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Abstract. Dataflow formalisms are useful for specifying signal processing and
streaming applications. To adequately capture the dynamic aspects of modern ap-
plications, the formalism of Scenario-Aware Dataflow (SADF) was recently in-
troduced, which allows analysis of worst/best-case and average-case performance
across different modes of operation (scenarios). The semantic model of SADF in-
tegrates non-deterministic and discrete probabilistic behaviour with generic dis-
crete time distributions. This combination is different from the semantic models
underlying contemporary quantitative model checking approaches, which often
assume exponentially distributed or continuous time or they lack support for ex-
pressing discrete probabilistic behaviour. This paper discusses a model-checking
approach for computing quantitative properties of SADF models such as through-
put, time-weighted average buffer occupancy and maximum response time. A
compositional state-space reduction technique is introduced as well as an efficient
implementation of this method that combines model construction with on-the-fly
state-space reductions. Strong reductions are possible because of special seman-
tic properties of SADF, which are common to dataflow models. We illustrate this
efficiency with several case studies from the multi-media domain.

1 Introduction

Signal processing and streaming applications are often described as a set of tasks, actors
or processes with data and control dependencies to exploit the parallel and pipelined
execution capabilities of hardware platforms. Modern streaming applications are in-
creasingly dynamic, with large variations in the required resources. Neglecting these
variations when evaluating key properties like throughput and buffer occupancy can re-
sult in overly pessimistic performance bounds [10], while the average-case behaviour
can often not be studied adequately based on the same model. The recently introduced
formalism of Scenario-Aware Dataflow (SADF) [33] adequately captures dynamism in
modern streaming applications using scenarios. Such scenarios denote distinct modes
of operation (like processing I, P or B frames in MPEG-4 video processing), in which
resource requirements can differ substantially [11, 25].

This paper presents the techniques underlying the computation of exact worst/best-
case and average-case performance numbers for SADF models as implemented in the
SDF3 toolkit [32, 29]. Although these techniques are strongly inspired by existing model
checking techniques, they are not based on existing model checkers that support quanti-
tative analysis. This is because of semantic differences between the model of SADF and
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Fig. 1. Transitions in Probabilistic Automata

the models underlying common quantitative model checkers combined with the diver-
sity of metrics that we want to analyse. The semantics of SADF [34] uses the formalism
of Timed Probabilistic (Labelled Transition) Systems (TPS) [1]. Like other automata,
a TPS describes behaviour in terms of states and transitions. TPS is a variant of prob-
abilistic timed automata in [26] (called Simple Segala Model in [28]), which extend
Markov decision processes (MDPs) [5, 24] by distinguishing time-less action transi-
tions from transitions for advancing time. Figure 1 shows how MDP alternates non-
determinism between actions a1, . . . , am with probabilistic choices. Actions in TPS
are time-less. Time is modelled explicitly using separate transitions, where the labels
tm+1 . . . tx in Figure 1 refer to an exact (positive) amount of time (e.g., they do not
refer to parameters of exponential distributions). Modelling discrete time distributions
can be accomplished by using the two-step approach depicted in Figure 2. It consists
of some (internal) action capturing the probabilistic choice of alternative time durations
(think of drawing a sample from a discrete distribution), followed by a time transition
for each of the possible time durations. In Figure 2, time advances ti time units with
probability pi for i = 1, . . . , n. This approach is suitable for capturing any discrete
time distribution and matches well with the way discrete-event models are commonly
implemented. The semantics of SADF in [34] adopts this approach to ease calibration
of SADF models with profiling data obtained through static and statistic code analysis.

Several quantitative model checkers exist but using them for SADF is problem-
atic. CADP [12] is a model checking toolbox that supports (amongst others) Interac-
tive Markov Chains (IMC) [13] for quantitative analysis. Although it supports non-
deterministic choice between alternative behaviours, IMC itself does not support prob-
abilistic choices and it relies on exponentially distributed time. The probabilistic model
checker MRMC [14], which operates on more elementary automata, supports both
probabilistic and non-deterministic choices but only in combination with exponen-
tially distributed time. UPPAAL [17] is well-known for its ability to verify qualitative
properties of timed systems and the recent extension UPPAAL-PRO adds support for
probabilistic choices. Its continuous-time model is again different from the time model
of TPS. Nevertheless, TPS can be captured reasonably straightforwardly in UPPAAL-
PRO. However, only analysis of maximum probabilistic reachability properties is sup-
ported, which is insufficient to compute metrics like throughput and time-weighted av-
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erage buffer occupancy. PRISM [15] can verify a wider range of quantitative proper-
ties for various probabilistic models including (Priced) Probabilistic Timed Automata.
Analysis of reward-based metrics like throughput and buffer occupancy is however not
supported for such automata. Furthermore, PRISM lacks features like the concept of
urgency in UPPAAL to ease controlling resolution of non-determinism, which is very
useful in the context of dataflow formalisms [8, 9]. We discuss this aspect in Section 3.

