
A Performance Analysis Tool for Scenario-Aware Streaming Applications
B.D. Theelen (B.D.Theelen@tue.nl)

Eindhoven University of Technology, Department of Electrical Engineering
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract
Dataflow models are often used for analysing stream-

ing applications. The recently introduced scenario-aware ex-
tension of the synchronous dataflow model can capture the
dynamism in computation and communication resource re-
quirements of streaming applications that originates from dif-
ferent modes of operation (scenarios). This scenario-aware
dataflow model uses a probabilistic approach to express the
order in which scenarios (and different execution times within
a scenario) occur. This paper discusses a tool for exhaustive
and simulation-based analysis of various important perfor-
mance metrics for scenario-aware streaming applications.

1. Introduction
Streaming applications are commonly specified as a set of

tasks, actors or processes with data and control dependencies
to allow exploiting the parallel and pipelined execution ca-
pabilities of hardware platforms. The dependencies between
processes can be cyclic, which indicates that different invo-
cations of processes depend on each others results. The Syn-
chronous Dataflow (SDF) model [5] (also known as Weighted
Marked Graphs in Petri Net theory) can succinctly express
these features. It also allows for design time analysis of many
correctness and performance properties such as absence of
deadlock and throughput [6]. However, SDF lacks support for
expressing any form of dynamism. Such dynamism originates
from distinct modes of operation orscenarios(like process-
ing I, P or B frames in MPEG-4) in which a process may have
substantially different resource requirements than in other op-
eration modes [3]. Cyclo-Static Dataflow (CSDF) [1] is an ex-
tension of SDF that allows expressing cyclic patterns in the
execution times of processes and/or the amount of data com-
municated between processes. In case probabilistic informa-
tion is available on the order in which scenarios occur (which
may not necessarily imply fixed reoccurring patterns), then
the Scenario-Aware Dataflow (SADF) model [9] can be used.
Despite the improved expressive power compared to SDF and
CSDF, design-time analysis of correctness and performance
properties remains possible. The advantage of using SADF
instead of SDF or CSDF is therefore the potential of obtain-
ing more realistic (performance) analysis results.

This paper discusses a performance analysis tool for
streaming applications modelled with SADF. This tool is im-
plemented as a module that extends SDF3 [7] and allows ex-
act analysis of various extrema, reachability and long-run
performance metrics. It also offers simulation-based analy-
sis as an alternative when state-space explosion issues render
exact analysis infeasible. In that case, statistical informa-
tion is provided on the accuracy of estimation results obtained
for long-run performance metrics. The SADF Analysis Tool
is freely available fromwww.es.ele.tue.nl/sadf .

2. Scenario-Aware Dataflow
Figure 1 shows (part of) the SADF model of an MPEG-4

decoder for the Simple Profile from [9], which supports video
streams consisting of I and P frames. Such frames include a

d
a

1 1
1

1

d
1

1
1

1

b

1

c
1

1

d

e

31

1

c

I D C TV L D

M C R CF D

Rate
Scenario

I P0 Px

a 0 0 1
b 0 0 x
c 99 1 x
d 1 0 1
e 99 0 x

Figure 1. SADF model of an MPEG-4 decoder.

