
Model Checking of Finite-state Machine-based
Scenario-aware Dataflow Using Timed Automata

Mladen Skelin
Department of Engineering Cybernetics,

Norwegian University of Science and Technology

mladen.skelin@itk.ntnu.no

Erik Ramsgaard Wognsen, Mads Chr. Olesen,
René Rydhof Hansen, Kim Guldstrand Larsen

Department of Computer Science, Aalborg University

{erw,mchro,rrh,kgl}@cs.aau.dk

Abstract—Dataflow formalisms are widely used for modeling
and analyzing streaming applications. An important distinction
is between static and dynamic formalisms, the latter allowing
for the workload to change on-the-fly. The recently introduced
finite-state machine based scenario aware dataflow (FSM-SADF)
is a dynamic dataflow formalism that increases the expressiveness
of the static synchronous dataflow (SDF) formalism, by allowing
finite-state control, while to a large extent retaining its design-
time analyzability.

This paper reports on the translation of the FSM-SADF
formalism to UPPAAL timed automata that enables a more general
verification than currently supported by existing tools. We base
our translation on a compositional approach where the input
FSM-SADF model is represented as a parallel composition of
its integral components modeled as automata. Thereafter, we
show how to model check quantitative and qualitative properties
both supported and not supported by the existing tools. We
demonstrate our approach on a realistic case study from the
multimedia domain.

I. INTRODUCTION

Thanks to their relatively simple graphical representation,
compactness and the ability to easily express parallelism,
dataflow formalisms have become almost irreplaceable tools
for the design and analysis of (embedded) signal processing
and streaming applications. Dataflow formalisms are instan-
tiated as directed graphs where vertices are called actors
and edges are called channels. Actors represent application
tasks, while channels represent data dependencies between
actors. In dataflow, an actor firing is an indivisible quantum of
computation during which an actor consumes a certain number
of data values from its input channels and produces a certain
number of data values on its output channels. These data
values are abstracted into tokens, while the number of tokens
consumed/produced are called rates. In timed dataflow for-
malisms, it takes some time before the actor firing completes.
This time duration is called the actor firing duration.

Modern signal processing and streaming applications ex-
hibit dynamic behaviour, i.e., their workload changes over
time to, e.g., accommodate different multimedia frame types.
We call such applications dynamic applications. Depending
on their ability to capture dynamic applications, dataflow for-
malisms can be divided into two groups: static and dynamic [5]
ones. Static dataflow formalism cannot model dynamic appli-
cations, while the dynamic ones can.

Static dataflow formalisms such as synchronous dataflow
(SDF) [12] are characterized by their compile time predictabil-
ity (analyzability), implementation efficiency (low run-time
overhead) and high optimization potential at the price of
reduced expressiveness [17]. Dynamic dataflow formalisms on
the other hand, achieve a higher level of expressiveness by sac-
rificing analyzabilty and implementation efficiency. Increased
expressiveness even renders some formalisms undecidable. An
example of such a formalism is the Turing complete boolean
dataflow (BDF) [6]. A comparison of the most prominent
dataflow formalisms in terms of expressiveness, analyzability
and implementation efficiency can be found in [17].

The recently introduced scenario-aware dataflow (SADF)
formalism [20] captures application dynamism using scenar-
ios. Scenarios represent distinct application operating modes
that occur during its lifetime. Rates and actor firing durations
differ from one scenario to the other. The data dependent
conditions that determine scenario occurrence patterns are ab-
stracted into Markov chains. SADF to a large extent preserves
SDF’s compile-time analyzability [17]. State-of-the-art SADF
techniques are implemented in the SDF3 tool [16].

Finite-state machine-based SADF (FSM-SADF) [9], [18]
is a restricted form of SADF introduced to speed-up the
analysis of the original formalism. FSM-SADF has been used
in several important modeling [14], [15] and optimization
contexts [7]. It is a restricted form because unlike SADF, it
does not support hierarchical control through the use of nested
Markov chains. This means that FSM-SADF cannot support
sub-scenarios, i.e. in FSM-SADF actor rates and firing dura-
tions can change only at scenario boundaries while in SADF,
they can change even within a scenario. In addition, FSM-
SADF uses fixed actor firing durations per scenario, while
SADF uses discrete distributions per scenario. Furthermore,
unlike the probabilistic abstraction approach of SADF, FSM-
SADF uses a non-deterministic abstraction where scenario
sequences are specified by a non-deterministic FSM. These
restrictions render the FSM-SADF analysis faster than the
analysis of SADF, i.e. FSM-SADF is more analyzable than
SADF. Also, FSM-SADF outcompetes SADF in terms of
implementation efficiency [17]. However, the analysis might
be less precise due to the abstractions made. On the other
hand, FSM-SADF extends SADF by allowing actor-level auto-
concurrency (simultaneous executions of a particular actor)
which is explicitly prohibited in SADF as it may violate the
determinacy of the model [20]. Thus, the parallelism embedded
in an FSM-SADF specification is implicitly greater than the978-1-4673-7711-9/15/$31.00 c© 2015 IEEE

one embedded in an SADF specification. State-of-the art FSM-
SADF techniques are implemented in the SDF3 tool [16].

However, tools such as SDF3 can be too specialized in
the sense that they can only handle predefined properties, thus
lacking support for analyzing user-defined properties. To cir-
cumvent this limitation, in this paper we propose a translation
of the FSM-SADF formalism to timed automata (TA) [3] as
the first step to enable more general verification. This is our
first contribution. Using TA has a number of advantages, in that
very efficient abstractions exist. For example, temporal logics
can express many of the properties common in reasoning about
timed systems with concurrency. Furthermore, TA models of
dataflow specifications can be easily extended to add costs
such as energy, and include the behaviour of the underlying
implementation platform. This would in the future give us
the possibility of using FSM-SADF for reachability analy-
sis of embedded dynamic streaming applications through an
optimal control formulation using model-checking techniques.
Although other members of the SADF MoC family have
been translated to model checkers before [11], [21], [22] our
translation is (to the best of our knowledge) the first one that
allows auto-concurrency in the model and is able to assure
determinacy in its presence, by using the scenario-level FIFO
policy of [9] in a “model checking” context. This is our second
contribution. We demonstrate our approach using a multimedia
case study modeled as an FSM-SADF graph (FSM-SADFG)
for which we compute important quantitative and qualitative
properties, some of which are not supported by the SDF3 tool.
We use the UPPAAL [4] state-of-the-art TA model checker.

II. RELATED WORK

The SADF model has already been subjected to model
checking in [21], which discusses a performance model-
checking approach for SADF where its semantics is based on
a timed probabilistic (labeled transition) system (TPS). In the
TPS of SADF non-determinism can be arbitrarily resolved as
it originates from concurrency of the actors, i.e. the ordering
of timeless actions will not affect the overall behaviour of the
system. We call this property of SADF action determinacy (or
the diamond-property in a non-probabilistic setting). This prop-
erty is the key to efficient analysis implemented in SDF3 [16].
However, SDF3 is not a general model-checker and it supports
only a set of predefined properties such as deadlock freedom,
maximum buffer occupancy, inter-firing latency, etc.

