-
stead of the stochastic model proposed in [6]. The FSM
allows a worst-case timing analysis of FSM-SADF through
the timing evolution of the time-stamp vector, as discussed in
Section II-B. Efficient timing analysis techniques for FSM-
SADF are presented in [15] and [7].
Next, in Section III, we show the applicability of FSM-

SADF for modeling and analyzing a dynamic SDR application.
The section shows how FSM-SADF captures the dynamism of
the SDR application, which a single SDFG cannot do without
introducing pessimistic assumptions.

III. LONG TERM EVOLUTION (LTE)

Long Term Evolution (LTE) is a recent standard in cellular
wireless communication technologies. It aims at high bit
rates: a downlink peak rate of up to 300 Mbit/s and an
uplink of 150 Mbit/s [9]. Due to the high bit rates, and the
resulting high workload, the complexity of LTE receivers is
enormous. The complexity is further increased by dynamism
(data-dependent variations) of frames. In this section, we focus
on the dynamism of LTE’s physical layer frames, as SDR deals
with a software implementation of the baseband processing
(physical layer processing) of radios.
LTE uses adaptive modulation and coding (AMC) that

dynamically adjusts modulation schemes and transport block
sizes to adapt to varying channel conditions [16]. Conse-
quently, the workload of LTE’s baseband processing changes
dynamically. In this section, we present a variation-aware
dataflow model for LTE baseband processing that captures
this dynamic workload. We first start by discussing the source
of dynamism in the physical layer processing of LTE in
Section III-A. Then, we show how we model this dynamism
using FSM-SADF dataflow in Section III-B.

A. Dynamism in LTE baseband processing

There are multiple sources of dynamism in LTE baseband
processing that contribute to variable computation and com-
munication requirements. These include variations in channel
allocation of frames, modulation schemes and transport block
sizes of upper layers. For the discussions of this paper, we limit
ourselves to dynamism due to variations in channel allocations
of frames. Nonetheless, the modeling concept can be equally
applied to any complexity level of dynamism.
To show variations in channel allocations, we consider the

downlink communication, which refers to the communication
link from the base station (eNodeB) to the User Equipment
(UE). Depending on the type of duplexing, there are two
types of LTE physical layer frame structures. The downlink
frame structure for Frequency Division Duplexing (FDD) is
illustrated in Figure 3. A single frame is 10 milliseconds (ms)
long. It consists of 10 sub-frames (1ms each) and each sub-
frame consists of 2 slots (0.5ms each).

1 Sub−Frame
(1ms)

1 Slot
(0.5ms)

1 Frame (10ms)

209821

1 2 3 4 5 6 7

cyclic prefix

7 OFDM Symbols (short cyclic prefix)

43

Fig. 3. LTE frame structure for FDD

LTE employs Orthogonal Frequency Division Multiplexing
(OFDM) for downlink data transmission. The transmission
resource within a sub-frame is organized by a resource grid,
as shown in Figure 4. The width of the resource grid (in
time domain) equals twice the number of symbols per slot,
NDL

symb. The height of the grid (in frequency domain) equals

the number of OFDM sub-carriers per resource block, NRB
sc ,

multiplied by the number of resource blocks per sub-frame,
NDL

RB . NDL
RB is determined by the downlink transmission

bandwidth, while NDL
symb and NRB

sc are determined by the
OFDM subcarrier spacing and the type of OFDM cyclic prefix
used.

In practice, NDL
RB , NRB

sc and NDL
symb are fixed once the

system is configured. In the rest of this paper, we consider
a bandwidth of 20MHz, a subcarrier spacing of 15KHz and
normal cyclic prefix. Hence, NDL

RB = 100, NDL
symb = 7 and

NRB
sc = 12, as shown in Figure 4.

