


Fig. �\���• The distributed control system. 

Fig. 2. Communication schedules: time-triggered and event-triggered. 

K is the state-feedback gain [7] and r5 is the communication 

delay. Designing a state-feedback controller u[k] essentially 

boils down to a problem of finding suitable controller gains 

K such that x[k] follows the designer's requirement. Typically, 

a designer needs to meet both stability and performance 

requirements of the closed-loop system. In this work, we have 

the following stability and performance considerations. 

• We consider the notion of asymptotic stability, i.e., we 

want to ensure that x[k] ���• 0 as k ���• 00. 

• We consider the settling time - time interval to reach and 

remain (without external disturbances) within a specific 

error band of the reference signal - as the performance 

requirement. Moreover, we improve (minimize) the inte

gral cost function of the input signal u[k], i.e., Lk u[kj2 
and the integral cost function of the tracking error, i.e., 

Lk x[kjT x[kj1. 
In context of the problem under consideration, we consider 

the communication protocol as shown in Fig. 2 where each 

communication cycle is divided into time-triggered and event

triggered segments. We classify communication schedules 

into two categories (Fig. 2): time-triggered (TT) and event

triggered (ET) schedules. First, the schedules which can ensure 

zero delay of the control-related messages are referred as 

time-triggered communication schedules2• For example, let us 

consider the time-triggered schedules where applications are 

allowed to send messages only at their assigned slots and 

the tasks are triggered synchronously with the bus, i.e., the 

messages are generated at the beginning of the corresponding 

slots and get transmitted immediately. On the other hand, the 

tasks are assigned priorities in order to arbitrate for the access 

to the event-triggered segment. In this case, the messages 

1 In this case, the tracking error is x [k 1 as reference signal is zero. 
2 In this work, we neglect the effect of transmission time of messages 

and consider �C�•= �#�•in time-triggered communication. The zero-delay 
communication is as good as processing within a single PU except for the fact 
that the messages need finite time to be transmitted from one PU to ano�er 
through the communication bus. Usually, the sampling times of mecharucal 
or chemical systems are in the order of milliseconds ���‚�‹���• whereas the 
transmission time is in the order of microsecond ���"�‹���•or nanosecond ���„�‹�����•

Fig. 3. Our Scheme. 

might experience communication delay T when the higher 

priority tasks access the event-triggered segment. In this work, 

we assume that the event-triggered communication schedules 

are chosen such that the communication delay T is less than 

one sample interval, i.e., 0 �G�•T :::; h for the control-related 

messages. 

Moreover, we would like to categorize the state of the 

controller-plant setup into (i) transient (ii) steady-state. In 

the transient phase, relatively large variations in the states 

can be noticed. In this work, we quantify such phases by 

x[kjT x[k] which is an indicator of the system's energy level. 

x[kjT x[k] �H�• EtT indicates a transient state where EtT in

dicates the threshold. A transient state can also be a result 

of disturbances. The state of the closed-loop dynamics with 

x[kjT x[k] being bounded by EtT for reasonably long time 

period is referred as steady-state. In the following Sections, we 

provide a formal description of our scheme based on switching 

between control inputs and communication schedules. 

Related Work: The stable switching schemes among multiple 

controllers is quite heavily studied research area [7], [8], 

[9]. There are several well-known approaches for synthesiz

ing stable switching schemes (a brief survey is available in 

[7]). In these works, the communication bus is essentially 

modeled by one delay or a set of delays and controllers are 

synthesized in a generalized fashion without any regulation 

over the communication bus. Because of such restrictions, 

the controller synthesis often becomes overly conservative 

and fails to identify feasible solution for a wide class of 

systems. In contrast to these approaches, our scheme proposes 

a switching in both communication schedule and the controller. 

Such scheme essentially provides better control over the 

communication delay which helps to exploit the potential of 

the communication protocol in controller synthesis. 

III. OVERVIEW OF OUR SCHEME 

We consider an architecture consisting of n distributed 

control applications denoted by Ci for �z�• �V�•{L.n} (along 

with other applications). Each controller has two modes 

M �V�•{Mss, MtT} . MtT and Mss are the modes where we 

provide �`�• and ET communications for the control-related 

messages respectively. 

Controllers: Each controller has a set of controller gains 

Ki = {K!s, KIT} which are applied at the respective modes. 