Theelen et al. [22] report on the use of the Construction and
Analysis of Distributed Processes (CADP) tool suite in model
checking of SADF using interactive Markov chains (IMC).
The inability of IMC in supporting probabilistic choices is
compensated by CADP. Also, IMC relies on exponentially
distributed time, and therefore the original discrete distribution
of SADF needed to be replaced by a single exponential
distribution. Therefore, CADP may not always deliver the
same result as SDF3. Moreover, CADP is unable to evaluate
reward-based properties and therefore cannot be used for the
computation of throughput and buffer occupancy.

The work of Katoen et al. [11] extends the framework
of [22] by introducing Markov automata (MA) based semantics
of SADF. MA is a combination of probabilistic automata
and Markov decision processes. The firing durations of actors

A,a B,b

D,d

u u
v v

11

1

••

••
•

1
1

1

1

i2

i3i4

i5i6

•i1

••

i7
i8

(a) Scenario graph

q1 q2

q1 s1 q2 s2

(b) Scenario FSM

u v
Scenario s1 1 1
Scenario s2 1 2

(c) Rates in scenarios s1 and
s2

a b d
Scenario s1 4 1 1
Scenario s2 2 5 1

(d) Actor firing durations in scenar-
ios s1 and s2

Fig. 1: Example FSM-SADF graph

are specified by negative exponential distributions. State-space
reductions are based on confluence reduction which utilizes
action determinacy for SADF actors. The approach can be
used to obtain quantitative properties such as buffer occupancy,
latency and throughput.

What is common to the aforementioned approaches is that
they all consider SADF. In FSM-SADF on the other hand,
non-determinism is an explicit property of the model, and not
a side-effect of concurrency. In addition, FSM-SADF allows
actor-level auto-concurrency which is explicitly prohibited in
SADF. Geilen et al. [9] introduces the (max,+) algebraic
semantics of FSM-SADF that can be used to obtain worst-
case throughput and latency values in the presence of auto-
concurrency. However, due to the nature of the (max,+)
representation of a scenario, the approach of [9] can only give
insight into the model’s temporal behaviour at scenario bound-
aries. Therefore, the analysis of [9] is limited to throughput and
latency computations only.

Fakih et al. [8] and Ahmad et al. [1] have previously
used TA to model SDF, the original synchronous dataflow
formalism. However, the TA model of SDF cannot be used
to capture FSM-SADF as FSM-SADF unlike SDF includes
a combination of streaming data and control. Moreover, the
works of [1], [8] are more concerned with modelling lower-
level details of the scheduling on a given execution platform.

III. DEFINITION OF FSM-SADF

Before we formally define the FSM-SADF formalism, we
exemplify using the FSM-SADFG of Fig. 1. In FSM-SADF,
two types of processes can be distinguished: kernels and
detectors. Process is another name for an actor and we use the
terms interchangeably. Kernels specify the data processing part
of the application, while detectors model the control part of
the application. The scenario graph of Fig. 1a consists of three
vertices representing processes. Processes A and B are kernels
(continuous lines) while process D (dashed line) serves as a
detector. In FSM-SADF there can only exist one detector, i.e.
the control is global. D determines in which scenario kernels
A and B operate by sending them control tokens via control
channels (dashed lines). Control tokens are valued. Tokens
exchanged over data channels (continuous lines) are called
data tokens and we abstract from their values. Channels are
considered as FIFO buffers of infinite capacity. We use the
terms channel and buffer interchangeably. The graph has 8

initial tokens labeled i1, . . . , i8. Token i1 is the initial token
of the detector’s implicit self-edge (channel with the same
source and destination actor). This edge is usually not drawn as
FSM-SADF prohibits auto-concurrency for the detector. The
running example defines two scenarios: s1 and s2. Depending
on the operating scenario, the graph will change its properties.
Fig. 1c specifies changes for graph rates over scenarios, while
Fig. 1d specifies how process firing durations change over
scenarios. The running example defines the FSM of Fig. 1b
that determines the possible scenario occurrences where every
FSM state is labeled with a scenario: state q1 is labeled with
s1 and q2 is labeled with s2.

Our full definition of FSM-SADF follows here. Compared
with [18], it is more concise because it is not necessary to
represent sets of detectors and ports explicitly.

Definition 1 (FSM-SADF graph). An FSM-SADF graph is a
tuple G = (S,K,B, E,Rp, Rc, S,T, ι,Φ, t, φι, ψι), where

1) S is the nonempty finite set of scenarios,

2) K is the nonempty finite set of kernels,

• P = K∪{d}, where d /∈ K denotes the unique detector,
is the set of processes,

3) B ⊆ K × P is the set of buffers,

4) E : P × S → N0 is the execution time for each process
in each scenario,

5) Rp, Rc : B × S → N0 is the production (consumption)
rate of the kernel producing to (process consuming from)
each buffer in each scenario,

6) (S,T, ι,Φ) is the FSM of the detector, where S is the
nonempty set of states, T : S → 2S is the transition
function, ι ∈ S is the initial state, and Φ : S → S
associates each state with a scenario,

7) t : K × S → S+ is the string of scenarios sent to the
FIFO of each kernel in each scenario of the detector,

8) φι : B → N0 is the initial buffer status,

9) ψι : K → S∗ is the initial control status.

The detector is connected to every kernel by an explicitly
ordered (FIFO) control channel. We further define In(p) =
{b ∈ B | πr(b) = p}, where πr is the right projection function,
to be the set of buffers that process p consumes from (that input
into p). Similarly, Out(k) = {b ∈ B | πl(b) = k}.

In anticipation of the next section we define ∅ to be the
empty multiset, P to be the set of all submultisets of its input
set, � to be the multiset sum, and \ to be the zero-truncated
asymmetric multiset difference. For example let A = {1, 1}
and B = {1, 2}. Then A ∪ B = {1, 1, 2} (maxima of
multiplicities), A � B = {1, 1, 1, 2} (sums of multiplicities),
A \ B = {1}, and B \ A = {2}. For strings σ, τ, ν ∈ S∗
we define σi to be the ith element of σ, σ + τ to be the
concatenation of σ and τ , and, if ν = σ + τ , then ν − σ = τ .

A. Operational Semantics

The behavior of an FSM-SADF graph is defined as a
transition system where states are configurations.

Definition 2 (Configuration). A configuration of an FSM-
SADF graph G = (S,K,B, E,Rp, Rc, S,T, ι,Φ, t, φι, ψι) is
a tuple (φ, ψ, κ, δ), where φ is a buffer status, ψ a control
status, κ a kernel status, and δ a detector status:

• A buffer status is a function φ : B → N0 from each buffer
to the number of tokens it stores,

• A control status is a function ψ : K → S∗ from each
kernel to the string of scenarios (control tokens) its FIFO
stores,

• A kernel status is a function κ : K → P(S × N0) that
to each kernel assigns a multiset of ongoing firings and
their remaining execution times,

• A detector status is a pair δ ∈ S× (N0 ∪ {−}) that rep-
resents the state of the FSM and the remaining execution
time of the ongoing firing, or, if there is no ongoing firing,
the value −.