87

(1ms)

F
re

q
u

e
n

c
y
 d

o
m

a
in

 (
s
u

b
−

c
a

rr
ie

rs
)

Time domain (OFDM symbols)

resource block

1 Sub−Frame

Resource element Reference signals

1 2 3 4 5 6 9 10 11 12 13 14

2 × NDL
symb = 14

NRB
sc = 12

N
D

L
R

B
×

N
R

B
s
c

=
1
0
0
×

1
2

Fig. 4. Resource grid of a sub-frame

The time-frequency unit for resource allocation of the
resource grid is a resource element. Resource elements of
the resource grid are allocated to different data and control
channels. Resource elements of the first OFDM symbol (the
first column of the grid) are allocated to the Physical Control
Format Indicator Channel (PCFICH) and partly to the Phys-
ical Downlink Control Channel (PDCCH). PCFICH contains
information regarding the resource allocation of PDCCH. PD-
CCH can be allocated resource elements upto the third column
of the resource grid. PDCCH, in turn, tells the locations of
data channels, such as the Physical Downlink Shared Channel
(PDSCH). PDSCH can be located between the second and the
fourteenth columns of the resource grid.
Decoding a sub-frame consists of a number of tasks whose

data dependency is captured by a directed graph, as shown
in Figure 5. Some major tasks of the graph include OFDM
demodulation (dem), channel estimation (est), multiple-input
and multiple-output summation (mimo), OFDM demapping
(dmp) and channel decoding (dec). The input-output data
granularity of these tasks is an OFDM symbol (a column of
the resource grid), that is about 4800 bytes. Hence, these tasks
have to be carried out for each of the 14 symbols that constitute
a sub-frame.

src

mimo

md

est

adp

dec

cqi

mem dem

dmp
p

data dependency edges

control signals

Fig. 5. A directed task graph of LTE’s baseband processing

However, depending on the type of channel a symbol is
allocated to, the properties of these tasks, such as functionality,
execution time and communication rates, vary. For instance,
task dec has a different execution time for a symbol that carry
a control channel (192 time-units) than a data channel (an
average of 75 time-units). In addition, its input data rate can
vary between 11, 12 or 13 symbols while decoding a data
channel. This is because the control channel is always between

the first and the third symbols, leaving the remaining symbols
for data channels.
Consequently, the execution time and the input-output data

rates of tasks may change every symbol. This gives rise to
the dynamic behavior of LTE’s baseband processing. The
challenge is now how to capture this dynamism in dataflow
models for temporal analysis. Dataflow modeling and analysis
of LTE, and other radios, that abstract from variable execution
times and communication rates result in inefficient, if not
invalid, implementations. This is because static worst-case
conditions have to be considered for all operating conditions.
Let us see, for instance, what a static SDFG model for the
LTE baseband processing looks like.

All tasks of Figure 5, except dec, fortunately have fixed
execution times and input-output token rates. Thus, the mod-
eling effort simplifies to finding a fixed execution time for
task dec and its input port rate p. The requirement for the
selection of these two parameters is that the production time
of tokens by actor dec must be conservative to (not earlier
than) the actual production time of data by task dec. Symbols
that carry control channels have to be decoded as soon as
they arrive. This requires R(p) = 1 and X (dec) = 192. This
configuration also ensures that the decoding of a data channel,
which is carried out in a chunk of 11, 12 or 13 symbols, is
also conservative at a sub-frame level. This SDFG of LTE’s
baseband processing is shown in Figure 6, where all port
rates equal to one and execution times are shown by numbers
written inside the actors.

src mem dem est

mimo dmp dec

1925033

1660271

1

6

1

adp

8

cqi

70

1 md
5

1
1

Fig. 6. A SDFG of LTE’s baseband processing

Due to the static nature of the SDFG, the execution time of
dec is fixed to 192 time-units for all symbols, though it is on
average 75 time-units for data channels. In addition, actor md
(the mode detection task) is executed for every symbol, even
though it is only needed for the first symbol of the resouce
grid. As a result, the timing analysis of this SDFG gives a
pessimistic throughput result, as shown later in Section V.
This fact necessitates a variation-aware dataflow model that
gives more accurate throughput results. In the next section,
we present a dataflow model for LTE that captures variable
execution times and input-ouput data rates through a set of
scenario graphs.

