

Fig. �\���• The distributed control system.

Fig. 2. Communication schedules: time-triggered and event-triggered.

K is the state-feedback gain [7] and r5 is the communication

delay. Designing a state-feedback controller u[k] essentially

boils down to a problem of finding suitable controller gains

K such that x[k] follows the designer's requirement. Typically,

a designer needs to meet both stability and performance

requirements of the closed-loop system. In this work, we have

the following stability and performance considerations.

• We consider the notion of asymptotic stability, i.e., we

want to ensure that x[k] ���• 0 as k ���• 00.

• We consider the settling time - time interval to reach and

remain (without external disturbances) within a specific

error band of the reference signal - as the performance

requirement. Moreover, we improve (minimize) the inte

gral cost function of the input signal u[k], i.e., Lk u[kj2
and the integral cost function of the tracking error, i.e.,

Lk x[kjT x[kj1.
In context of the problem under consideration, we consider

the communication protocol as shown in Fig. 2 where each

communication cycle is divided into time-triggered and event

triggered segments. We classify communication schedules

into two categories (Fig. 2): time-triggered (TT) and event

triggered (ET) schedules. First, the schedules which can ensure

zero delay of the control-related messages are referred as

time-triggered communication schedules2• For example, let us

consider the time-triggered schedules where applications are

allowed to send messages only at their assigned slots and

the tasks are triggered synchronously with the bus, i.e., the

messages are generated at the beginning of the corresponding

slots and get transmitted immediately. On the other hand, the

tasks are assigned priorities in order to arbitrate for the access

to the event-triggered segment. In this case, the messages

1 In this case, the tracking error is x [k 1 as reference signal is zero.
2 In this work, we neglect the effect of transmission time of messages

and consider �C�•= �#�•in time-triggered communication. The zero-delay
communication is as good as processing within a single PU except for the fact
that the messages need finite time to be transmitted from one PU to ano�er
through the communication bus. Usually, the sampling times of mecharucal
or chemical systems are in the order of milliseconds ���‚�‹���• whereas the
transmission time is in the order of microsecond ���"�‹���•or nanosecond ���„�‹�����•

Fig. 3. Our Scheme.

might experience communication delay T when the higher

priority tasks access the event-triggered segment. In this work,

we assume that the event-triggered communication schedules

are chosen such that the communication delay T is less than

one sample interval, i.e., 0 �G�•T :::; h for the control-related

messages.

Moreover, we would like to categorize the state of the

controller-plant setup into (i) transient (ii) steady-state. In

the transient phase, relatively large variations in the states

can be noticed. In this work, we quantify such phases by

x[kjT x[k] which is an indicator of the system's energy level.

x[kjT x[k] �H�• EtT indicates a transient state where EtT in

dicates the threshold. A transient state can also be a result

of disturbances. The state of the closed-loop dynamics with

x[kjT x[k] being bounded by EtT for reasonably long time

period is referred as steady-state. In the following Sections, we

provide a formal description of our scheme based on switching

between control inputs and communication schedules.

Related Work: The stable switching schemes among multiple

controllers is quite heavily studied research area [7], [8],

[9]. There are several well-known approaches for synthesiz

ing stable switching schemes (a brief survey is available in

[7]). In these works, the communication bus is essentially

modeled by one delay or a set of delays and controllers are

synthesized in a generalized fashion without any regulation

over the communication bus. Because of such restrictions,

the controller synthesis often becomes overly conservative

and fails to identify feasible solution for a wide class of

systems. In contrast to these approaches, our scheme proposes

a switching in both communication schedule and the controller.

Such scheme essentially provides better control over the

communication delay which helps to exploit the potential of

the communication protocol in controller synthesis.

III. OVERVIEW OF OUR SCHEME

We consider an architecture consisting of n distributed

control applications denoted by Ci for �z�• �V�•{L.n} (along

with other applications). Each controller has two modes

M �V�•{Mss, MtT} . MtT and Mss are the modes where we

provide �`�• and ET communications for the control-related

messages respectively.

Controllers: Each controller has a set of controller gains

Ki = {K!s, KIT} which are applied at the respective modes.

The gains KIT are designed to asymptotically stabilize Ci

with the control law u[k] = Klrx[k] and �`�• communication

schedule. Using Ackermann's formula [10], one can place the

poles of the closed-loop dynamics so as to meet the stability

and performance requirements.

The gains K!s are designed such that the plant is asymp

totically stabilized with the control law u[k] = K!sx[k - 1] .
Therefore, K!s is designed to stabilize Ci with one sample

delay in every control-related message (with ET communica

tion). Due to one sample delay in the feedback loop in case of

ET communication, the order of the augmented plant is one

order higher than the original plant. Unlike the case of �`�•

communication of control-related messages, there are some

restrictions on the pole-placement of the augmented system

(we do not provide the details of these design issues as they

are not the focus of this work) and we cannot use Ackermann's

formula. It is assumed that K!s is designed considering those

restrictions such that u[k] = K!sx[k-1] is a stabilizing control

law for Ci .
Note that the control gains Ki = {K!s, Klr} are such

that u[k] = Klrx[k] and u[k] = K!sx[k - 1] guarantee

stability of control applications. However, there is no

guarantee for stability with control laws u[k] = K!sx[k] and

u[k] = Klrx[k - 1] .