The initial configuration of G is (φι, ψι, κι, δι), where φι and
ψι are defined in G, κι = K × {∅} and δι = (ι,−).

Five types of configuration transitions are distinguished.

Definition 3 (Kernel Start Action). A kernel start action
transition (φ, ψ, κ, δ)

start(k)−−−−−→ (φ′, ψ′, κ′, δ) represents the
start of a firing of kernel k. Let s = ψ(k)1 denote the scenario
of the firing (if it is defined). The transition is enabled if
|ψ(k)| ≥ 1 and ∀b ∈ In(k) : φ(b) ≥ Rc(b, s). The resulting
statuses are defined as

φ′ = φ[b 	→ φ(b)−Rc(b, s)] for all b ∈ In(k)

ψ′ = ψ[k 	→ ψ(k)− s]

κ′ = κ[k 	→ κ(k) � {(s, E(k, s))}]
Definition 4 (Kernel End Action). A kernel end action tran-
sition (φ, ψ, κ, δ)

end(k)−−−−→ (φ′, ψ, κ′, δ) is the end of a firing of
kernel k. It is enabled if ∃s ∈ S : (s, 0) ∈ κ(k). The resulting
buffer and kernel statuses are

φ′ = φ[b 	→ φ(b) +Rp(b, s)] for all b ∈ Out(k)

κ′ = κ[k 	→ κ(k) \ {(s, 0)}]
Definition 5 (Detector Start Action). A detector start action
transition (φ, ψ, κ, δ)

start(d)−−−−−→ (φ′, ψ, κ, δ′) represents the start
of a firing of the detector, d. It is enabled if there is no ongoing
firing ∃s ∈ S : δ = (s,−) and all inputs are available ∀b ∈
In(d) : φ(b) ≥ Rc(b,Φ(s)). The resulting statuses are

φ′ = φ[b 	→ φ(b)−Rc(b,Φ(s))] for all b ∈ In(d)

δ′ = (s, E(d,Φ(s)))

Definition 6 (Detector End Action). A detector end action
transition (φ, ψ, κ, δ)

end(d)−−−−→ (φ, ψ′, κ, δ′) is enabled if ∃s ∈
S : δ = (s, 0), and the resulting statuses are

ψ′ = ψ[k 	→ ψ(k) + t(k,Φ(s))] for all k ∈ K
δ′ = (s′,−) for some s′ ∈ T(s)

In [18] time transitions are defined very generally, such that
to account for given scheduling/resource constraints one needs
to instantiate the time transitions needed. In the following we

will assume a unconstrained execution, namely that all ongoing
firings advance at the same pace.

Definition 7 (Time Transition). A time transition (φ, ψ, κ, δ)
time(t)−−−−→ (φ, ψ, κ′, δ′) represents time progressing t time units.

It is enabled if no kernel end or detector end transition is
enabled, and t is the smallest remaining execution time of any
ongoing firing. The resulting kernel status is

κ′ = κ[k 	→ {(s, n− t)|(s, n) ∈ κ(k)}] for all k ∈ K
using multiset comprehension. The detector status δ = (s, n)
is updated as δ′ = (s, n − t), unless n = − in which case it
is unchanged, δ′ = δ.

B. Overtaking Problem and Determinacy

The operational semantics of Section III-A allows simulta-
neous executions of a particular kernel, i.e. auto-concurrency.
Note that the kernel status of Definition 2 entails a multiset of
ongoing firings. In the case of the detector, auto-concurrency is
prohibited as its status entails only one possible ongoing firing.
With auto-concurrency and due to the potential difference
in kernel execution times over different scenarios, tokens
may “overtake” each other which makes it hard to assure
determinacy [20]. Let us illustrate this using the example FSM-
SADFG of Fig. 1. Inspired by [13], first we define the notion
of a token sequence.

Definition 8 (Token sequence). Given a set V of values and
a set T of tags used to model time, we view a token sequence
σ as a member of the powerset 2T×V×S , s.t. πl(σ) is order
isomorphic to a subset of the integers, where πl is the left
projection function.

E.g., 〈(t, v, s)〉 denotes a sequence containing one token
produced at t ∈ T time-units, with the value of v ∈ V and
produced by an actor operating in scenario s ∈ S . We consider
the execution of the FSM-SADFG of Fig. 1 from t = 0. In this
case V = {s1, s2, ∗} where ∗ denotes a token with arbitrary
value, i.e. a data token, while S = {s1, s2}. At t = 0, the only
enabled process is the detector D. Assume that, by firing D,
the FSM makes a transition from the initial state q1 to state
q2. State q1 corresponds to scenario s1, and q2 corresponds to
s2. After 1 time-unit, the control channels (D,A) and (D,B)
host the token sequence 〈(1, s1, s1)〉. Channel (B,D) now
hosts 〈(0, ∗,⊥)〉 which refers to the initial token i3 as i4
was just consumed by D firing. We use the ⊥ notation to
leave the scenario value unspecified as we do not know in
which scenario initial tokens were produced. Now A can start
firing by consuming the control token from channel (D,A),
initial token i8 from its self-edge and initial token i6 from
channel (B,A). The new status of (D,A) becomes 〈〉 and
the new status of (B,A) becomes 〈(0, ∗,⊥)〉 that refers to
initial token i5. As there is still one initial token left on
channel (B,D), D can perform its second firing. This results
in channel (D,A) hosting 〈(2, s2, s2)〉, channel (D,B) hosting
〈(1, s1, s1), (2, s2, s2)〉 and channel (B,D) hosting 〈〉 with the
assumption that the FSM transition (q2, q1) was taken. As A
is auto-concurrent it can commence its second firing, but this
time in scenario s2 while still being busy with the first one
in scenario s1. Due to the difference in firing durations of
A in scenarios s1 and s2, the firing of scenario s2 started at

tokens

t
i1

i2

i3

i4

i5

i6

i7

i8

10 20 300

Scenario s1 Scenario s2

Fig. 2: Execution of the FSM-SADFG of Fig. 1

t = 2 will finish earlier than the earlier firing of scenario s1
started at t = 1. Therefore, at t = 4 the channel (A,B) will
host the sequence 〈(4, ∗, s2), (4, ∗, s2)〉 as the firing duration
of A in scenario s2 equals to 2 time-units. On the other hand
channel (D,B) hosts the sequence 〈(1, s1, s1), (2, s2, s2)〉.
Kernel B will therefore commence firing in scenario s1 but
by consuming the token (4, ∗, s2) produced by A in scenario
s2 and will not wait for the “right” scenario s1 token that will
be produced at t = 5. After B had completed this firing, the
status of (B,B) becomes 〈(5, ∗, s1)〉.

The “overtaking” phenomenon just discussed results in
tokens being consumed in another scenario than the one they
were produced in. This makes it hard to assure determi-
nacy [20]. It is generally the modeller’s responsibility to ensure
that the model does not exhibit overtaking or that overtaking
can be properly interpreted, i.e. that it does not invalidate
the functional correctness of the system. It could however be
handled with a policy in the semantics that ensures that tokens
are only consumed by a kernel in the scenario they belong to.