B. Dataflow Model of LTE baseband processing

For the LTE’s baseband processing, we identify five differ-
ent modes of operation, depending on the type of symbol it
is processing. When operating at a given mode of operation,
the execution times and input-output rates of the tasks remain
static. Therefore, each mode of operation can be modeled by a
SDFG. In addition, the possible transitions between these five
modes of operation are also known at design time. Hence, the
transitions can be described by a finite-state machine (FSM),
making FSM-SADF a suitable tool to model this application.
We present the FSM-SADF model for LTE’s baseband

processing in two steps: first in this section, without modeling
the control signals (shown in Figure 5), and later in Section IV,
with the modeling of these controls signals.

src

71

1

mem
2

dem
60

est

16

6

1

adp

8

cqi

70

md
5

dec

192

dmp

50

mimo

33

(a) Scenario graph 1: S1

src

1

mem

2

dem

60

6

est

16

mimo

33

1

adp

8

cqi

70

dmp

50

p dec

71

S2 : X (dec) = 192,R(p) = 1
S3 : X (dec) = 970,R(p) = 13
S4 : X (dec) = 895,R(p) = 12
S5 : X (dec) = 820,R(p) = 11

(b) Scenario graph 2 to Scenario graph 5: S2 − S5

q1

q4q3

q0 q2

q5

sub−frame decoding

sequences for

Σ(q3) = S3

Σ(q4) = S4

Σ(q5) = S5

Σ(q1) = S2

Σ(q2) = S2

Σ(q0) = S1

q̄3 =< q0, q1, q2, q5 >

q̄1 =< q0, q3 >
q̄2 =< q0, q1, q4 >

(c) FSM

Fig. 7. FSM-SADF model of LTE receiver

A compact representation of the five scenario graphs that
correspond to each mode of operation is shown in Figure 7(a)
and Figure 7(b). Except for those explicitly shown in Fig-
ure 7(b), all port rates are 1 and execution times are indicated
by numbers written inside the actors.

The first scenario graph, S1, models the decoding of the
first symbol, which has the control format channel (PCFICH)
and part of the control channel (PDCCH). At the end of the
execution of S1, the mode detection (md) actor determines the
scenario sequence to decode the remaining 13 symbols. The
three possible sequences are: 1) executing S3 to decode all the
13 symbols for the data channel (PDSCH), 2) executing S2 to
decode the second symbol for the control channel (PDCCH),
followed by S4 to decode the remaining 12 symbols for the
data channel (PDSCH), and 3) executing S2 twice to decode
the second and third symbols for the control channel (PD-
CCH), followed by S5 to decode the remaining 11 symbols for
the data channel (PDSCH). The FSM in Figure 7(c) shows the
three scenario sequences q̄1, q̄2 and q̄3 to decode one complete
sub-frame.

The timing analysis of the FSM-SADF model can be carried
out by executing these scenario sequences. However, before
we present the timing analysis, we first need to discuss an
important modeling aspect that is not captured by Figure 7.
It is mentioned earlier that the type of scenario sequence for
a given sub-frame is determined by actor md of S1. Hence,
actor md should run to completion before scenario graphs S2

and S3 start execution. Scenario-independent actors in these
graphs can, in fact, start ahead of the completion of actor md.
The dashed edges in the directed task graph of Figure 5 show

actors that have dependency with actor md. The dashed edges
represent data dependencies that exist across scenarios: from
actor md of S1 to actors mimo, dmp and dec of S2 and S3.
We refer to such types of data dependencies that exist between
scenarios as scenario dependencies.

The presence of these scenario dependencies in the transi-
tions δq0q1

= (q0, q1) and δq0q3
= (q0, q3) are not modeled

by the FSM-SADF, shown in Figure 7. This has a serious con-
sequence, as it may lead to invalid timing analysis. Section IV
next presents a modeling technique for data dependencies that
exist across scenario graphs.

IV. MODELING SCENARIO DEPENDENCIES

The temporal behavior of an FSM-SADF model is analyzed
by executing the possible scenario sequences specified by the
FSM. For a given sequence, the scenario graph of each state
is executed for one complete iteration. Figure 8 illustrates an
example of a sequence of iterations 〈· · · , k, k+1, · · · 〉 of two
scenarios. As shown in the figure, these iterations are possibly
pipelined in time.