The gains KIT are designed to asymptotically stabilize Ci 



with the control law u[k] = Klrx[k] and �`�• communication 

schedule. Using Ackermann's formula [10], one can place the 

poles of the closed-loop dynamics so as to meet the stability 

and performance requirements. 

The gains K!s are designed such that the plant is asymp

totically stabilized with the control law u[k] = K!sx[k - 1] . 
Therefore, K!s is designed to stabilize Ci with one sample 

delay in every control-related message (with ET communica

tion). Due to one sample delay in the feedback loop in case of 

ET communication, the order of the augmented plant is one 

order higher than the original plant. Unlike the case of �`�•

communication of control-related messages, there are some 

restrictions on the pole-placement of the augmented system 

(we do not provide the details of these design issues as they 

are not the focus of this work) and we cannot use Ackermann's 

formula. It is assumed that K!s is designed considering those 

restrictions such that u[k] = K!sx[k-1] is a stabilizing control 

law for Ci . 
Note that the control gains Ki = {K!s, Klr} are such 

that u[k] = Klrx[k] and u[k] = K!sx[k - 1] guarantee 

stability of control applications. However, there is no 

guarantee for stability with control laws u[k] = K!sx[k] and 

u[k] = Klrx[k - 1] . 

Communication schedules: We have a ET communication 

schedule where each control application Ci has a priority S!s. 
Therefore, the event-triggered segment of the communication 

cycle is shared by n control applications with n priorities. 

We have m shared �`�• communication slots such that m �G�•n. 
The n control applications are divided into m subgroups such 

that Li ni = n where ni is the number of elements in the ith 
subgroup. Each subgroup is assigned one �_�• communication 

slot SIr. 

Our Scheme: The basic idea of our scheme is shown in Fig. 3. 

A control application resides at Mss when it is in steady-state. 

In Mss the communication schedules and controller gains are 

S!s and K!s respectively. Due to ET communication, every 

control related message experiences one sample delay at all the 

times and u[k] = K!sx[k - 1] stabilizes the application. The 

state of the application changes to transient when x[k] becomes 

such that x [k ] T X [k] �H�• Etr due to disturbances or certain 

initial conditions. The control application in transient state 

issues a mode change request Mss ��• Mtr. When the mode 

change protocol (discussed in the next paragraph) allows the 

application the mode change, the application goes to Mtr. In 

Mtr the communication schedules and controller gains are SIr 
and Klr respectively. With �`�• communication in Mtr, every 

control related message experiences zero communication delay 

at all the times and u[k] = Klrx[k] stabilizes the application 

with improved control performances. The application goes to 

steady-state after �i time where �i is the settling time (in terms 

of sample count) with control law u[k] = Klrx[k] . However, 

the application is not allowed to change mode to Mtr ��• Mss 
before Tjw time is elapsed. Tjw is the dwell time for the 

control application Ci and Tjw �H�•�i. After Tjw the application 

switches back to Mss and remains in that mode until a new 

disturbance arrives. 

We apply the scheme to every control application in a 

subgroup. In this case, multiple controller might request for 

mode changes from Mss ��• Mtr at the same time. However, 

only one controller (in each subgroup) can be allowed to 

reside at Mtr. Hence, we adapt a mode change protocol for a 

systematic arbitration among the control applications within 

the subgroup. 

Mode change protocol: Each control application in a sub

group is assigned a priority3. The mode change protocol allows 

the application with highest priority (among the applications 

requesting for a mode change) to change its mode. Once a 

higher priority application is in Mtn it must reside at that 

mode for Tjw samples. Therefore, the lower priority appli

cations must wait for Tjw samples. In order to minimize the 

waiting time of the lower priority applications, the applications 

are assigned priority with increasing order of their dwell time 

Tjw' i.e., the application with lowest Tjw is of highest priority 

and so on. 

In the following we answer some of the relevant questions 

regarding the scheme: 

• What do we achieve? In case of m = n, we have 

�`�• communication for all the control applications at 

all times. On the other hand, m = 0 indicates ET 

communication for all the applications at all times. We 

are interested in a trade-off where 0 �G�•m �G�•n, i.e., we 

consume less �`�• communication slots than the case when 

m = n and achieve better control performances compared 

to the case when m = �f���•

• What will happen in case of m �G�•�G�•n? In this case we 

have comparatively higher number of control applications 

and we want to spend less �_�• communication. Naturally, 

there will be too many pending mode change requests 

Mss ��• Mtr. This will essentially results in control 

performance similar as that with ET communication (but 

system will still be stable). Therefore, one can make a 

trade-off between how many �`�• communication slots 

should be used and improvement in control performance. 