In our work, we adopt the scenario-level FIFO policy of [9]
inherent to the (max,+) semantics of FSM-SADF introduced
in the same paper. One can view the execution of the FSM-
SADFG of Fig. 1 as the execution of a sequence of SDF
graphs obtained by applying the configurations of Fig. 1c
and Fig, 1d to the scenario graph of Fig. 1a. In light of that
observation, paper [9] considers scenarios in isolation as pure
SDF graphs. By doing so, one avoids the overtaking problem
as in a single scenario there can be no overtaking thanks to the
static nature of SDF. At a later stage, scenarios are “glued”
together and synchronized by the set of initial tokens. This
can be done as initial tokens produced at the end of a scenario
contain enough information to determine the timing of the next
scenario [9]. The work of [9] assumes self-timed execution.
Self-timed execution is a schedule where every actor fires
as soon as possible, i.e. as soon as all required tokens are
available. Fig. 2 shows the pipelined scenario execution of the
FSM-SADFG of Fig. 1. Every scenario is initialized by the
previous one. In Fig. 2, we see overtaking along the axes of
availability times of tokens i7 and i8. E.g., we see that i7
of scenario s2 is actually produced (at t = 4) before i7 of
scenario s1 (at t = 5), even though scenario s1 was started
first. In spite of this, the firing of B in scenario s1 will be
initialized by the availability of i7 belonging to s1 and not i7
belonging to s2 although it is produced first. Therefore, i2 will
be produced at t = 6 and not at t = 5 as discussed earlier.
This way, determinacy is assured.

To introduce the (max,+) scenario-level FIFO policy to the
semantics of Section III-A one has to find a way to decouple
scenarios. This could be modeled by data channels having a
separate buffer for each scenario in the system and kernels
only writing to and consuming from buffers belonging to the
scenario they are currently operating in. For control channels
such replication is not necessary as the detector is by definition
“sequential”, i.e. non auto-concurrent. With this concept of
“scenario buffers”, no overtaking between different scenarios
is possible.

However, an interesting question emerges. In which sce-
nario were the initial tokens produced? If we treat initial tokens
as a special class (no scenario, buffer affiliation) we will easily
violate the functional correctness of the system, e.g. introduce
a deadlock. In the scenario graph of Fig. 1 imagine that the
detector has fired twice by consuming initial tokens i3 and i4
following the path q1 → q1 → q1 of the FSM. This means
that the graph has executed the scenario sequence s1s1. To
complete the sequence, actor B has fired twice so channel
(B,D) hosts the sequence 〈(t1, ∗, s1), (t2, ∗, s1)〉. Now, if the
transition q1 → q2 of the FSM is to be taken, the resulting
(B,D) channel state after the completion of the scenario will
be 〈(t2, ∗, s1), (t3, ∗, s1)〉. Being in state q2, the FSM can only
perform the transition q2 → q1. By the FIFO policy, to do
that tokens belonging to s2 need to be consumed. However,
channel (B,D) only hosts tokens belonging to s1. Therefore,
a deadlock occurs.

Another approach might be to force initial token scenario
affiliation. However, this approach would also violate the
functional correctness of the model by introducing a deadlock
or by restricting the language the scenario FSM accepts.

As it is not clear how to deal with initial tokens belonging
to channels on which overtaking can take place, we only
allow overtaking on channels with no initial tokens, i.e. auto-
concurrent actors can only produce in data buffers that are
initially empty. This excludes actor self-edges as these are
used to limit actor’s auto-concurrency by assigning them an
appropriate number of initial tokens. Actually, in the UPPAAL

model of FSM-SADF of Section IV they will be modelled as
the number of instances of a particular actor in the system.
Consequentially, we only replicate data buffers that are filled
by auto-concurrent actors and are initially empty. Under this
restriction on the structure of the input FSM-SADF specifica-
tion, the FIFO policy can be straightforwardly encoded into
the semantics of Section III-A by changing the definition of
the set of buffers of Definition 1 to B ⊆ K×P×(S∪s) where
s is the “default scenario”, which marks the buffer used when
there is no overtaking on the channel, i.e. the default buffer.
Also, we redefine In(p, s) = {b ∈ B | π2(b) = p ∧ (π3(b) =
s when ω(b) = 1 ; s otherwise)}, where π2 and π3 are the 2nd
and 3rd projection function, respectively and ω : B → {0, 1}
is the function returning the information whether overtaking
is possible on the channel implemented by buffer b. Similarly,
Out(k, s) = {b ∈ B | π1(b) = p ∧ (π3(b) = s when ω(b) =
1 ; s otherwise)}, where π1 is the 1st projection function. Last,
kernel start and end actions must be altered to fit the new
definitions. E.g. the kernel start action transition is enabled if
|ψ(k)| ≥ 1 and ∀b ∈ In(k, s) : φ(b) ≥ Rc(b, s).

Another, simpler option is to disallow auto-concurrency as
done in [11], [20]–[22] for SADF. In this case, the notion

(a) Light (b) User

Fig. 3: Network of timed automata in UPPAAL

of a multiset of ongoing kernel firings in the kernel status of
Definition 2 has to be changed so each kernel can have zero
or one ongoing firings: κ : K → (S × N0) ∪ {−}. To reflect
this re-definition, the kernel start and end actions have to be
re-adjusted in the spirit of detector start and end actions (recall
that the detector is “sequential” by definition).

IV. TRANSLATION OF FSM-SADF TO TIMED AUTOMATA

To be able to model check an FSM-SADF specification,
we encode the the operational semantics of FSM-SADF in the
UPPAAL model checker. The correctness of the translation fol-
lows from the construction itself as explained in the remainder
of this section. We limit our attention to self-timed bounded
FSM-SADF specifications [17]. 1

In UPPAAL, a system is modeled as a network of TA that
is extended with bounded discrete variables that are part of the
state. These variables can be read, written and are subject to
common arithmetic operations.

We recall the definition of TA where we use B(C) to denote
the set of constraints defined over a finite set of real-valued
variables C called clocks and where Σ = {a!, a?, . . .} is a finite
alphabet of synchronization actions.

Definition 9 (Timed automaton (TA)). A timed automaton A is
a tuple (L, l0, E, I), where L is a finite set of locations (nodes),
l0 is the initial location, E ⊆ L× B(C)× Σ× 2C × L is the
set of edges between locations with a guard, an action and a
set of clocks to be reset, and I : L → B(C) assigns invariants
to locations. We shall write l

g,a,r−−−→ l′ when (l, g, a, r, l′) ∈ E.