In
it
ia

l
to

k
e
n
s

Time

Scenario 1 Scenario 2

k − 1 k k + 1

k + 2

Fig. 8. Example of sequence of iterations

The end of iterations is marked by the production times
of initial tokens, represented by the black dots in Figure 8.
These initial tokens are the set of all initial tokens of the
scenario graphs. Part of the initial tokens that are common
between two scenario graphs (iterations) represent their data
dependencies. This is because the starting times of actors that
consume these common initial tokens is determined by the
production times of the initial tokens in the previous iteration.
Hence, to avoid earlier starting of actors, all data dependencies
between iterations should be captured through common initial
tokens between scenario graphs.

However, it is not possible to model data dependencies using
common initial tokens unless both the source and destination
actors of channels that carry the initial tokens exist in both
scenario graphs. It requires, otherwise, channels that extend
across the two scenario graphs, which FSM-SADF does not
allow. This results in scenario dependencies, as discussed in
Section III-B for the FSM-SADF model of Figure 7.
A scenario dependency is a data dependency from a source

actor of a given scenario graph to a non-empty set of des-
tination actors of a set of scenario graphs. We refer to the
source actor as the master actor and the destination actors
as the slave actors. A master actor and its slave actors can
possibly belong to the same scenario graph. Slave actors must
not fire before the master actor completes all of its firings of
an iteration, i.e. as many firings as its entry in the repetition
vector. Figure 9(a) illustrates the scenario dependency of the
FSM-SADF model shown in Figure 7. Actors mimo, dmp
and dec must receive configuration information from actor md
before they start execution.
Therefore, to determine the correct firing times of slave

actors in subsequent iterations, the completion time of the
master actor must be recorded. This can be achieved by
introducing a new actor for every master actor. We refer to
this new actor as the time-stamp actor. The time-stamp actor

is a SDFG actor with a single self-edge, as illustrated in
Figure 9(b). The self-edge has exactly one initial token that
carries the time-stamp of the completion of the master actor.
The same time-stamp actor is introduced in all parent scenario
graphs of the slave actors, as shown in Figure 9(b), so that
the firing times of the slave actors cannot be earlier than the
completion of the master actor in preceding iterations.

md mimo cdec

master actor slave actors

odmp

S2,S3S1

(a) Scenario dependency between master and slave actors

md

1

mimo odmp cdec

1

1

1

11

at at

S1 S2,S3

(b) time-stamp actor at where X (at) = 0

Fig. 9. Modeling scenario dependency

Any number of scenario dependencies can be modeled with
this technique. All sorts of scenario dependencies are also
possible. For instance, a master actor of a scenario dependency
can be a slave actor in another scenario dependency. An actor
can also be a slave for multiple scenario dependencies. In
addition, some of the slave actors of a scenario dependency
can be on the same scenario graph as the master actor. In the
last case, a channel that connects the time-stamp actor with a
slave actor needs initial tokens to avoid deadlock.

A generalized formal presentation of the scenario depen-
dency modeling technique is presented next, in Algorithm 1.
The algorithm also covers the assignment of port rates (R) and
initial tokens (I) of channels that connect time-stamp actors
with master and slave actors.

Table I defines notation for a given FSM-SADF model
F = (S, f). We use P to denote powerset.

TABLE I
NOTATION FOR AN FSM-SADF MODEL F = (S, f)

Notation Description
A(s) the set of actors of scenario graph s ∈ S
repV ector(a) the repetition vector of an actor a ∈ A(s)
C(s) the set of channels of scenario graph s ∈ S
srcPort(c) the source port of channel c ∈ C(s)
dstPort(c) the destination port of channel c ∈ C(s)
MF the set of all master actors in F

SF the set of all slave actors in F

TF the set of all time-stamp actors in F

OF the set of all ordinary actors in F

AF the set of all actors in F, or equivalently
AF = MF ∪ SF ∪ TF ∪ OF

G(am) parent scenario graph of am ∈ MF

S(am) slave actors of am, S : MF → P(AF)
SG(am) the set of parent scenario graphs of slave

actors of am ∈ MF, SG : MF → P(S)

For every master actor am ∈ MF, there exists one unique
time-stamp actor as defined in Definition 5.