Given the mismatch with existing model checkers, we propose a novel, two-phase
approach. In the first phase we construct a reduced, but adequate Markov reward model
on which elementary techniques for computing performance numbers can be applied
in the second phase, possibly using existing tools. From the basic analysis results, we
construct results for more complex performance metrics in a compositional way. This
paper focuses on the first phase where we apply several model checking techniques opti-
mized for SADF. These techniques restrain state-space size by exploiting key semantic
properties of SADF as well as neglecting events that do not affect a performance re-
sult directly. We present how this approach allows for an on-the-fly construction of the
Markov reward model, which is the key contribution of this paper. A number of case
studies from the multi-media domain illustrate the achievable state-space reductions by
taking semantic properties and the relevance of events into account.

The remainder of this paper is organised as follows. The next section discusses
relevant properties of TPSs defined by SADF semantics. Section 3 presents our perfor-
mance model checking approach and how it can be implemented efficiently. In Section
4, we present algorithms for computing throughput of SADF models. Section 5 illus-
trates the efficiency of our approach based on several case studies from the multi-media
domain. Conclusions and directions for future research are summarised in Section 6.

2 Scenario-Aware Dataflow

Scenario-Aware Dataflow is an extension of Synchronous Dataflow (SDF) [19] (also
known as weighted marked graphs in Petri Net theory), which allows analysis of many
correctness and performance properties like absence of deadlock and throughput [27,
8]. SADF combines the traditional data-driven behaviour of SDF with state-machine
based control behaviour to capture dynamism. Figure 3 shows an illustrative SADF
model in the top-left corner. The vertices denote processes while the edges are channels
reflecting (potential) dependencies between those processes. Two types of processes
are distinguished. Kernels (solid vertices) reflect the data processing part of an appli-
cation (such as variable length decoding for MPEG-4), whereas detectors (dashed ver-
tices) model the control part, responsible for dynamically determining the scenario in
which processes operate. The possible orders in which scenarios (ς1 and ς2 in Figure
3) occur is captured by state machines. In reality, these state machines coordinate the
operation mode based on data-dependent conditions like the type of frame to decode
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in MPEG-4. SADF abstracts from the actual conditions, taking either a probabilistic or
non-deterministic abstraction approach. In case probabilistic information is available on
the scenario occurrences, the state machines are (discrete) Markov chains in which case
both worst/best-case and average-case analysis becomes possible. Otherwise, the state
machines reduce to non-deterministic state machines, which still allows for analysing
worst/best-case performance as discussed in [6] for a restricted form of SADF. In this
paper, the state machines are considered to be Markov chains in line with [33, 34].

A token is a unit of information communicated between processes. Such a token
can for instance model a frame, line or pixel. The availability of tokens in the (con-
ceptually unbounded) FIFO buffer corresponding to each channel is shown with a dot,
labelled with the number of available tokens. Detectors inform other processes about
the scenario to operate in by sending them scenario-valued tokens via control channels.
Control channels are shown as dashed arrows, while solid arrows denote data channels
(in which data values of tokens have been abstracted). A production/consumption rate
refers to the number of tokens produced/consumed by a process via a channel each time
it fires. Rates of 0 are supported to specify absence of data dependencies. The left-hand
table in Figure 3 shows that parameterised rates a and b are 0 for scenario ς2.

The firing of a kernel k starts when one token has become available on (each of) its
control input(s). These token(s) determine the scenario, which in turn fixes the param-
eterised rates. Subsequently, k waits until a number of tokens equal to the consumption
rate becomes available on each data input. Then k starts its data processing behaviour,
which takes an amount of time given by a sample drawn from the execution time dis-
tribution for the active scenario. The right-hand table in Figure 3 shows the possible
execution times E and their occurrence probabilities P(E) for all processes. The firing
of k ends by removing a number of tokens, equal to the consumption rate, from each
input and producing a number (equal to the production rate) of tokens to each output.

In case a detector d has no control inputs1, its firing starts with determining its
subscenario by making a transition in the associated Markov chain. For detector D,
this Markov chain is depicted in the bottom-left corner of Figure 3, where the state
names indicate the subscenario to detect. After establishing the subscenario, firing of

1 We simplify our explanation in line with [33]. The complete explanation can be found in [34].



d continues similarly as a kernel by fixing the parameterised rates. After sufficient to-
kens have become available on all data inputs, d performs its behaviour which takes
an amount of time drawn from the appropriate execution time distribution. Firing of
d ends with removing a number, equal to the consumption rate, of tokens from each
input and producing a number (equal to the production rate) of tokens to each output,
where the tokens written to control channels are valued with the subscenario. Notice
that these valued tokens coherently affect the behaviour of kernels A and B in Figure
3. Succinctly capturing such correlations that often exist between dynamic changes in
resource requirements for different processes is a key feature of SADF.