A state of the system modeled in UPPAAL is defined
by the locations of all automata, the clock values, and the
values of the discrete variables. Every automaton may fire an
edge (sometimes misleadingly called a transition) separately
or synchronise with another automaton, which leads to a new
state [4]. An example of a network of timed automata is
shown in Fig. 3. The network models a time-dependant light-
switch (Fig. 3a) and its user (Fig. 3b). The switch and the
user communicate using the press labels (channel). The user
can press the switch (press!) randomly at any time or even
not press the switch at all. The switch waits to be pressed
(press?). If the user presses the switch, the light is on, but
dimmed (location dim). If the user presses the switch again,

1The UPPAAL models of all FSM-SADF graphs in this paper, as well as the
SDF3 MPEG-4 decoder, can be found at https://bitbucket.org/tasadf/models

but after more than 10 time-units (guard x > 10), the light
is off (location off). If the user presses the switch within 10
time-units (guard x <= 10) the light is brightened (location
bright). At this point, whenever the user presses the switch,
the light will turn off (location off).

The FSM-SADF configuration of Definition 2 is modeled
so that the kernel and detector statuses are encoded in the states
of the TA, while the buffer and control statuses are modelled
explicitly using discrete variables. These discrete variables are
read and written during kernel/detector start/end actions. Oper-
ations performed on discrete variables correspond to checking
the availability of input tokens, token consumption and token
production. Discrete variables do not add to the expressive
power of the formalism, and for presentation purposes, we do
not encode their use in the TA edge firings.

Given an FSM-SADFG G, we generate a parallel compo-

sition of TA System = A‖γ(k1)
k1

‖ . . . ‖ A‖γ(kn)
kn

‖ Ad, where

ki ∈ K and n = |K|. By A‖γ(ki)
ki

we denote the fact that γ(ki)
TA in parallel are used to model kernel ki. Function γ : K → N

gives the realized auto-concurrency of a kernel. If the kernel ki
has a self-edge, i.e. (ki, ki) ∈ B, then γ(ki) = φι((ki, ki)). If
kernel ki has no self-edge, γ(ki) can be found experimentally.
We assume some Nki

, then we need to verify that the actual
γ(ki) is strictly smaller, i.e., γ(ki) < Nki

. This is discussed
in Section V.

Fig. 4 shows the UPPAAL model of the FSM-SADFG of
Fig. 1. In the description language of UPPAAL, processes are
obtained as instances of parametrized process templates. In
our translation we define two templates: The kernel template
of Fig. 4a and the detector template of Fig. 4b. The kernel
template is generic, while the detector template is customized
to correspond to the FSM of the input FSM-SADF specifica-
tion. Note that control buffers are implemented as FIFOs where
the values of FIFO elements are the scenario IDs, while data
buffers are abstracted into integers as only the amount of data
buffer tokens matters, not their value.

Every kernel ki ∈ K is translated to the TA Aki =
(Li, l

0
i , Ei, Ii) where Li = {Initial,Fire}, l0i =

Initial, and Ei and Ii are given as follows. The edge

Initial
|ψ(ki)|≥1∧∀b∈In(ki):φ(b)≥Rc(b,s),∅,{xi}−−−−−−−−−−−−−−−−−−−−−−−−−−−→Fire

corresponds to the kernel start action. To start firing, the
kernel must first gain knowledge in which scenario is it
operating in. This information is stored in the kernel’s
control buffer. Therefore, the kernel peeks into its control
buffer if it is not empty, finds out the operating scenario
s and waits for the availability of the required number of
tokens in its data buffers. This behaviour is encoded us-
ing the guard bool k_tok_available(int ker_id)
where ker_id is the ID of the kernel. Once the guard
evaluates to true, the kernel can actually perform the start
action, by consuming input tokens both from its control
buffer and its data buffers. Consumption corresponds to
statuses being decremented. This behaviour is encoded by
the function void k_start_fir(int ker_id, int&
scen_id, int& delay), where scen_id is the ID of
the operating scenario, and delay is the kernel’s firing du-
ration in the operating scenario. Aforementioned variables get
their values within the update label although these are known

during the evaluation of the k_tok_avail guard. This is
because guards in UPPAAL must be side-effect free. These
variables are needed by the kernel end action that corresponds
to the edge

Fire
xi=E(ki,s),∅,∅−−−−−−−−−→ Initial

and the invariant I(Fire) = xi ≤ E(ki, s). These two assure
that the system stays in the location Fire for exactly the
execution time E(ki, s) of the kernel ki in scenario s. Thus,
time transitions are encoded implicitly in the operation of
the network of TA, for which time progresses in unison. The
resulting data token production is coded in the function void
k_end_fir(int ker_id, int scen_id).

The detector TA uses the structure of its FSM (e.g. loca-
tions q1 and q2 of Fig. 4b correspond to states q1 and q2 of the
FSM of Fig. 1b), but embeds in each transition a firing location
wherein time can pass between the events of consuming the
input tokens and producing the output tokens. We encode it
as Ad = (Ld, l

0
d, Ed, Id), where Ld = S ∪ {(q, q′) | q, q′ ∈

S ∧ q′ ∈ T(q)} and l0d = ι. The edge set Ed is defined such
that each transition qi → qj described by T is translated into
a detector start edge followed by a detector end edge:

qi

∀b∈In(d):φ(b)≥Rc(b,Φ(qi)),∅,{xd}−−−−−−−−−−−−−−−−−−−−−−→ (qi,qj)
xd=E(d,Φ(qi)),∅,∅−−−−−−−−−−−−→ qj

The invariant function Id is defined such that each firing
location (qi,qj) maps to the invariant xd ≤ E(d,Φ(qi)).
The guard bool d_tok_avail(int scen_id) of edge
qi → (qi,qj) assures that there are enough tokens present
in detector’s input data buffers before it commences fir-
ing. The operating scenario of the detector depends on
the current state of the scenario FSM. The function void
d_start_fir(int scen_id, int& delay) updates
data buffer statuses as the result of the detector start ac-
tion being performed. The delay variable receives its
value within the function. The update function void
d_end_firing(int scen_id) of edge (qi,qj) → qj

encodes the effects of the detector end action to control
statuses, i.e. the production of control tokens.

To assure determinacy in the presence of auto-concurrency
we revert to the considerations of Section III-B. In UPPAAL,
this means that we replicate data buffers which are being filled
by auto-concurrent kernels over scenarios by simply declaring
them as arrays of integers, where the array index corresponds
to the scenario ID. The aforementioned guard and update
functions of Fig. 4 all use scen_id as the input parameter
and will therefore operate on the correct buffer replicas. As
mentioned in Section III-B, auto-concurrency is only allowed
for kernels that produce to buffers with no initial tokens.
Buffers in which overtaking is not possible, are not replicated
and the “default container” is used to store the number of
tokens present in the buffer. Whether overtaking is possible or
not in a buffer is encoded with a configuration constant that
is checked in guard and update functions.