Definition 5 (Time-stamp mapping). Time-stamp mapping is a
bijective function, denoted as T : MF ↔ TF. The correspond-
ing master actor of at ∈ TF is given as T −1(at).

Each time-stamp actor at ∈ TF represents a uni-directional
data dependency from one scenario to a non-empty set of
scenarios. The set of all such data dependencies constitutes
the scenario dependency of the FSM-SADF model, as defined
in Definition 6.

Definition 6 (Scenario dependency). Scenario dependency of
F is defined as a function D : TF → S×P(S) such that for any
at ∈ TF,D(at) = (G(am),SG(am)), where am = T −1(at).

The Scenario dependency D defines all data dependen-
cies between scenarios that cannot be modeled with existing
common initial tokens between scenario graphs. To model
these data dependencies, the original FSM-SADF model F

is transformed into a new dependency-aware model, as given
in Algorithm 1. The transformation involves two main steps.
For every time-stamp actor at ∈ TF, (1) add the time-stamp
actor in the parent scenario graph of the master actor (G(am)),
and (2) add the same time-stamp actor to all scenario graphs
of slave actors of the master actor (SG(am)).

Algorithm 1 Model scenario dependencies of an FSM-SADF
model F = (S, f) from a given scenario dependency D

1: ModelScenarionDependency(D)
2: TF := domain(D) //set of time-stamp actors
3: for all at ∈ TF do
4: am := T −1(at) //get master actor
5: (s, Ss) := (G(am),SG(am))
6: A(s) := A(s) ∪ {at} //add time-stamp actor to graph
7: c := new channel am → at where I(c) := 0
8: R(srcPort(c)) := 1
9: R(dstPort(c)) := repV ector(am)

10: C(s) := C(s) ∪ {c}
11: for all ss ∈ Ss do
12: A(ss) := A(ss) ∪ {at}
13: for all as ∈ S(am) ∧ as ∈ A(ss) do
14: c := new channel at → as where I(c) := 0
15: R(srcPort(c)) := repV ector(as)
16: R(dstPort(c)) := 1
17: if ss = s then
18: I(c) := repV ector(as)
19: end if
20: C(ss) := C(ss) ∪ {c}
21: end for
22: end for
23: end for

Timing analysis of FSM-SADF whose scenario dependen-
cies are not properly modeled, may give erroneous throughput
results. This is shown next, in Section V, that discusses the
throughput analysis of the LTE dataflow model.

V. THROUGHPUT ANALYSIS

Throughput requirements of SDRs, such as frame arrival
rate, come from standards. We regard SDRs as hard real-time
applications, as they must comply with standards and process
frames at least at the rate of their throughput requirement.
Thus, it is essential to analyze the worst-case throughput
(WCT) of a SDR to ensure that the throughput requirement
is satisfied in all operating conditions. The focus of this

40 60 80 100 120
2

3

4

5

6

7

8

9

10
x 10

−4

Number of Initial Tokens

T
h
ro

u
g
h
p
u
t
(s

u
b
−

fr
a
m

e
s
/t
im

e
−

u
n
it
)

Scenario Graph

Reference Schedule

Exact Worst−case

(a) Comparing conservativeness

40 60 80 100 120
0

100

200

300

400

500

600

Number of Initial Tokens

R
u
n
−

ti
m

e
 (

m
s
)

Scenario Graph

Reference Schedule

Exact Wost−case (Max−Plus)

Exact Wost−case (State−space)

(b) Comparing run-time

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of FSM states

R
u
n
−

ti
m

e
 (

m
s
)

Scenario Graph

Reference Schedule

Exact Wost−case (Max−Plus)