number of macro blocks (up to99 for QCIF), each requir-
ing operations like Variable Length Decoding (VLD), Inverse
Discrete Cosine Transformation (IDCT), Motion Compen-
sation (MC) and Reconstruction (RC). The model assumes
an equal number (0 or x ∈ {30, 40, 50, 60, 70, 80, 99}, see
[9]) of motion vectors and macro blocks to be decoded, each
implying a different scenario. The vertices denote processes
while the edges orchannelsrepresent (potential) dependen-
cies. Two types of processes are distinguished.Kernels(solid
vertices) represent the data processing part of a streaming
application, whereasdetectors(dashed vertices) model the
control part that dynamically detects the scenarios. Atoken
refers to a unit of information that is communicated between
processes. The availability of tokens in the (in principle un-
bounded) FIFO buffer corresponding to a channel is shown
with a dot. The 3 tokens in the channel from RC to FD ex-
press for example the ability to perform VLD and IDCT for
macro blocks of 3 frames in a pipelined fashion. A(produc-
tion/consumption) raterefers to the number of tokens that
is produced/consumed by a process via a certain channel. In
SADF, these rates can be0 in certain scenarios to specify that
data dependencies are absent or that kernels are inactive (like
skipping VLD when decoding P frames for still video in sce-
narioP0). The Frame Detector (FD) detector in Figure 1 mod-
els that part of the actual VLD determining the frame type.
It notifies all other processes about the detected frame type
by sending control tokens viacontrol channels. Such control
channels are indicated with dashed arrows, while solid arrows
denote ordinary(data) channels. When FD executes orfires,
it determines the scenario in which VLD, ICDT, MC, RC and
FD itself will operate by making a transition in a Markov
chain that is associated with it (not shown). This results in fix-
ing the value for the parameterised ratec and upon firing com-
pletion, FD sends control tokens valued with the detected sce-
nario to VLD, IDCT, MC and RC. These kernels fix ratesa,
b, d ande by interpreting the control tokens before process-
ing any data tokens. The execution time of a kernel (or de-
tector) is determined based on an execution time distribution
(with integer or real valued finite sample space) that is speci-
fied for each scenario in which it can operate. Notice that the
scenario coherently affects the behaviour of for example the
VLD and IDCT operations. Succinctly capturing such corre-
lations that often exist between dynamic changes in resource
requirements for different processes is a key feature of SADF.



3. Performance Analysis

Although the SADF Analysis Tool features amongst oth-
ers an XML description format for specificating SADF mod-
els, visualisation of SADF models through the graph visu-
alisation tool dotty [2] and functions to determine whether
an SADF specification resembles in fact an SDF or CSDF
model, the main functionality concerns the analysis of perfor-
mance properties. Table 1 lists the metrics that can be eval-
uated using either state-space exploration based exact tech-
niques or simulation-based estimation techniques by cate-
gorising them in extrema, reachability and long-run metrics.

The first metric in Table 1 refers to the maximum buffer
occupancy of a channel that can occur for all possible (self-
timed) schedules [6]. The expected response delay is an ex-
ample of an expected reachability property as also consid-
ered in [4] and denotes the expected time until the first fir-
ing completion of a process. Throughput is defined in a sim-
ilar way as for SDF and CSDF being the average number of
firing completions of a process per time unit, which actually
equals the reciprocal of the average time between two succes-
sive firing completions of that process (average inter-firing
latency). Notice that the minimum/maximum as well as the
variance in inter-firing latency give an indication for the vari-
ation in throughput. Two types of deadline miss probabilities
can be analysed. The response delay deadline miss probabil-
ity refers to the probability that the response delay for a pro-
cess exceeds are certain deadline, whereas the periodic dead-
line miss probability indicates the probability that the inter-
firing latency of a process exceeds such deadline requirement.
The average and variance in buffer occupancy are defined as
time average and variance respectively to compensate for the
duration of each individual occupation that may occur [8].
These metrics allow analysing the utilisation of memory for
the buffers compared to their maximum occupancy (which
may assist in finding possibilities for sharing such memory).

The formal semantics defined in [9] makes SADF mod-
els amenable to rigorous analysis. Any SADF defines aTimed
Probabilistic System(TPS) similarly as for models expressed
with the Parallel Object-Oriented Specification Language [8,
10] or as a Probabilistic Timed Automata [4]. Such a TPS cap-
tures the non-deterministic choices originating from concur-
rency in an SADF and the probabilistic choices originating
from the execution time distributions and Markov chains as-
sociated with detectors for determining scenarios. A TPS ex-
plicitly distinguishes performing action transitions like com-
pleting a firing from advancing time. After resolving non-
determinism and shifting the information on the transitions
into the states (which allows to define (temporal) reward
functions on the states), the TPS reduces to a discrete-time
Markov chain that is amenable to traditional techniques for
exact and simulation-based performance analysis [8, 10]. Any
SADF implies a TPS that is time and action determinate and
additionally, the results for all metrics in Table 1 except for
the maximum buffer occupancy metric1 are invariant to the
policy used for resolving non-determinism [9]. Exploiting
these properties gives several opportunities for state-space re-
duction in case of exact analysis. However, traditional partial
ordering reductions are insufficient to make analysis of for ex-
ample the MPEG-4 decoder in Figure 1 feasible. The SADF
Analysis Tool relies therefore also on an efficient implemen-
tation of the generally applicable state-space reduction tech-

1 Properly resolving non-determinism for the maximum buffer occupancy
metric allows applying all the mentioned techniques in that case as well.