2.1 TPS Semantics

Before we discuss the semantics of SADF, we introduce some notation for TPS. Con-
sider a finite set S of states and let D(S) denote the set of probability distributions over
S, D(S) = {π : S → [0, 1] |

∑
S∈S π(S) = 1}. A Timed Probabilistic Systems (TPS)

with initial state S∗ ∈ S is a transition system (S, S∗,A,A, T ,T) where A is a finite
set of actions, T denotes the time domain (e.g., the positive reals or integers), while A
and T are two sets of labelled transition relations. Set A is a subset of S×A×D(S) and
defines the action transitions. Relation S a−→ π with π ∈ D(S) holds if action a can
be performed from state S, after which the system transits to state T with probability
π(T ). The set T is a finite subset of S × T × D(S) and denotes the time transitions.
Relation S t−→ π with π ∈ D(S) holds if from state S the time can advance for a
(positive) amount t, after which the system transits to state T with probability π(T ).
If several action and/or time transition relations hold, the choice of which transition
is performed is made non-deterministically. Subsequently, a probabilistic choice deter-
mines the target state. The visualisation of TPSs in Figures 1 and 2 shows states in S
as black dots. Action transitions are drawn as solid arrows labelled with an action inA,
immediately followed (through a grey dot) by a fan-out of dashed arrows representing a
distribution inD(S). Time transitions are depicted as dotted arrows labelled with a time
duration in T and are similarly followed by a probabilistic fan-out.

TPS can be used for defining the semantics of systems in a compositional way. That
is, one defines the semantics of each component as TPS, possibly together with condi-
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tions on actions or advancing time that depend on other components. Parallel composi-
tion of the component TPSs resolves such conditions and yields a TPS for the complete
system. Figure 4 illustrates a few useful properties [18, 22, 36] that a TPS may satisfy in
general. Action determinacy (in a non-probabilistic setting also known as the diamond
property) is shown in Figure 4(a). It defines that the net behavioural effect of alterna-
tive paths of successive action transitions to a common target state is invariant to how
non-deterministic choices between those alternative paths are resolved. Hence, only one
(arbitrary) path needs to be explored. Given the discrete time model of TPS, one can
consider a similar property for time transitions. Time determinacy defines that the net
effect in advancing time is invariant to non-deterministic choices, see Figure 4(b). A
slightly stronger property is time additivity or time continuity [36], which specifies that
time transitions can be arbitrarily split into smaller transitions or combined into larger
ones. Compared to time determinacy, this requires also the existence of a direct time
transition to the target state, see Figure 4(c). Another relevant property that a TPS may
satisfy in general is action persistency, which indicates that advancing time does not
disable any actions that could have been performed.

The semantics of SADF in [34] defines six types of action transitions and one type
of time transition. We briefly discuss all these transition types. As described above, each
process behaves repetitively according to a fixed pattern. Kernels perform control, start
and end actions, whereas detectors follow a pattern of detect, start and end actions. The
control and detect actions determine the (sub)scenario in which a kernel respectively de-
tector is going to operate. They fix the corresponding parameterised rates and execution
time distribution when sufficient control tokens are available. The start actions happen
when sufficient data tokens are available, and end actions finalise the firing with con-
suming and producing the appropriate amounts of tokens from inputs respectively onto
outputs. Only detect and start actions may have a probabilistic fan-out with multiple
target states – all other transition types, including time transitions, have a single target
state. Together, the probabilistic fan-out of start transitions and time transitions follow
the pattern of Figure 2 to model discrete time distributions like those exemplified in
Figure 3. The probabilistic fan-out of detect transitions follow the probabilistic choices
of the detector’s Markov chain(s). Notice that part of the control, detect and start tran-
sitions are conditions on the availability of tokens in the FIFO buffers connected to the
inputs of processes. Turning our attention to time transitions, we first remark that there
is one global notion of time. Time can advance whenever some process has performed
its start action, with the additional condition that no end actions are enabled. Such end
action becomes enabled when the remaining execution time for a process has reduced
to 0 as a result of advancing time. Time advances (at most) with the amount to enable
new end actions, unless no actions can become enabled anymore (deadlock).

2.2 Semantic Properties of SADF

We can now deduce several important properties of a TPS defined by an SADF model.
Our performance model checking approach exploits these to restrain state-space size.
To simplify our explanation, we ignore the possibility of deadlocks.