(c) Comparing scalability

Fig. 10. Conservativeness, run-time and scalability of various throughput analysis techniques

section is the WCT computation of FSM-SADF models. First
we introduce four terminologies for our discussion: validity,
conservativeness, run-time and scalability.
Throughput of an FSM-SADF is expressed in number of

iterations per time-unit. The actual WCT of an FSM-SADF is
the minimum throughput that may appear in the execution
of the model. Any computed WCT is said to be valid if
and only if it is less than or equal to the actual WCT.
Conservativeness refers to how close a valid computed WCT
is to the actual WCT. To obtain a less conservative (less
pessimistic) result, a detailed analysis of the FSM-SADF
model has to be carried out. However, this may cost us in
terms of run-time, which is the length of time the computation
takes to run to completion. Another important aspect is how
the run-time of a given technique scales with increase in graph
size, which we refer to as scalability. Run-time and scalability
are important properties since design-space exploration (DSE)
in scenario-based design flows [8] is a long iterative process
that involves large graph sizes.
The throughput analysis of the FSM-SADF model of LTE’s

baseband processing, shown in Figure 7, is presented in this
section. The analysis is carried out using the publicly available
dataflow tool, SDF3 [17]. Table II shows computed WCTs
according to five different computation techniques that are
presented in detail in [10], [15] and [7]. Figure 10 shows
the relative conservativeness, run-time and scalability of the
scenario-based techniques (methods 2 to 5).

TABLE II
WCT COMPUTATION OF THE FSM-SADF MODEL OF FIGURE 7 WITH AND

WITHOUT SCENARIO DEPENDENCY MODELING (SDM)

(×10−4 sub-frames/time-unit)

Method 1 2 3 4 5

Name
Static
SDFG

Scenario
graph

Reference
schedule

State-
space

MaxPlus

Without SDM 2.6 9.7 10.4 14.5 14.5

With SDM 2.6 5.2 6.6 8.9 8.9

The scenario-based WCT computation techniques (methods
2 to 5) are based on analyzing the timing evolution of the time-
stamp vectors of the constituent scenario graphs, as discussed
in Section II-B. In addition, the scenario transitions specified
by the FSM is also considered by some of them. Our main
observations from Table II and Figure 10 are presented next.

A. Conservativeness

Methods 4 and 5 are based on computing the exact finishing
time of iterations (time-stamp vectors). As a result, they give

the exact WCT of the FSM-SADF model. Therefore, they can
be used as a reference for comparing the relative conserva-
tiveness of the throughput computation methods. Methods 2
and 3 have similarity as they are based on approximations on
the finishing time of iterations [15]. The approximations are
delay-period linear upper bounds on the time-stamp vectors, as
discussed in Section II-B. However, as shown in Figure 10(a),
method 3 is less conservative than method 2. This is because
method 2 does not consider the scenario transitions specified
by the FSM [15].

B. Validity

According to Table II, the actual WCT is 8.9 × 10−4 sub-
frames/time-unit, since this result is based on the exact WCT
computation techniques that also consider scenario dependen-
cies. Table II, as expected, shows that timing analysis without
modeling scenario dependencies may give invalid WCT, as the
results of methods 2 to 5 are all greater than the actual WCT.

C. Pessimism of static dataflow

Method 1 is based on a single SDFG that has fixed execution
times and port rates, assuming worst-case conditions. Such
a static SDFG for the LTE baseband processing is given in
Figure 6. The throughput of this SDFG is computed using the
state-space exploration technique discussed in [10]. Table II
shows that the static SDFG analysis gives a very pessimistic
result. The other four scenario-based techniques improve this
result by 2 to 3.4 times more (from 2.6 to 5.2 for method 2
upto 8.9 for methods 4 and 5).

D. Run-time and scalability

Methods 2 and 3 are based on delay-period approximations
of the the time-stamp vectors. Hence, they are not significantly
affected by neither lengthy time-stamp vectors nor large FSM
states. As a result, they have a very low run-time that scale
very well with increase in initial tokens and FSM state sizes,
as shown in Figure 10(b) and 10(c).