• How do we choose dwell time Tjw? The choice of Tjw 
depends on the application and also on the expected range 

of initial conditions [8]. The larger the dwell time slower 

the switching is and more guaranteed the switching 

stability is. Although a large dwell time provides stronger 

stability guarantee, larger dwell time might results in 

higher waiting time (inferior performance) for the lower 

priority applications in case simultaneous mode change 

request. Therefore, the dwell time should be chosen 

considering the above mentioned trade-off. In this work, 

we assume that the proper values of Tjw are given such 

that Tjw �H�•�i. 
• What is the maximum waiting time for a mode 

change request to be granted? Multiple mode change 

request can occur in case disturbances (or transient) occur 

3Note that the priorities assigned by mode change protocol are not related 
to the priorities associated with the ET communication. 



in more than one control applications simultaneously. 

Effectiveness of the scheme lies on the assumption that 

disturbances do not occur too frequently, e.g., the inter

arrival time of two consecutive disturbances in any ap

plication is more than the sum of all Tjw' This is a 

realistic assumption because every controller is usually 

designed to meet performance requirement based on some 

specified bound on disturbances. With such occurrence of 

disturbances, the maximum waiting time of a controller 

is the sum of Tjw of all the higher priority control 

applications. 

�K���•Comments on switching stability 

We provide an intuitive outline of why the resulting switch

ing system is stable. We utilize the idea that energy (or 

Lyapunov function) decreases monotonically with time if 

the overall switching system is asymptotically stable. In the 

proposed switching scheme, there are two subsystems (Mtr 
and Mss). Both the subsystems are asymptotically stable. Let 

us consider the case without external disturbances. In this case, 

once the system switches to Mss, it will always be in Mss 
which is a asymptotically stable subsystem. Hence, switching 

stability is obvious without external disturbance. 

In case, the disturbance occurs in Mss and X[k] T x[k] �H�•

Etr, a mode change request is issued. The mode change 

protocols allows mode change to Mtr after finite number of 

samples (when the higher priority control applications reside 

at the Mtr)' Mtr being asymptotically stable, energy decreases 

monotonically in Mtr and switches to Mss after Tdw samples. 

If dwell time Tjw �H�•�i 
for all possible initial states of the Ci, 

then x[kjT x[k] will be close to zero and x[kjT x[k] ::::: Eth at 

the end of Tjw' Hence, if the disturbances do not occur too 

frequently (as mentioned in the previous Section), the systems 

then stays in Mss and achieves asymptotic stability. 

In case a disturbance occurs in Mtr and control appli

cation is unable to reach steady-state after Tjw samples, it 

issues a mode change request immediately after the switch 

Mtr ���• Ms s. The subsequent switching sequence will be same 

as described above. 

�O���•Illustrative Example 

We illustrate the significance of the scheme by considering 

two distributed second order discrete-time systems (C1 and 

C2) given by (2) and (3) . Let us now consider the three cases, 

each with different number of available �_�• communication 

slots. 

A [0.4 1 � -1.56 

A � [ 1.2 
2 -1.8 

1.0 1 [ 0.3 1 -0.9 ,HI = 0.1 ' (2) 

0.2 1 [ 0.2 1 
-2.1 ,B2 = 0.3 . (3) 

Case �[�• (m=n=2): We consider assigning �_�•

communication slots to a message in each control 

application. Using Ackermann's formula, we compute 

Kir = [ 7.4394 2.6819 ] and Klr = [ 0.0417 2.9722 ] 
by placing the poles at -0.2 and +0.2 (for both applications). 

Applying the control law u[k] = Klrx[k] , we obtain Xl [k] 
as shown in Fig. 4 (we use identical initial conditions 

for both the control applications). The settling times 

(�i) for both the controllers is around 0.14 second. 

The integral error cost and the input cost of C1 are 

Lk x[kjT x[k] = 8.6 x 103 and Lk u[kj2 = 4.7276 X 104. 
For C2, Lk x[kjT x[k] 1.8136 x 103 and 

Lk u[kj2 = 1.2857 x 104. Here, for two control applications, 

we consume two �_�• communication slots. 