We first discuss time transitions in more detail. For an individual process p, time
transitions can only exist after a start action and before the end action. The amountE of



advanced time is drawn from an execution time distribution. Observe that the definition
of time transitions allows to globally synchronise the advance of time with other pro-
cesses in a compositional way by being prepared to advance time for p with an arbitrary
amount less than E. This requires time additivity, which basically allows splitting time
transitions in arbitrarily many smaller time transitions. The composed TPS semantics
only explicitly represents the maximum amount of time to pass before an end action is
enabled. As a result, at most one time transition can exist from a state and time tran-
sitions are always preceded and succeeded by actions. Since time transitions can only
be enabled when no process is about to finalise its firing (with an end action), they are
succeeded by end actions. Observe that non-determinism between advancing time and
performing actions other than end actions is still possible. Consider a state S that is en-
tered after p has performed a start action. A time transition is now enabled for p from all
states reachable from S up to states in which some end action is enabled. Although the
TPS semantics covers all possible scheduling policies, it is often convenient to assume a
specific class of policies that prescribes when actions are to be scheduled for execution.
An important class are those policies where actions occur without delays (i.e., all ac-
tions are performed before time advances, after which new actions may become enabled
again). Such action urgency [22] matches with what is known as self-timed execution
for SDF models [27]. Self-timed execution of SDF models ensures that throughput is
maximised [7]. Assuming action urgency may however be disadvantageous for opti-
mising other metrics like latency [9]. Following [33, 34, 6], we adopt the concept of
self-timed execution for SADF. Consistently prioritising actions over advancing time is
equivalent to extending the original condition of time transitions in Section 2.1 to one
where no action transitions are enabled (i.e., instead of just end actions). This excludes
the possibility that both action and time transitions can be enabled from a state.

We now turn our attention to the action transitions. As described above, individual
processes exhibit only deterministic behaviour2 as patterns of control/detect, start, time
and end transitions. The actions a process p performs only depend on its own state and
the buffer status of channels connected directly to p. Advancing time does not disable
any enabled action of p. In fact, actions performed by any process other than p do not
disable any enabled action of p, which is stronger than action persistency. This further
implies the impossibility of having cycles in the TPS part between any two time tran-
sitions in case the system is finite. Deterministic choices may exist between control
and detect actions due to mutual exclusive conditions on the values of control tokens,
while probabilistic choices may arise from execution time distributions and the Markov
chains associated with detectors. This is illustrated in Figure 5 for kernel A and detector
D from Figure 3. A can perform two control actions from its initial state S1 depending
on the value of the received control token (ς1 or ς2). D determines the subscenario (ς1 or
ς2) based on the Markov chain in Figure 3 which causes the probabilistic fan-out for the
detect actions in Figure 5(b). The parallel composition may yield non-determinism in
the composed TPS due to different processes interleaving their independent actions. In
other words, any non-determinism in the composed TPS originates from concurrency,
and hence it is action determinate [33]. This means that non-determinism between ac-
tions can be arbitrarily resolved without affecting the net behaviour of the system.

2 This is not true if the Markov chains reduce to non-deterministic state-machines as in [6].
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3 Performance Model Checking

Model checking often exploits properties like action determinacy (diamond property)
by means of bisimulation reductions to restrain state-space size. The crux is that redun-
dantly captured behavioural details are removed from the state space. However, such
details may be relevant for certain performance metrics [16]. The instantaneous max-
imum buffer occupancy of SADF channels, for instance, does depend on the order of
writing and reading tokens to/from channels. On the other hand, assuming action ur-
gency refers to a class of scheduling policies that (partially) resolves non-determinism.
A model checking approach that supports prioritising specific non-deterministic options
may avoid constructing the (much larger) state space in which all non-determinism is
still available. UPPAAL is an example model checker providing some support for such
approach. Finally, certain behaviour may not directly affect a metric, which therefore
suggests to consider state spaces that only capture the relevant behaviour. This section
presents how our approach exploits these properties to restrain state-space size.

3.1 Strategy for Computing Performance

The proposed strategy, which relies on generic techniques from [35, 31], is visualised in
Figure 6(a). The idea is to derive a small, but adequate Markov reward model on which
elementary techniques for computing concrete performance numbers can be applied.
The first step towards a Markov reward model is to construct a TPS of the complete
SADF model by parallel composition of the TPSs of individual processes (such as those
in Figure 5). This step takes the guards on transitions of the component TPSs into ac-
count and uses the property of time additivity and the assumption of action urgency. The
resulting composed TPS may include non-deterministic choices between (concurrent)
actions and probabilistic choices (from detect and start actions).
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The second step is to resolve any remaining non-determinism. Action persistency
and action determinacy ensure that time-dependent performance metrics are not af-
fected by the policy for resolving non-determinism (any of the enabled actions may
be selected). In [33], this is demonstrated for time-dependent long-run averages like
throughput. To compute the instantaneous maximum buffer occupancy, the reservation
of buffer space at the start of the producer must be prioritised over the consumption of
tokens at the completion of the consumer [34] (i.e., prioritise all start actions over end
actions). The resulting TPS can only have probabilistic choices. We denote this TPS by
(S′, S∗,A,A′, T ,T′), where S′ ⊆ S is the remaining state space and A′ ⊆ A, T′ ⊆ T
are the remaining action and time transitions after resolving non-determinism.