Communication schedules: We have a ET communication

schedule where each control application Ci has a priority S!s.
Therefore, the event-triggered segment of the communication

cycle is shared by n control applications with n priorities.

We have m shared �`�• communication slots such that m �G�•n.
The n control applications are divided into m subgroups such

that Li ni = n where ni is the number of elements in the ith
subgroup. Each subgroup is assigned one �_�• communication

slot SIr.

Our Scheme: The basic idea of our scheme is shown in Fig. 3.

A control application resides at Mss when it is in steady-state.

In Mss the communication schedules and controller gains are

S!s and K!s respectively. Due to ET communication, every

control related message experiences one sample delay at all the

times and u[k] = K!sx[k - 1] stabilizes the application. The

state of the application changes to transient when x[k] becomes

such that x [k] T X [k] �H�• Etr due to disturbances or certain

initial conditions. The control application in transient state

issues a mode change request Mss ��• Mtr. When the mode

change protocol (discussed in the next paragraph) allows the

application the mode change, the application goes to Mtr. In

Mtr the communication schedules and controller gains are SIr
and Klr respectively. With �`�• communication in Mtr, every

control related message experiences zero communication delay

at all the times and u[k] = Klrx[k] stabilizes the application

with improved control performances. The application goes to

steady-state after �i time where �i is the settling time (in terms

of sample count) with control law u[k] = Klrx[k] . However,

the application is not allowed to change mode to Mtr ��• Mss
before Tjw time is elapsed. Tjw is the dwell time for the

control application Ci and Tjw �H�•�i. After Tjw the application

switches back to Mss and remains in that mode until a new

disturbance arrives.

We apply the scheme to every control application in a

subgroup. In this case, multiple controller might request for

mode changes from Mss ��• Mtr at the same time. However,

only one controller (in each subgroup) can be allowed to

reside at Mtr. Hence, we adapt a mode change protocol for a

systematic arbitration among the control applications within

the subgroup.

Mode change protocol: Each control application in a sub

group is assigned a priority3. The mode change protocol allows

the application with highest priority (among the applications

requesting for a mode change) to change its mode. Once a

higher priority application is in Mtn it must reside at that

mode for Tjw samples. Therefore, the lower priority appli

cations must wait for Tjw samples. In order to minimize the

waiting time of the lower priority applications, the applications

are assigned priority with increasing order of their dwell time

Tjw' i.e., the application with lowest Tjw is of highest priority

and so on.

In the following we answer some of the relevant questions

regarding the scheme:

• What do we achieve? In case of m = n, we have

�`�• communication for all the control applications at

all times. On the other hand, m = 0 indicates ET

communication for all the applications at all times. We

are interested in a trade-off where 0 �G�•m �G�•n, i.e., we

consume less �`�• communication slots than the case when

m = n and achieve better control performances compared

to the case when m = �f���•

• What will happen in case of m �G�•�G�•n? In this case we

have comparatively higher number of control applications

and we want to spend less �_�• communication. Naturally,

there will be too many pending mode change requests

Mss ��• Mtr. This will essentially results in control

performance similar as that with ET communication (but

system will still be stable). Therefore, one can make a

trade-off between how many �`�• communication slots

should be used and improvement in control performance.

• How do we choose dwell time Tjw? The choice of Tjw
depends on the application and also on the expected range

of initial conditions [8]. The larger the dwell time slower

the switching is and more guaranteed the switching

stability is. Although a large dwell time provides stronger

stability guarantee, larger dwell time might results in

higher waiting time (inferior performance) for the lower

priority applications in case simultaneous mode change

request. Therefore, the dwell time should be chosen

considering the above mentioned trade-off. In this work,

we assume that the proper values of Tjw are given such

that Tjw �H�•�i.
• What is the maximum waiting time for a mode

change request to be granted? Multiple mode change

request can occur in case disturbances (or transient) occur

3Note that the priorities assigned by mode change protocol are not related
to the priorities associated with the ET communication.

in more than one control applications simultaneously.

Effectiveness of the scheme lies on the assumption that

disturbances do not occur too frequently, e.g., the inter

arrival time of two consecutive disturbances in any ap

plication is more than the sum of all Tjw' This is a

realistic assumption because every controller is usually

designed to meet performance requirement based on some

specified bound on disturbances. With such occurrence of

disturbances, the maximum waiting time of a controller

is the sum of Tjw of all the higher priority control

applications.