Method 4, on the other hand, is based on a state-space
exploration technique that is applied directly on the time-stamp
vectors, considering all scenario sequences specified by the
FSM. This enables it to give an exact WCT. However, its
run-time exponentially grows with increasing initial tokens,
as shown in Figure 10(b). As a result, it is also omitted from
Figure 10(c).
Method 5 employs a compact representation of initial tokens

using throughput graphs [7]. The throughput graph is a

directed graph that has V = |Q| · |γ| vertices and |V |
2
edges,

where |Q| is the number of FSM states and |γ| is the number of
initial tokens in the FSM-SADF. The throughput computation
on this graph gives an exact WCT but has an order of
complexity O(V 3). However, as shown in Figure 10(c), its
run-time is in the order of tens of seconds that makes it
practical for real-life applications, such as SDRs.

E. Summary

This section shows that there is a trade-off in conser-
vativeness, run-time and scalability between different WCT
computation techniques of FSM-SADF. Method 2 and 3 trade
accuracy for lower run-time that make them useful for long
and iterative DSE algorithms. Method 3 can be preferred to
method 2, as it is less conservative and has an equivalent run-
time and scalability. Method 4 and 5 give the exact WCT, at
the cost of run-time. Method 4, however, is barely scalable and
could be cumbersome to use it in scenario-based design flows.
On other hand, the run-time of method 5 is in the order of tens
of seconds that makes it practical for analyzing dynamic SDR
applications.

VI. RELATED WORK

Synchronous Dataflow (SDF) [5] is the first dataflow-based
model of computation to gain broad acceptance in DSP design
tools due to its analyzablity as compared to other directed
graph techniques such as computational graphs, petri nets and
synchronous languages [3]. With SDF, it is possible to obtain
a periodic schedule that can be implemented with bounded
buffer size. However, the expressiveness of SDF is limited. and
hence it cannot express applications’ dynamism without over-
allocation. For instance, it is shown in [8] that an SDF-based
design-flow may lead to upto 66% in resource over-allocation,
as compared to scenario-based techniques.
There are various proposed extensions of SDF to improve

its expressiveness. Dynamic dataflow models such as Dynamic
dataflow (DDF) [18], Boolean dataflow (BDF) [19],Integer
dataflow (IDF) [20] and Core function dataflow (CFDF) [21]
are expressively Turing-complete. However formal properties
such as deadlock-freedom is an undecidable property for these
dataflow models.

[22] and [23] suggest some dynamic dataflow models for
software-defined radio (SDR) applications. However, they do
not discuss the timing analysis of these dynamic dataflow
models for predictable SDR design. The dataflow models
proposed in these works include Scalable SDF (SSDF) [24],
Parameterized Cyclo-static dataflows (PCSDF) [25], Cyclo-
dynamic dataflow (CDDF) [26] and Mixed-mode vector-based
dataflow (MMVBDF).These dataflow models, in one way
or the other, can model applications’ dynamism. However,
one dataflow can be more expressive than the other, while
still being analyzable. For example, Scenario-aware dataflow
(SADF) [6] is more expressive than SSDF, PCSDF and
MMVBDFs. SSDF allows integer multiples of token rates for
an actor. SADF can model each rate with a separate scenario.
PSDF and MMVBD are less expressive than SADF, since they
require the parameterized consumption and production rates
for a channel to be equal and does not support rates of 0 [6].

FSM-SADF is a version of SADF, where the transitions be-
tween scenarios are specified by a finite-state-machine (FSM).
It has been shown in [8] that FSM-SADF can express dy-
namism in multimedia codecs. Efficient performance analysis
techniques for FSM-SADF graphs are also presented in [15]
and [7]. This paper extends these works by showing the
applicability of FSM-SADF for SDRs.