The third step is to construct a discrete3 Markov chain, which is now possible be-
cause at most one action or time transition leaves from any state in S′. Performance met-
rics can be expressed as some combination of reward functions [30] that are evaluated
on the obtained Markov chain. We follow the approach of [35] to move the action/time
labels of transitions into their (destination) states similarly as in [21, 23, 3]. The idea is
that information on the occurrence of actions and passage of time can be retrieved by
reward functions on the states only (i.e., not also on transitions). The state space S of
the Markov chain obtained after the transformation is a subset of S′ × (A∪ T ∪ {−}).
The size of S equals 1 plus the number of transitions with different label/target-state
combinations (if S′ is finite) [35]. The interpretation of a state (S, a) in S is that S ∈ S′
is entered after having performed action a ∈ A. State (S, t) ∈ S denotes that S is
entered after time has advanced with t ∈ T time units, while (S,−) ∈ S denotes
the entrance of S without performing any transition. Observe that only initial state S∗

is entered without performing a transition. The one-step transition probabilities of the
obtained Markov chain follow straightforwardly from the transitions in A′ and T′.

3 We deliberately avoid the term discrete-time since there is no relation between the concept of
time in TPS and the concept of time in the traditional meaning of discrete-time Markov chains.



The final two steps take the metric of interest into account to compute an exact
performance number. We adopt the formalism of temporal rewards from [35] to specify
metrics. The crux of temporal rewards is that they may not only depend on the current
state, like traditional rewards, but also on states visited in the past. We use this ability to
express the total amount of time elapsed for a sequence of states, which is an essential
component of many time-dependent properties. However, not all states may (directly)
contribute to the performance result. We use the state-space reduction technique from
[31] to construct a Markov reward model that only includes states in which actions
have occurred that changed relevant rewards. The actual performance result is then
computed from this reduced Markov reward model, after calculating its steady-state or
equilibrium distribution in case of long-run average metrics. The next two subsections
illustrate how performance metrics can be expressed with temporal rewards and how the
reduced Markov reward model is obtained. Section 4 brings the strategy from Figure
6(a) into practice by presenting algorithms performing all steps including constructing
the reduced Markov reward model at once, i.e., in an efficient on-the-fly manner.

3.2 Example Performance Metrics

Performance metrics often express properties related to specific actions and/or the ad-
vance of time. We illustrate our approach with the more difficult case of long-run av-
erages, since they need to take the equilibrium distribution into account. We aim to
exemplify that many long-run averages can be expressed as algebraic combinations of
the elementary long-run average [31], which can be evaluated using basic techniques.

Consider the throughput of a process p in an SADF model, which is defined as the
long-run average number of firing completions of p per time unit. We use a reward
c : S → {0, 1} to indicate states in which an action has occurred that directly affects
the metric of interest. For the throughput example, c(U) = 1 in case p has performed
an end action in state U ∈ S , and c(U) = 0 otherwise. States for which c evaluates to
1 are called relevant, the others are irrelevant. We further define a temporal reward ∆
that gives the sum of time transition labels t ∈ T encountered for a realised sequence
of states, which restarts the addition each time a relevant state is visited. In other words,
∆ denotes the total amount of time elapsed up to visiting the next relevant state.

We now let {Xi} denote the stochastic process corresponding to the Markov chain
with state space S, where i identifies the ith state visited. The throughput of p can now
be expressed as an event-rate. For completeness, we give the exact specification in Fig-
ure 7, where the limit notation refers to almost sure convergence [2]. It basically divides
the number of events (i.e., firing completions of process p) by the average amount of
time elapsed between such events. More important is to observe that an event rate re-
sembles the reciprocal of the elementary long-run sample average of some reward r, see
Figure 7. Many other long-run averages can be expressed as algebraic combinations of
sample averages for appropriate definitions of rewards r and c [31]. Examples include
the variance in time elapsed between two firing completions of p (a substraction of two
sample averages) and the time-weighted average buffer occupancy (a quotient of two
sample averages). Hence, given an approach to compute sample averages, many other
long-run averages can be computed in a component-wise manner. The next section gives
an exact approach to compute sample averages without considering irrelevant states.
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Fig. 7. Example Generic Forms of Long-Run Averages Comprising Similar Terms

3.3 Metric Dependent State-Space Reduction

The relevance of states indicated by c can be exploited to reduce the state space con-
siderably. Consider an ergodic [4, 30] Markov chain {Xi} with state space S for which
we need to compute the sample average in Figure 7. By the Ergodic theorem [4, 30], it
is not difficult to prove [31] that if {Xi} has a relevant positive recurrent state, then

lim
n→∞

∑n
i=1 r(Xi) · c(Xi)∑n

i=1 c(Xi)
=

∑
U∈S πU · r(U) · c(U)∑

U∈S πU · c(U)

where πU is the equilibrium probability of U . Observe that this equation merely de-
pends on rewards earned in relevant states. Hence, it makes sense to investigate whether
metrics can be evaluated without considering the irrelevant states at all. Let Sc = {U ∈
S | c(U) = 1} denote the set of relevant states and define random variable Xc

i as the
ith relevant state that is visited (which, for simplicity, we conveniently assume to exist).
Now, we can derive some useful theorems, for all of which proofs can be found in [31].