When it comes to scheduling policies, the operational
semantics of Section III-A does not prescribe a particular one
and consequentially neither does the previously discussed TA
translation. However, it is often convenient to assume a certain
class of scheduling policies. An important class are those
policies where actions take place without delay, i.e. processes
fire as soon as they are enabled. We refer to executions

(a) Kernel in UPPAAL (b) Detector in UPPAAL

Fig. 4: UPPAAL model of the FSM-SADFG of Fig. 1

d

a

1
1

1

1

d

1

1

1
1

b

1

c
1

1

d

e

31

1

c

IDCTVLD

MC
RCFD

Rate
Scenario

I99 P0 Px

a 0 0 1
b 0 0 x
c 99 1 x
d 1 0 1
e 99 0 x

x ∈ {30, 40, 50, 60, 70, 80, 99}

(a) Scenario graph

I99

P0

P40

P60

P80

P30

P50

P70

P99

(b) Scenario FSM

Fig. 5: FSM-SADF model of an MPEG-4 decoder [17], [18]

under such policies as self-timed executions. In UPPAAL, the
concept of urgency can be exploited to impose such a policy.
Specifically, an urgent broadcast channel [4] can be used to
force kernel and detector start actions without delay (channel
self_timed in Fig. 4). Following the work of [9], [11],
[21], [22] we adopt the concept of self-timed execution in the
remainder of this paper.

To conclude, the translation of this section enables the
user to represent an FSM-SADF specification as a network
of TA. The user can chose between allowing or prohibiting
auto-concurrency, by the use of system-level declarations. In
case auto-concurrency is enabled, the user can chose to use
or not to use the scenario-level FIFO policy of [9] to assure
determinacy. Furthermore, the user can choose to consider self-
timed execution or not by the use of the urgency concept in
UPPAAL.

V. MODEL CHECKING OF TA MODEL

In this section we demonstrate examples of qualitative and
quantitative analysis of FSM-SADF specifications using the
UPPAAL model checker and its query language. UPPAAL’s
query language is used to specify the properties to be checked
and is a subset of TCTL (timed computation tree logic) [2].
We use the MPEG-4 decoder of Fig. 5 as our case-study [17],
[18]. All parameters in our case study are taken from [18].

The decoder functionality is given by the scenario graph of
Fig. 5a. The decoder processes streams consisting of I and P

frames. These frames consist of a variable number of macro-
blocks (0 to 99 for QCIF). The detector (FD) detects the frame
type. If the frame type is I, all frame macro-blocks are decoded
by the VLD and IDCT kernels, while the image is recon-
structed by the RC kernel. When the frame type is P, motion
compensation is required in the decoding process. Its func-
tionality is implemented by the MC kernel. I frame processing
defines the I99 scenario, while P frame processing defines the
Px scenarios where x stands for the number of macro-blocks
in the P frame and x ∈ {0, 30, 40, 50, 60, 70, 80, 99}. The
scenario occurrence pattern is defined by the scenario FSM
of Fig. 5b.

FSM-SADF is a non-deterministic model. With non-
deterministic models we are interested in worst-case analysis.
The particular metrics analyzed, the obtained results and the
associated time and memory usage are shown in Table I. We
compare our results and resource requirements to those of
the SDF3 tool. In SDF3, two sets of algorithms can be used
to analyze FSM-SADF: 1) The algorithms of the customized
model checker [19], [21] of SADF by considering states
for which the involved reward is maximal. However, these
algorithms can be used only if there is no auto-concurrency
in the FSM-SADFG (e.g. all kernel have self-edges with
one initial token). In that case, the graph can be analyzed
for deadlock freedom, maximum buffer occupancy, maximum
inter-firing latency, maximum response delay and throughput.
2) The (max,+) based algorithms of [9] specifically designed
for FSM-SADF that can only analyze throughput and latency.
The (max,+) techniques for what they offer (throughput and
latency) will outperform their model-checking counterparts.
However, the model-checking based SADF techniques offer
a wider palette of metrics amenable to analysis. Therefore,
we base our comparison on the techniques of SADF. To be
able to compare our results to those of SDF3, we limit the
auto-concurrency of all kernels in Fig. 5a to one (imagine that
all kernels have a self-edge with one initial token). Before
proceeding, we point out a subtle difference between the
operational semantics of SADF and FSM-SADF. In contrast to
SADF model, in FSM-SADF the value of the control tokens
produced by the detector end action depends on the current
state of the FSM and not on the next state. Therefore, to obtain
the same behaviour and corresponding analysis results, the
FSM of Fig. 5b needs to be augmented with the one additional
state I ′ before being subjected to SDF3 analysis. State I ′ must
be declared initial with one outgoing transition leading to the
“original” initial state I .

The experiments were performed on an Intel Core i5-750
CPU with 8 GB of main memory running UPPAAL 4.1.19 64-
bit on Linux. The default settings were used and UPPAAL was

TABLE I: MPEG-4 verification time and virtual memory usage

SDF3 UPPAAL
Analysis Result Time [s] Mem [MB] Result Time [s] Mem [MB]
Deadlock freedom Deadlock free n/a n/a Deadlock free 17.07 564

Maximum buffer occupancy, all buffers 278, 278, 3, 3, 2, 99, 1, 1, 116, 3 17.27 169 278, 278, 3, 3, 1, 99, 1, 1, 108, 3 7.31 551

Maximum inter-firing latency, all processes 4327, 7470, 40, 4303, 40 6.44 171 4327, 7470, 40, 4327, 57 11.45 557

Maximum response delay, all processes 0, 0, 40, 4327, 57 0.08 85 0, 0, 40, 4327, 57 0.94 312

Throughput 0.000363636 1.10 86 n/a n/a n/a

Process interleavings, MC & RC n/a 1 8.34 556

Inter-process delay, MC & RC n/a ≤ 5000 13.61 561

Realized kernel auto-concurrency, VLD n/a 2 31.84 1072

Pipeline depth n/a 3 7.30 551

Parallelism between actors, MC & RC n/a None 7.29 551

restarted between each query.

a) Deadlock: Analyzing for deadlock freedom is
achieved with the UPPAAL query (A[] not deadlock). In
SDF3, checking whether a FSM-SADFG is deadlock free is
preformed during the computation of any metric, i.e. there is no
special option for this type of analysis and the respective time
and memory requirements cannot be given (n/a in Table I).

b) Maximum buffer occupancy: Maximum buffer oc-
cupancy of a particular buffer under all possible self-timed
schedules is obtained using the UPPAAL supremum opera-
tor, e.g. (sup: bi). In SDF3, we use the input argument
--compute buffer_occupancy"(maximum)" during
application invocation. The results are ordered by the se-
quence: FD2VLD, FD2IDCT, FD2MC, FD2RC, VLD2IDCT,
VLD2MC, RC2MC, MC2RC, IDCT2RC, RC2FD. The differ-
ence in results between SDF3 and UPPAAL is due to another
subtle difference in the operational semantics of SADF and
FSM-SADF. In FSM-SADF, token consumption takes place
during detector/kernel start actions, while in SADF consump-
tions take place at a later point - during the detector/kernel
end actions. Therefore, SDF3 will often deliver higher values.

c) Maximum inter-firing latencies: Maximum inter-
firing latency of a process is defined as the maximum elapsed
time between two successive firing completions of the process.
In UPPAAL, process latencies can be obtained as suprema
of the clock y that is reset every time process p completes
its firing, i.e. sup: p.y while p.y = 0 every time edge
p.Fire → p.Initial of Fig. 4a is fired for the kernels or
every time edge d.(qi,qj) → d.qj of Fig. 4b is fired for the
detector. In SDF3, we use the input argument --compute
inter_firing_latency"(maximum)". The results are
sequenced by FD, MC, VLD, RC, IDCT. In our experiments
we assume that all processes have just competed firing at
t = 0, while SDF3 makes no such assumption. Therefore,
the difference in values delivered by SDF3 and UPPAAL is
merely of “syntactical nature”.