Case �[�[�• (m=O): We assign the same control 

messages in the event-triggered segment for the ET 

communication. Let K;s = [ 3.4674 2.7978 ] and 

K;s = L -6.1031 -4.0312 ] . We apply the control law 

u[k] = K!sx[k-l] and obtain x1[k] as shown in Fig. 5. The �i 
of C1 and C2 are 2.42 seconds and 0.28 second respectively. 

The integral error cost and the input cost of C1 are 

Lk x[kjT x[k] = 6.9648 x 106 and Lk u[k] 2 = 9.1703 X 106. 
For C2, Lk x[kjT x[k] 5.4479 x 104 and 

Lk u[kj2 = 3.0933 x 105. We do not consume any �_�•

communication slot. The quality of the control performance 

is noticeably inferior compared to the case where we used �_�•

communication slots, i.e., (m=2). 

Case �[�[�[�•(m=1): We choose Etr = 0.02 for both the applica

tions and Tlw = 15 and Tlw = 10 samples4• Therefore, C2 

has higher priority than C1• We demonstrate the performance 

of our scheme at the worst case situation, i.e., when both the 

applications request for mode change at the same time and 

C1 has to wait for Tlw samples. All the gains values are 

already mentioned in the previous paragraphs. We show the 

performance of the controller using our scheme in Fig. 6. The 

6 of C1 is 0.36 second and Lk x[kjT x[k] = 1.3651 x 106 and 

Lku[kj2 = 2.3607 x 106. The 6 of C2 is 0.14 second and 

Lk x[kjT x[k] = 1.8136 x 103 and Lk u[kj2 = 1.2857 x 104. 
We can notice that �i of both the applications is much lesser 

and also the other integral costs are improved compared to 

those with ET communication schedule (Fig. 6). At the same 

time, we consume only one �`�• communication slot for running 

the applications in Mtr. Therefore, we could achieve improved 

control performance utilizing lesser �`�• communication. The 

effectiveness of the above scheme is more prominent when 

number of control applications are highly unstable (e.g., C1). 

The difference between control performance with �_�• and ET 

communication is more visible in the case of higher instability 

margin of the original plant. 

IV. FLEXRAY CONTROL CO-SIMULATION FRAMEWORK 

Now we illustrate the above scheme in the context of a setup 

where multiple control applications are communicating over a 

FlexRay bus. 

�K���•FlexRay Protocol 

The FlexRay communication protocol [6] is organized as 

a periodic sequence of communication cycles as shown in 

Fig. 2. Each cycle is of fixed length and is indexed by a 

cycle counter that is incremented from 0 to 63 after which 

the counter is reset to �f���• Every such cycle consists of a 

4Note that because there was no switching involved in the previous cases, 
these parameters were not relevant. 



Fig. 4. The plots of xdk] with �^�• com
munication (Case I). 

Fig. 5. The plots of �n�|�•[k] with ET com
munication (Case II). 

Fig. 6. The plots of �n�|�•[k] with our switch
ing scheme (Case III). 

static (ST) segment that is partitioned into time slots. We use 

ST segment schedules for �`�• communication. Further, there 

is a dynamic (DYN) segment that is partitioned into minislots 

indexed by a minis lot counter. The DYN segment schedules 

are used for ET communication. A slot counter counts the 

communication slots in ST and DYN segment in order to 

indicate time windows for admissible message transmissions. 

Each FlexRay message mi is assigned a schedule (Si, Bi, Ri) 
for uniquely specified transmission points where Si denotes 

the assigned slot number, Ri specifies the number of cycles 

that must elapse between two allowable transmissions and Bi 
denotes the cycle offset within 64 cycles. 

�O���•Simulator 
Our simulator is made up of a SystemC based FlexRay event 

simulator in order to simulate communication delays and the 

discrete-time system model in order to simulate the discrete

time control system. The FlexRay simulator consists of several 

submodules: 

• FlexRay clock provides the global time base 

• Event generator generates input event streams based on 

the system description 

• FlexRay communication model implements the FlexRay 

protocol and computes the message delays 

The message delays are used by the discrete-time system 

model to compute the sensor-to-actuator delays in order to 

simulate the stability of the system. 