Metric Type
Max Buffer Occupancy Worst Case
Min/Max Response Delay Best/Worst Case
Min/Max Inter-Firing Latency Best/Worst Case
Response Delay Deadline Miss Probability Probabilistic Reachability
Expected Response Delay Expected Reachability
Throughput Event Rate
Periodic Deadline Miss Probability Sample Average
Average Inter-Firing Latency Sample Average
Variance in Inter-Firing Latency Sample Variance
Average Buffer Occupancy Time Average
Variance in Buffer Occupancy Time Variance

Table 1. Supported Performance Metrics

nique introduced in [8]. Finally, we remark that computing
the long-run metrics in Table 1 requires the involved SADF
to be ergodic, which is verified (partly) based on the results in
[9]. During the computation of any metric, the SADF Analy-
sis Tool also checks whether the SADF is deadlock-free.

In case of simulation-based analysis, the results are deter-
mined based on the reward values observed for the path gen-
erated through the TPS. For long-run metrics, statistical infor-
mation on the accuracy is given by determining confidence in-
tervals using the algebra of confidence intervals from [8].

4. Results
Despite that storing the TPS implied by SADF models of

realistic applications like the MPEG-4 decoder requires more
than 3GB (even after resolving non-determinism), it is feasi-
ble to compute for example the throughput of RC (the output
process). It takes1449s on a P4 at 3Ghz to compute that the
throughput equals1.06378. This is much more realistic than
the0.631313 that would be obtained based on a correspond-
ing SDF model. When considering a pipelining degree of
only 2 instead of 3, computing the new reduced throughput of
1.05388 takes only43s. Conversely, more complex examples
have shown to suffer too much from state-space explosion,
which is why simulation-based analysis is offered as an alter-
native. For a pipelining degree of 3, the simulation automati-
cally terminates after21s to obtain estimation results with rel-
ative errors below5% for all long-run average metrics. This
approach yields an estimated throughput of1.05487± 0.9%,
which is very close to the computed throughput of1.06378.
Next to extending the SDF3 tool for analysing SADF mod-
els and eliminating some restrictions on execution times for
SDF, the SADF Analysis Tool is also a competitive alterna-
tive to SDF3 for analysing SDF models in terms of run times.

References
[1] G. Bilsen, et al. Cyclo-Static Dataflow.Transactions on Signal Pro-

cessing, vol 44, no 2, pp 397–408, IEEE, 1996.
[2] E. Gansner and S. North. An Open Graph Visualization System and its

Applications to Software Engineering.Software: Practice and Experi-
ence, vol 30, no 11, pp 1203-1233, 2000.

[3] S.V. Gheorghita, T. Basten and H. Corporaal. Application Scenar-
ios in Streaming-Oriented Embedded System Design.Proceedings of
SoC’06, pp 175–178, IEEE, 2006.

[4] M. Kwiatkowska, et al. Performance Analysis of Probabilistic Timed
Automata using Digital Clocks.Formal Methods in System Design, vol
29, pp 33–78, 2006.

[5] E. Lee and D. Messerschmitt. Synchronous Data Flow.IEEE Proceed-
ings, vol 75, no 9, pp 1235–1245, 1987.

[6] S. Siram and S.S. Bhattacharyya.Embedded Multiprocessors;
Scheduling and Synchronization. Marcel Dekker, 2000.

[7] S. Stuijk, M.C.W. Geilen and T. Basten. SDF3: SDF for Free.Proceed-
ings of ACSD’06, pp 276–278, IEEE, 2006.

[8] B.D. Theelen.Performance Modelling for System-Level Design. PhD
Thesis, Eindhoven University of Technology, 2004.

[9] B.D. Theelen, et al. A Scenario-Aware Data Flow Model for Com-
bined Long-Run Average and Worst-Case Performance Analysis.Pro-
ceedings of MEMOCODE’06, pp 185–194, IEEE, 2006.

[10] J.P.M. Voeten. Performance Evaluation with Temporal Rewards.Per-
formance Evaluation, vol 50, no 2/3, pp 189–218, 2002.