VII. CONCLUSIONS

Software-defined radios (SDRs) are real-time streaming
applications with throughput requirements. Dataflow modeling
of SDRs for timing analysis is challenging due to their dynam-
ically changing data processing workload. In this paper, we
address the challenge of dataflow modeling of dynamic SDRs
such that their timing behavior can be accurately analyzed to
guarantee real-time requirements. The basis of our modeling
approach is splitting the dynamic data processing behavior
of a SDR into a group of static mode of operations. Each
static mode of operation is then modeled by a Synchronous
Dataflow (SDF), which we refer to as scenario. This work
shows the applicability of this approach by modeling Long
Term Evolution (LTE), which is a recent standard in cel-
lular communications. Our results show that the worst-case
throughput computation by scenario-based analysis is at least
two times more accurate than a state-of-the-art SDF analysis
technique. Our investigation also shows that existing timing
analysis techniques of SDF scenarios have very low run-time
that scales very well with increase in graph size. This makes
SDF scenarios suitable in practice for modeling and analyzing
SDRs as well as similar dynamic applications.

REFERENCES

[1] O. Gustafsson et. al, “Architectures for cognitive radio testbeds and
demonstrators an overview,” in CROWNCOM, 2010.

[2] F. Jondral, “Software-defined radio: basics and evolution to cognitive
radio,” EURASIP Journal on Wireless Comm. and Netw., 2005.

[3] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization, 2009.

[4] C. van Berkel, “Multi-core for Mobile Phones,” in DATE, 2009.
[5] E. Lee and D. Messerschmitt, “Synchronous dataflow,” IEEE Proceed-

ings, 1987.
[6] B. Theelen et. al, “A scenario-aware data flow model for combined long-

run average and worst-case performance analysis,” in MEMOCODE,
2006.

[7] M. Geilen and S. Stuijk, “Worst-case performance analysis of syn-
chronous dataflow scenarios,” in CODES/ISSS, 2010.

[8] S. Stuijk et al., “A predictable multiprocessor design flow for streaming
applications with dynamic behaviour,” in DSD, 2010.

[9] D. Martn-Sacristn, “On the way towards fourth-generation mobile: 3gpp
lte and lte-advanced,” EURASIP Journal on Wireless Comm. and Netw.,
2009.

[10] A. Ghamarian et. al, “Throughput analysis of synchronous data flow
graphs,” in ACSD, 2006.

[11] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-
off exploration for cyclo-static and synchronous dataflow graphs,” in
Computers, IEEE Transactions on. USA: IEEE, 2008.

[12] C. Lee et. al, “A systematic design space exploration of MPSoC based
on synchronous data flow specification,” Journal of Signal Processing
Systems, Springer, 2010.

[13] A. Bonfietti et. al, “An efficient and complete approach for throughput-
maximal SDF allocation and scheduling on multi-core platforms,” in
DATE, 2010.

[14] F. Baccelli et. al, Synchronization and Linearity: An Algebra for Discrete
Event Systems. John Wiley Sons, 1993.

[15] M. Geilen, “Synchronous dataflow scenarios,” ACM Transactions on
Embedded Computing Systems, 2011.

[16] “3GPP TS 36.211 V8.6.0: Physical Channels and Modulation,” 2009.
[17] “SDF3 - Synchronous Dataflow for Free,” http://www.es.ele.tue.nl/sdf3/.
[18] J. Buck, “A dynamic dataflow model suitable for efficient mixed

hardware and software implementations of dsp applications,” in CODES,
1994.

[19] E. Lee, “Consistency in dataflow graphs,” IEEE Transactions on Parallel
and Distributed Systems, 1991.

[20] J. Buck, “Static scheduling and code generation from dynamic dataflow
graphs with integer-valued control streams,” in Asilomar, 1994.

[21] W. Plishker et. al, “Functional dif for rapid prototyping,” in IEEE/IFIP,
2008.

[22] H. Berg, C. Brunelli, and U. Lucking, “Analyzing models of computation
for software defined radio applications,” in SOC, 2008.

[23] C. Hsu et. al, “A mixed-mode vector-based dataflow approach for
modeling and simulating lte physical layer,” in DAC, 2010.

[24] S. Ritz et. al, “High level software synthesis for signal processing
systems,” in ASAP, 1992.

[25] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow model-
ing for dsp systems,” IEEE Transactions on Signal Processing, 2001.

[26] P. Wauters et. al, “Cyclo-dynamic dataflow,” IEEE Transactions on
Signal Processing, 1996.