Theorem 1 (Reduction Theorem). If an ergodic Markov chain {Xi} has a relevant
positive recurrent state, then {Xc

i } is also an ergodic Markov chain.

Theorem 2 (Preservation of Long-Run Averages). If an ergodic Markov chain {Xi}
has a relevant positive recurrent state, then∑

U∈S πU · r(U) · c(U)∑
U∈S πU · c(U)

=
∑
U∈Sc

πcU · r(U)

where πc is the equilibrium distribution of {Xc
i }.

Hence, the sample average in Figure 7 indeed depends only on rewards r earned
in relevant states. Computing it, however, requires equilibrium distribution πc which
relates to the equilibrium distribution π of {Xi} as follows.

Theorem 3. Equilibrium distribution πc is given by πcU = πU∑
V∈Sc πV

for all U ∈ Sc.

To avoid storing the complete state space S, we seek a method to determine πc with-
out first computing π. To present our approach, we consider the matrices of one-step
transition probabilities P and Pc for the Markov chains {Xi} and {Xc

i } respectively.



To relate Pc with P , we introduce matrix M . For any U ∈ S and V ∈ Sc, define
MU,V as the probability that {Xi} makes a sequence of transitions leading to V when
departing from U such that any intermediately visited state is irrelevant. Observe that
for U ∈ Sc, MU,V equals the probability PcU,V that {Xc

i } transfers from U to V .

Theorem 4. For all U ∈ S and V ∈ Sc, the elements MU,V of matrix M satisfy the
system of linear equations given by MU,V = PU,V +

∑
Q∈S\Sc PU,Q ·MQ,V which

has a unique solution in case the conditions of the reduction theorem are satisfied.

Consider the computation of PcU,V from a given U ∈ Sc to a state V in the set
R ⊆ Sc of all relevant states reachable from U by intermediately visiting irrelevant
states only. By constructing the subgraph of {Xi} that departs from U and ends in
all states of R, the transition probabilities PcU,V for each V ∈ R can be computed
by solving that part of the equations defining M related to this subgraph. Solving the
equations is easy, because, as observed in Section 2.2, there are no cycles between states
of an SADF model where time has advanced. Computing PcU,V for each V therefore
boils down to adding the probabilities on the finite number of paths between U and
V . The subgraph can now be replaced with transitions for {Xc

i } between U and each
V ∈ R with their corresponding probabilities PcU,V . In this way, only a part of {Xi} is
constructed at any moment in time while only temporarily storing irrelevant states.

4 Practical Implementation

With the results of Section 3, we propose to construct the reduced Markov reward model
in an on-the-fly way. This is visualised as the first phase of our implemented strategy in
Figure 6(b), where the second phase computes πc and the final performance number. We
illustrate our approach with the throughput example of Section 3.2, i.e., the event rate
in Figure 7. To this end, we introduce some additional notation. LetΩU,V denote the set
of all paths between two states U and V of {Xi} without intermediate visits to relevant
states. Such a path refers to a realised sequence of states for {Xi} from U to V . We
use Pρ to denote the probability on a specific path ρ ∈ ΩU,V , which equals the product
of all one-step transition probabilities of {Xi} encountered on this path. Observe that
if path ρ ∈ ΩU,V consists of a single transition, i.e., V is a direct successor of U , then
Pρ = PU,V . Moreover, for V ∈ Sc, we have

∑
ρ∈ΩU,V Pρ = MU,V . We also annotate

previously defined temporal reward ∆ as ∆ρ to denote the total amount of time elapsed
for a specific path ρ ∈ ΩU,V . We can now express the expected total amount of time
∆U

4 that elapses until visiting the next relevant state when departing from U as follows

∆U =
∑
V ∈Sc

∑
ρ∈ΩU,V

Pρ ·∆ρ

Following from Theorem 2 on preservation of long-run averages, we can now derive
for the throughput metric in Section 3.2, i.e., the event rate in Figure 7, that

lim
n→∞

∑n
i=2 c(Xi)∑n

i=2∆(Xi−1) · c(Xi)
=

1∑
U∈Sc π

c
U ·∆U

4 As a bonus, we like to mention that ∆U equals the expected response time of a process p in
case U is initial state (S∗,−) and c identifies states in which p has performed an end action.



The first phase of our practical implementation in Figure 6(b) constructs Sc and Pc
to enable computing πc in the second phase. The first phase also computes ∆U for all
U ∈ Sc, while the second phase combines the results of all these components into the
final performance number.