d) Maximum Response Delays: Maximum response de-
lay of a process denotes the maximum time until the first
firing completion of that process. In UPPAAL, we determine it
by checking the relationship between the maximum response
delay of a process p and a constraint r using the query (E<>
!p.bFirstFirCompleted and p.y >= r), where p.y
is a clock that is never reset, and p.bFirstFirCompleted
is a variable set to true when p completes its first fir-

ing. In SDF3, we use the input argument --compute
response_delay"(maximum)".

e) Throughput: Throughput of a process is defined as
the long-run average number of firing completions of a process
per-time unit. In SDF, the throughput of the entire graph is
defined as the throughput of a process normalized (divided)
by the number of firings of that process within the graph
iteration [10]. The same definition can be applied to FSM-
SADF. Furthermore, as in FSM-SADF the repetition vector
entry of the detector equals to one for all scenarios (detector
fires once per scenario), so is the throughput of the entire graph
equal to the throughput of the detector process. The TCTL [2]
based query language of UPPAAL cannot be used to evaluate
such long-run averages. In SDF3, we use the input argument
--compute throughput"(FD)".

f) Process interleaving: We continue with a set of
simple reachability properties not supported by SDF3, but that
can easily be verified in UPPAAL.

We check the interleaving of different process firings,
e.g. “between two consecutive firing completions of the pro-
cess p, process q completes at least n firings”, etc. For this
we use a leads to query (whenever a eventually b) and
a counter variable: (p.Fire --> q.FireCount >= n).
Variable q.FireCount is reset every time p takes the edge
Fire → Initial and incremented every time q takes the
same edge. In the experiment, p = MC, q = RC, and n = 1.

g) Inter-process delay: We can also check whether the
maximum delay between the completion times of firings of
two processes within a scenario is greater than, less than or
equal to a predefined value by constructing a query monitor TA
that synchronizes with the events of firing completions of the
processes it monitors. In the case of a kernel p, this synchro-
nization takes place when the edge p.Fire → p.Initial is
taken. In the experiment we verify that the MC-RC delay is
always smaller than 5000.

h) Realized kernel auto-concurrency: If we assume
auto-concurrency up to the level Np for a particular kernel p,
we can check whether it has been fully utilized or not. Allow-
ing Np concurrent executions of p means that we have assigned
Np processing elements to p. If all are not used, the idle ones
can be assigned to kernels of another application. This design
decision might improve the overall performance of the system
hosting multiple applications. To determine the realized auto-
concurrency of a kernel p we use the query sup: p.count

where p.count is a variable that is incremented every time
edge Initial → Fire is taken and decremented whenever
the edge Fire → Initial is taken. In this experiment,
p = VLD , NVLD = 2 and sup : VLD .count = 2.

i) Pipeline depth: Pipeline depth denotes the maximum
number of scenario executions active at the same time. In case
of our MPEG-4 case study, the beginning of a scenario is
marked by the firing completion of the detector FD, while
its end is marked by the firing completion of the RC pro-
cess. To compute the pipeline depth pdepth , use the query
sup : pdepth where pdepth is incremented every time FD
takes the edge (qi,qj) → qj and decremented every time RC
takes the Fire → Initial edge. In this case the pipeline
depth is three as there are three initial tokens in the data buffer
(RC ,FD). This was immediately visible in this example,
but one can easily imagine a more complicated initial token
distribution where mere visual inspection would not suffice.

j) Parallelism between actors: We can check whether
processes in an arbitrary subset of P can fire in parallel. E.g.,
processes p and q can fire in parallel if the query E<> p.Fire
and q.Fire evaluates to true. In our experiment p = MC
and q = RC . These two cannot fire in parallel.

VI. DISCUSSION

Another look at Table I reveals that UPPAAL allows us to
check the model against various properties, many of which
are not supported by the SDF3 tool-set. On average, UPPAAL

analysis will take the same time as that of SDF3, but with
higher memory demands. This observation justifies the use of
a general verification tool such as UPPAAL as a complement to
specialized tools. The flexibility of the UPPAAL’s TCTL based
query language and the possibility of construction of various
query monitor automata allows the user to easily compute
various qualitative and quantitative properties of the model.

The only metric not supported by UPPAAL that is available
in SDF3 is throughput. Here we take the opportunity to
shortly discuss the applicability of UPPAAL and TCTL in a
conservative estimation of the throughput value.

Let W be a window of time of finite duration W . The
throughput equals to the long run average number of firing
completions of the detector process per time-unit. Therefore,
let c be a variable that is incremented every time the detector
completes a firing, i.e. takes the (qi,qj) → qj edge and reset
every time when clock T equals to W (T == W) along
with the clock T itself. By defining the property A[] (T
== W) imply c >= H , we can verify that the value of
c within all time windows W will be greater or equal than
the value of the horizon H . If the property is satisfied, the
conservative (property holds along the entire time axis divided
into windows W of duration W) throughput estimate ρ̃ is given
by ρ̃ = H/W . By using larger values of W and by finding
the maximum H for which the property holds, we tighten the
estimate at the price of increased analysis time. We call this
method of conservative throughput estimation for FSM-SADF
the horizon method. Unfortunately, the horizon method poorly
scales, and we could not apply it successfully to our MPEG-4
case study. However, it was applicable to the “small” example
FSM-SADF graph of Fig. 1. Fig. 6 shows how ρ̃ converges
to the exact value of 0.25 for growing W . Some points are

ρ̃

W (×100)

0.54s
6.02s 36.01s 75.59s

0 1 2 3 4 5 6 7

0.0625

0.1250

0.1875

0.2500

Fig. 6: Convergence of the horizon method for throughput
estimation for the FSM-SADFG of Fig. 1

TABLE II: UPPAAL vs. SDF3 scalability via maximum buffer
occupancy

SDF3 UPPAAL
Pipeline depth Time [s] Mem [MB] Time [s] Mem [MB]
1 0.80 90 1.14 121

2 5.5 113 2.96 196

3 17.96 169 7.42 567

4 64.66 319 20.44 1144

5 392.02 662 81.17 2551

6 > 1800 > 1708 > 133 > 5752

TABLE III: UPPAAL scalability via maximum buffer occu-
pancy for increased auto-concurrency

UPPAAL

Number of VLD instances Time [s] Mem [MB]
1 7.48 559

2 31.44 1088

3 > 175.00 > 6249

decorated with the time required by UPPAAL to deliver the
estimate value.

VII. SCALABILITY ISSUES

We investigate the scalability of the TA FSM-SADF anal-
ysis from two angles.