Discrete-Time Control System Model: The discrete-time 

system model is implemented in Matlab as a discrete time 

control system of the form (1). We consider a distributed 

control architecture as depicted in Fig. 1 (a). A task in mode 

M is represented by tuple Ti = {pr, or, M, er} where 

PiM, oftI and er are the period, offset and the schedule of 

the task in mode M. The task offset oftI in �`�• (static segment) 

communication schedule is chosen such that the tasks are 

triggered at the beginning of its ST slot. For the ET (dynamic 

segment) communication schedules, oftI is chosen such that 

r�l = 1. For example, the sensor task Ts is triggered with 

offset Os, the controller task Te is processed on the same 

processor with offset Oe �H�•Os + rs where rs is the worst

case response time of Ts. Subsequently, the controller output is 

packetized in message me that is transmitted via the FlexRay 

bus with period �g�•= h and time delay T. The actuator task Ta 
is triggered with an offset Oa = Os and performs the input to 

the plant. 

TABLE I 
�R�e�b�h�J�i�Z�j�e�c�•�e�W�•�m�J�i�Z�e�l�j�•�Q�e�c�k�i�e�a�!�j�Q�Y�U�T�l�a�U�i�•�Q�e�	�T�U�j�Z�X�c�•�Q�Y�e�Z�Q�U�j�•

�P�y�• schedule 2:� x[kF x[k] 2:�u[kF � i (seconds) 
�^�• �B���<�•x �&�#���• �4���@�,�@�<�•X �&�#�5�• �#���&�4�•

�P�%�• ET �<���D�<�4�B�•x �'�#�=�• �D���&�@�#�0�•X �'�#�=�• �,���4�,�•
Case A �9���9�4�D�4�•x �&�#�=�• �@���9�D�D�4�•X �&�#�=�• �#���9�<�•
Case �N�• �'���0�<�9�'�•x �'�#�=�• �,���0�<�#�@�•X �'�#�=�• �#���0�<�•

�^�• �&���B�&�0�<�•x �&�#���• �&���,�B�9�@�•X �&�#�6�• �#���&�4�•

�P�+�• ET �9���4�4�@�D�•x �'�#�7�• �0���#�D�0�0�•X �'�#�:�• �#���,�B�•
Case A �9���4�4�@�D�•X �&�#�7�• �0���#�D�0�0�•X �&�#�:�• �#���,�B�•
Case �N�• �'���B�'�0�<�•X �'�#�1�• �'���,�B�9�@�•X �'�#�7�• �#���'�4�•

�^�• �D���#�&�@�0�•x �&�#�6�• �&���4�<�4�<�•x �&�#���• �#���&�#�•

�P�/�• ET �4���,�'�<�B�•x �'�#�:�• �&���&�#�<�B�•X �'�#�:�• �#���,�,�•
Case A �D���#�&�@�0�•X �&�#�7�• �&���4�<�4�<�•X �&�#�:�• �#���&�#�•
Case �N�• �D���#�'�@�0�•x �'�#�7�• �'���4�<�4�<�•X �'�#�:�• �#���'�#�•

�^�• �0���0�&�B�,�•x �&�#���• �<���<�&�<�B�•x �&�#���• �#���&�,�•

�P�3�• ET �&���#�4�,�B�•x �}�d�~�S�• �,���9�0�B�#�•X �}�d�•�S�• �&���#�,�•
Case A �@���4�B�4�9�•x �&�#�E�• �&���B�#�9�0�•X �€�d�|�S�• �#���0�&�•
Case �N�• �'���0�4�9�4�•X �'�#�E�• �'���0���,�0�,�<�•X �'�#�E�• �#���'�D�•

V. RE SULT S 

System description: The FlexRay configuration parameters 

have been specified using a commercial off-the-shelf design 

tool called EB Designer Pro [11]. The cycle length is set 

to 5ms with ST segment of length 2ms and 10 static 

slots. The rest of the cycle has been distributed to the 

DYN segment. Several applications being mapped on 

the DYN segment are exchanging 14 messages on the 

bus. We consider four distributed control applications 

with four control-related messages being transmitted via 

FlexRay. Each control application has three tasks, i.e., Ts, 
Ta and Te with an architecture shown in Fig. 1 (a) for 

all the four control applications. The two of the control 

applications are as per (2) and (3). The other control 

applications are as per (4) and (5). The sampling interval 

h of all the controllers is 20 ms. The controller gains 

for C1 and C2 are already mentioned in Section III-B. 
For C3 and C4, Klr [3.2492 1.3777 1.0214], 
Ktr [3.4318 -1.6184 4.8646] , K;s = 
[1.4505 0.9700 1.0840] and K;s = 
[ -3.3690 -2.5287 -3.6729]. Four control applications 

are assigned four DYN segment slots such that the resulting 

sensor-to-actuator delay of the control related messages is 

�‡�• �G�•T :s: h. The ET communication is realized by four 

DYN segment slots (recall Section IV-A) S';s : (30,0,2), 
S;s : (33,0,2), S;s : (35,0,2) and S;s : (37,0,2). 
We simulate the above distributed architecture in the 



co-simulation framework described in Section IV. 