We present in detail the algorithms for the first phase. It starts from individual TPSs
for each process in the SADF model, for which the action/time labels of the transitions
have already been shifted into their (destination) states. The initial state (S∗,−) of
Markov chain {Xi} follows straightforwardly from the initial states of the component
TPSs. From (S∗,−), we construct the reduced Markov reward model based on the
algorithms in Figure 8. For convenience, we assume that each path ρ ∈ ΩU,V from U
to some V is stored as a pair (Pρ, ∆ρ) together with the source state U .

Algorithm PROGRESS in Figure 8 constructs all paths from some state U ∈ S
to relevant states V ∈ Sc without intermediate visits to relevant states with a depth-
first search. The probabilities Pρ and durations ∆ρ for each of the possible paths ρ are
computed while backtracking. After initialising I and R to store the newly discovered
irrelevant and relevant states respectively, lines 2 through 9 perform a single enabled
transition. Line 2 prioritises actions over advancing time conform to the assumption of
action urgency. In line 3, an enabled action a ∈ A for any process is selected conform
to the policy for resolving non-determinism. In case action a is relevant for the perfor-
mance metric of interest, then RSTEP in line 5 determines the immediate next relevant
states R, which are added to R. In case any such R is not yet in Sc, it is also added
to Sc. In addition, state U is updated to store the paths ΩU,R for all R ∈ R as pairs
(PU,R, 0). On the other hand, if a is irrelevant, then ISTEP determines in line 6 the next
irrelevant states I , which are added to I. Moreover, U is updated with paths ΩU,I for
all I ∈ I as pairs (PU,I , 0). If in line 3 no actions are enabled but time can advance
in line 7 with t units, then ISTEP in line 8 adds irrelevant next state I entered after
performing the time transition to I while adding the path to I as the pair (1, t) to U .
Line 9 identifies deadlock in case no actions are enabled nor time can advance. Lines 10
through 12 of PROGRESS construct the subgraph of {Xi} from U until reaching rel-
evant states (which are stored in R). In case a relevant action has been performed, the
depth-first search ends. The backtracking procedure in lines 13 through 18 computes
the probabilities Pρ and durations ∆ρ for all paths ρ ∈ ΩU,V from U to relevant states
V , where > in line 16 denotes a reward that returns the amount of time that has elapsed
in each state (which equals 0 if an action was performed). Moreover, the paths of U are
properly updated to include only direct paths to the relevant end states V (and thereby
discarding all intermediately visited irrelevant states).

Algorithm CONSTRUCT in Figure 8 relies on PROGRESS to construct the reduced
Markov chain {Xc

i }. After determining the relevant states reachable from a state U ,
the expected time ∆U is computed in line 2. For U ∈ Sc, the probabilities PcU,V for
all V ∈ R are computed in line 5. The recursive construction in line 6 and 7 com-
pletes construction of {Xc

i } from all relevant states, while the initial call of CON-
STRUCT((S∗,−),∅) implements the first phase depicted in Figure 6(b).

The algorithms in Figure 8 can easily be adapted to compute performance met-
rics expressible as a worst/best-case or as (expected) reachability property. The current
implementation in SDF3 [32] for computing various metrics of SADF models uses par-



Algorithm PROGRESS(U,Sc)
Input: A source state U ∈ S and the current Sc
Output: Set R ⊆ Sc of newly discovered relevant states reachable

from U , which are also added to Sc
1. I ← ∅ andR ← ∅
2. if actions are enabled
3. then select an enabled action a ∈ A
4. if action a is relevant
5. then (R, U,Sc)← RSTEP(U, a,Sc)
6. else (I, U)← ISTEP(U, a)
7. else if time can advance for t ∈ T units
8. then (I, U)← ISTEP(U, t)
9. else deadlock detected
10. for each irrelevant state I ∈ I
11. do (R′, I,Sc)← PROGRESS(I,Sc)
12. R ← R∪R′

13. for each irrelevant state I ∈ I
14. for each path ρ ∈ ΩU,I
15. do for each direct successor state V of I
16. do add path (Pρ · PI,V , ∆ρ +>(I)) to U
17. for each irrelevant state I ∈ I
18. do remove all paths ρ ∈ ΩU,I from U
19. return (R, U,Sc)

Algorithm CONSTRUCT(U,Sc)
Input: A source state U ∈ S and the current Sc
Output: Updated Sc, Pc and∆
1. (R, U,Sc)← PROGRESS(U,Sc)
2. ∆U ←

∑
V∈R

∑
ρ∈ΩU,V

Pρ ·∆ρ

3. if U ∈ Sc
4. then for each V ∈ R
5. do PcU,V ←

∑
ρ∈ΩU,V

Pρ

6. for each V ∈ R
7. do (Sc,Pc, ∆)← CONSTRUCT(V,Sc)
8. return (Sc,Pc, ∆)

Fig. 8. On-the-fly Construction of the Reduced Markov Reward Model

tially dedicated variants of the algorithms in Figure 8 for doing so, but it also relies on
reusing large parts for common terms in different metric types like those in Figure 7.
The on-the-fly construction of the reduced Markov reward model has enabled comput-
ing the performance of much larger SADF models compared to directly implementing
the strategy of Figure 6(a) as we illustrate for several experiments in the next section.