First, we consider time and memory requirements for the
maximum buffer occupancy calculation for the MPEG-4 case
study while increasing the pipeline depth, i.e. the number
of initial tokens on (RC ,FD) channel. The results and the
comparison with the SDF3 tool are shown in Table II. With the
pipeline depth of six, both tools experience state-space induced
complexity problems. Among the metrics supported by SDF3,
the maximum buffer occupancy is the most demanding com-
putation as the diamond property of the underlying TPS [21]
cannot be exploited, i.e. all interleavings of timeless actions
need to be considered. UPPAAL will by default considers all
possible interleavings of timeless actions and will time-wise
perform better that SDF3 for this type of analysis.

Second, for UPPAAL, we check how it copes with kernel-
level auto-concurrency when performing the maximum buffer
occupancy analysis. We perform the experiments by increasing
the number of VLD kernel instances in the model. The results
of the experiments are shown in Table III. Already with three
instances of VLD we experience state-space induced com-
plexity problems. This indicates to relatively poor scalability

of the translation in the presence of auto-concurrency when
performing maximum buffer occupancy analysis.

It is not clear how to improve the scalability of the model
for maximum buffer occupancy analysis and other analysis
defined by queries over discrete variables. This is because
in these type of analysis all action interleaving need to be
considered. However, for the analysis of temporal properties
like inter-firing latency and process response times (model-
checking against clocks), the SADF diamond property could
be exploited. Unfortunately, traditional partial order reduction
techniques embedded in UPPAAL are insufficient to take ad-
vantage of this. However, process priorities of UPPAAL could
be used to do exactly that by arbitrarily prioritizing process
timeless actions. This way significant state space reductions
could be achieved. We leave these considerations to future
work.

VIII. CONCLUSION AND FUTURE WORK

FSM-SADF is a powerful dataflow formalism that is able
to capture the dynamic behaviour of modern streaming appli-
cations while offering a good trade-off between expressive-
ness, analyzability and implementation efficiency. However,
the formalism is currently only supported by the SDF3 tool-
set which implements a predefined set of properties that can
be analysed/verified. In this paper we propose a translation of
FSM-SADF to TA, thereby enabling the use of the UPPAAL

model checker for analysing and verifying user-defined prop-
erties in a straightforward manner. Our translation of FSM-
SADF model to TA is also the first translation of a member
of the SADF MoC family to a model-checker that supports
auto-concurrency. We also report on the scalability issues
experienced. As future work we plan to improve the scalability
of the translation in the analysis of temporal properties of
the model by using priorities in UPPAAL. Furthermore, as our
translation also sets the first milestone towards enabling the use
of FSM-SADF in a wider context, e.g. cost-optimal analysis,
we also plan to investigate reachability analysis of applications
modeled by FSM-SADF through an optimal control formula-
tion using the UPPAAL family of model-checkers.

ACKNOWLEDGEMENT

This work is supported by the 7th EU Framework Program
under grant agreement 318490 (SENSATION).

REFERENCES

[1] W. Ahmad, R. de Groote, P. Holzenspies, M. Stoelinga, and J. van de
Pol. Resource-constrained optimal scheduling of synchronous dataflow
graphs via timed automata. In Application of Concurrency to System
Design (ACSD), 2014 14th International Conference on, pages 72–81,
June 2014.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. In Logic in Computer Science, 1990. LICS ’90, Proceedings.,
Fifth Annual IEEE Symposium on e, pages 414–425, Jun 1990.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, Apr. 1994.

[4] G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In
M. Bernardo and F. Corradini, editors, Formal Methods for the Design
of Real-Time Systems, International School on Formal Methods for
the Design of Computer, Communication and Software Systems, SFM-
RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures,
volume 3185 of Lecture Notes in Computer Science. Springer, 2004.

[5] S. S. Bhattacharyya, E. F. Deprettere, and B. D. Theelen. Dynamic
dataflow graphs. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers,
and J. Takala, editors, Handbook of Signal Processing Systems, pages
905–944. Springer, 2nd edition, 2013.

[6] J. Buck and E. Lee. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. In Acoustics, Speech, and Signal
Processing, 1993. ICASSP-93., 1993 IEEE International Conference on,
volume 1, pages 429–432 vol.1, April 1993.

[7] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Throughput-constrained DVFS for scenario-aware dataflow graphs. In
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th, pages 175–184, April 2013.

[8] M. Fakih, K. Gruttner, M. Franzle, and A. Rettberg. Towards perfor-
mance analysis of SDFGs mapped to shared-bus architectures using
model-checking. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, pages 1167–1172, March 2013.

[9] M. Geilen and S. Stuijk. Worst-case performance analysis of syn-
chronous dataflow scenarios. In Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International
Conference on, Oct 2010.

[10] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij,
B. Theelen, and M. Mousavi. Throughput analysis of synchronous
data flow graphs. In Application of Concurrency to System Design,
2006. ACSD 2006. Sixth International Conference on, pages 25–36,
June 2006.

[11] J.-P. Katoen and H. Wu. Exponentially timed SADF: Compositional
semantics, reductions, and analysis. In Embedded Software (EMSOFT),
2014 International Conference on, pages 1–10, Oct 2014.

[12] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9), Sept 1987.

[13] E. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 17(12):1217–1229, Dec 1998.

[14] F. Siyoum, M. Geilen, J. Eker, C. von Platen, and H. Corporaal. Auto-
mated extraction of scenario sequences from disciplined dataflow net-
works. In Formal Methods and Models for Codesign (MEMOCODE),
2013 Eleventh IEEE/ACM International Conference on, pages 47–56,
Oct 2013.

[15] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corporaal. Analyzing
synchronous dataflow scenarios for dynamic software-defined radio
applications. In System on Chip (SoC), 2011 International Symposium
on, pages 14–21, Oct 2011.

[16] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF for free. In Sixth
International Conference on Application of Concurrency to System
Design (ACSD 2006), 28-30 June 2006, Turku, Finland, 2006.

[17] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic applica-
tions. In Embedded Computer Systems (SAMOS), 2011 International
Conference on, July 2011.

[18] S. Stuijk, A. Ghamarian, B. Theelen, M. Geilen, and T. Basten. FSM-
based SADF. Technical report, Eindhoven University of Technology,
Department of Electrical Engineering, 2008.

[19] B. Theelen. A performance analysis tool for scenario-aware streaming
applications. In Quantitative Evaluation of Systems, 2007. QEST 2007.
Fourth International Conference on the, pages 269–270, Sept 2007.

[20] B. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V.
Gheorghita, and S. Stuijk. A scenario-aware data flow model for
combined long-run average and worst-case performance analysis. In
Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06.
Proceedings. Fourth ACM and IEEE International Conference on, July
2006.

[21] B. D. Theelen, M. Geilen, and J. Voeten. Performance Model Checking
Scenario-Aware Dataflow. In Proceedings of the 9th International
Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS), volume 6919 of Lecture Notes in Computer Science, Aalborg,
Denmark, 2011. Springer.

[22] B. D. Theelen, J.-P. Katoen, and H. Wu. Model checking of Scenario-
Aware Dataflow with CADP. In W. Rosenstiel and L. Thiele, editors,
Proceedings of the 2012 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), Dresden, Germany, 2012. IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