0.7] [ 0.1 ] 
-0.6 , B3 = 0.7 , 
1.1 0.5 

0.3] [ 0.3 ] 
1.1 ,E4= 0.1 . 

-2.8 0.5 

(4) 

(5) 

Control Performance: We choose the dwell time for the 

four control applications as TJw = � ( �$���•TJw = �?���•TJw = �>�•and 

Tiw = �A�•(in samples). Therefore, 03 is the highest priority 

application and then comes O2, 04 and 01 respectively. We 

choose Etr = �$���$�-�•for all the applications. Comparison of 

various control performance parameters for different choices 

of communication schedules is shown in Table I. 

Case �I�• (m=1): In this case, we have one subgroup consisting 

of all the applications. We choose the second ST slot for the 

�`�• communication, i.e., Str. Table I shows the performance 

when all the four control applications have issued mode 

change request together (the worst case performance for our 

scheme). 

Case �M�•(m=2): We divide the control applications into two 

subgroups: {01, 02} and {03, 04} and assign second and 

third ST segment slots for �`�• communication. The control 

performances are shown in Table I. 

Discussions: We can see from the Table I that using our 

scheme we could achieve a control performance which is 

better than performance with only ET communication. At 

the same time, we consume lesser T T  communication slots 

compared to the case when only T T  communication is used. 

Therefore, we could make a good trade-off between control 

performance and use of T T  communication slots. Further

more, improvement in control performance is more when we 

consume more T T  communication slots (e.g., Case B gives 

better performance than Case A). Therefore, the consumption 

of T T  communication slots can be adjusted depending on the 

designer's requirement on the control performance. Finally, the 

performance improvements are more prominent in the control 

applications with more instability (e.g., 01 and 04) compared 

to others (i.e., O2 and 03). 
Effect of disturbances: Let us consider the application 04 
which is initially blocked by higher priority applications for 

�$��� ( � - � •second. Suppose, large disturbances occur at sensor 

signals as x3[k] = � ( �$�$�$�•at �•�•= �$���;�•seconds and xdk] = � ( �$�$�$�•

at �•�•= �*���;�•seconds. We can see the variation of Xl [k] in Fig. 

7 (a). In both cases, the application goes back to steady-state 

within �$���2�>�•seconds. Now, consider the same application 04 
with disturbance of x3[k] = � ( �$�$�•at �•�•= �.���$�•seconds. At the 

occurrence of disturbance 04 issues a mode change request, 

but mode change protocol does not allow a mode change 

until �-���)�8�• seconds as Mtr is occupied by a higher priority 

application. The Fig. 7 (b) shows the plot of x1[k] which 

comes back to steady-state after �$���2�>�•seconds. 

VI. CONCLUDING REMARKS 
In the case of distributed control applications communicat

ing over a hybrid (time- and event-triggered) protocol like 

FlexRay, there are two possibilities: (i) all control messages 

are scheduled on the time-triggered segment, or (ii) all control 

Fig. 7. Effect of disturbance in application �P�3�F�•(a) X3 [k] = �&�#�#�#�•at �Ž�•= �#���9�•
seconds and Xl [k] = �&�#�#�#�•at �Ž�•= �&���9�•seconds (b) X3 [k] = �&�#�#�•at �Ž�•= �,���#�•
seconds with �#���&�4�•seconds waiting time for the mode change. 

messages are scheduled on the event-triggered segment. Tra

ditionally, depending on (i) or (ii), the controller is designed 

accordingly. (i) has the advantage of better temporal behavior 

but poor bus utilization and flexibility, while (ii) suffers from 

the lack of temporal guarantees and hence possibly poor 

control performance. In this paper we have shown how control 

applications may be re-engineered to operate in two modes, 

which is in line with the bi-model characteristics of the 

communication protocol. We have shown that this provides a 

good trade-off between control performance and the number of 

utilized time-triggered slots. As a part of future work, we plan 

to quantify the disturbance model and analyze this problem 

from a schedulability-theoretic perspective (i.e., for how long 

might an application have to wait after issuing a mode-change 

request). 
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