5 Experimental Results

We demonstrate the applicability of our performance model checking approach by com-
puting the throughput for the dynamic applications in the literature listed in Table 1. The
examples are ordered in size of their state spaces. The MPEG-4 SP and MP3 examples
show increased state spaces when the amount of concurrency by pipelining degree pa-
rameter PD increases. All results in Table 1 are obtained using an Intel Centrino 2 based
machine at 2.5Ghz running SDF3 in a virtual machine with 1.5GB of memory. The en-
tries marked – and † in Table 1 denote that it was infeasible to determine the considered
aspect either within the available memory or 6 hours of run-time respectively. The |S′′|
column presents the size of the composed TPS (S, S∗,A,A, T ,T), where the transi-
tion labels have already been shifted into their destination states. In other words, action
urgency and time additivity have been applied for parallel composition of the individ-
ual TPSs for each process, but non-determinism as a consequence of concurrency has
not yet been resolved. Hence, |S′′| is the size of the primary transition system of our ap-
proach without taking specific semantic properties of SADF into account. It is clear that
concurrency and dynamism easily make construction of this transition system infeasi-
ble. The results show that without the possibility of applying any reductions on-the-fly,
computing performance of the MPEG-4 SP and MP3 examples would be infeasible.

The |S| column indicates the size of the Markov chain {Xi} obtained after reso-
lution of non-determinism. Resolving non-determinism clearly reduces the state space



Reference Remark |S′′| |S| Process |Sc| Reduction [%] Run-Time [s] Memory [MB]
MPEG-4 AVC [25] 185 183 v4 18 90.2 ≤ 0.001 0.272
Running Example Figure 3 661 375 B 11 97.1 0.012 0.384
Channel Equalizer [20] 2185 296 cf 8 97.3 0.012 0.672
MPEG-4 SP [33, 32] PD = 1 – 38440 RC 9 99.9 0.8 7.9
MPEG-4 SP [33, 32] PD = 2 – 483400 RC 576 99.9 40.7 16.3
MPEG-4 SP [33, 32] PD = 3 – – RC 8253 – 906.9 94
MP3 [34] PD = 1 – – Write 5 – 26.8 64.6
MP3 [34] PD = 2 – – Write 15 – 624.6 165
MP3 [34] PD = 3 – – Write 15 – 20356 275.5
MP3 [34] 4≤ PD≤ 9 – – Write † – > 21600 †

State-space sizes: |S′′| is the unreduced size, |S| is after resolving non-determinism and |Sc| is after complete reduction

Table 1. State-Space Reductions for Throughput Analyses

and even allows storing {Xi} for some of the MPEG-4 SP examples. The next three
columns present the effect of taking the relevance of actions into account for comput-
ing the throughput of the listed processes, which are those processes that determine the
application’s final output. Column |Sc| gives the size of the reduced Markov reward
model {Xc

i }, which is the number of states that is finally stored at completing the first
phase in Figure 6(b). Observe the considerable relative reductions |S|−|S

c|
|S| · 100% in

the eight column that can still be achieved after resolving non-determinism. As we use
an on-the-fly implementation to obtain {Xc

i }, much bigger examples can be analysed
without the need to first completely store the primary transition system or {Xi}, which
is the essence of our approach. The one but last column lists the run-times for both
phases in Figure 6(b) together, while the last column shows the peak memory usage.
Computing the throughput for the full MP3 example (PD = 9) turns out to be infeasible
as the case of PD = 4 for this example already requires more than 6 hours of run-time.

6 Conclusions and Outlook

Using state-of-the-art quantitative model checkers for computing exact performance
numbers of SADF models is infeasible due to the underlying time model of generic
discrete execution time distributions combined with the diversity of the performance
metrics of interest. Inspired by generic model checking techniques, this paper proposes
a novel approach that exploits various semantic properties of dataflow models, in this
case SADF, to counter state-space explosion. The idea to take the relevance of actions
into account that directly affect the metric of interest shows the possibility of substantial
state-space reductions after resolving non-determinism originating from concurrency,
without affecting the final performance number. We proposed an efficient on-the-fly
implementation of our approach that does not require storing the complete state space
before applying any of the considered reductions. Despite the effectiveness of the pro-
posed approach, several improvements may still be possible when considering state-of-
the-art techniques for other semantic models. Concepts like symbolic state space repre-
sentations and a more component-wise construction of the relevant state space are just
a few aspects to investigate. Other directions for future research are to investigate how
the metric-dependent Markov chain based reduction technique can be lifted to a proper
bisimulation reduction at TPS level to develop a generic TPS-based performance model
checker where users can specify any metric of interest in a temporal reward formula.
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