�K���•Comments on switching stability

We provide an intuitive outline of why the resulting switch

ing system is stable. We utilize the idea that energy (or

Lyapunov function) decreases monotonically with time if

the overall switching system is asymptotically stable. In the

proposed switching scheme, there are two subsystems (Mtr
and Mss). Both the subsystems are asymptotically stable. Let

us consider the case without external disturbances. In this case,

once the system switches to Mss, it will always be in Mss
which is a asymptotically stable subsystem. Hence, switching

stability is obvious without external disturbance.

In case, the disturbance occurs in Mss and X[k] T x[k] �H�•

Etr, a mode change request is issued. The mode change

protocols allows mode change to Mtr after finite number of

samples (when the higher priority control applications reside

at the Mtr)' Mtr being asymptotically stable, energy decreases

monotonically in Mtr and switches to Mss after Tdw samples.

If dwell time Tjw �H�•�i
for all possible initial states of the Ci,

then x[kjT x[k] will be close to zero and x[kjT x[k] ::::: Eth at

the end of Tjw' Hence, if the disturbances do not occur too

frequently (as mentioned in the previous Section), the systems

then stays in Mss and achieves asymptotic stability.

In case a disturbance occurs in Mtr and control appli

cation is unable to reach steady-state after Tjw samples, it

issues a mode change request immediately after the switch

Mtr ���• Ms s. The subsequent switching sequence will be same

as described above.

�O���•Illustrative Example

We illustrate the significance of the scheme by considering

two distributed second order discrete-time systems (C1 and

C2) given by (2) and (3) . Let us now consider the three cases,

each with different number of available �_�• communication

slots.

A [0.4 1 � -1.56

A � [1.2
2 -1.8

1.0 1 [0.3 1 -0.9 ,HI = 0.1 ' (2)

0.2 1 [0.2 1
-2.1 ,B2 = 0.3 . (3)

Case �[�• (m=n=2): We consider assigning �_�•

communication slots to a message in each control

application. Using Ackermann's formula, we compute

Kir = [7.4394 2.6819] and Klr = [0.0417 2.9722]
by placing the poles at -0.2 and +0.2 (for both applications).

Applying the control law u[k] = Klrx[k] , we obtain Xl [k]
as shown in Fig. 4 (we use identical initial conditions

for both the control applications). The settling times

(�i) for both the controllers is around 0.14 second.

The integral error cost and the input cost of C1 are

Lk x[kjT x[k] = 8.6 x 103 and Lk u[kj2 = 4.7276 X 104.
For C2, Lk x[kjT x[k] 1.8136 x 103 and

Lk u[kj2 = 1.2857 x 104. Here, for two control applications,

we consume two �_�• communication slots.

Case �[�[�• (m=O): We assign the same control

messages in the event-triggered segment for the ET

communication. Let K;s = [3.4674 2.7978] and

K;s = L -6.1031 -4.0312] . We apply the control law

u[k] = K!sx[k-l] and obtain x1[k] as shown in Fig. 5. The �i
of C1 and C2 are 2.42 seconds and 0.28 second respectively.

The integral error cost and the input cost of C1 are

Lk x[kjT x[k] = 6.9648 x 106 and Lk u[k] 2 = 9.1703 X 106.
For C2, Lk x[kjT x[k] 5.4479 x 104 and

Lk u[kj2 = 3.0933 x 105. We do not consume any �_�•

communication slot. The quality of the control performance

is noticeably inferior compared to the case where we used �_�•

communication slots, i.e., (m=2).

Case �[�[�[�•(m=1): We choose Etr = 0.02 for both the applica

tions and Tlw = 15 and Tlw = 10 samples4• Therefore, C2

has higher priority than C1• We demonstrate the performance

of our scheme at the worst case situation, i.e., when both the

applications request for mode change at the same time and

C1 has to wait for Tlw samples. All the gains values are

already mentioned in the previous paragraphs. We show the

performance of the controller using our scheme in Fig. 6. The

6 of C1 is 0.36 second and Lk x[kjT x[k] = 1.3651 x 106 and

Lku[kj2 = 2.3607 x 106. The 6 of C2 is 0.14 second and

Lk x[kjT x[k] = 1.8136 x 103 and Lk u[kj2 = 1.2857 x 104.
We can notice that �i of both the applications is much lesser

and also the other integral costs are improved compared to

those with ET communication schedule (Fig. 6). At the same

time, we consume only one �`�• communication slot for running

the applications in Mtr. Therefore, we could achieve improved

control performance utilizing lesser �`�• communication. The

effectiveness of the above scheme is more prominent when

number of control applications are highly unstable (e.g., C1).

The difference between control performance with �_�• and ET

communication is more visible in the case of higher instability

margin of the original plant.

IV. FLEXRAY CONTROL CO-SIMULATION FRAMEWORK

Now we illustrate the above scheme in the context of a setup

where multiple control applications are communicating over a

FlexRay bus.

�K���•FlexRay Protocol

The FlexRay communication protocol [6] is organized as

a periodic sequence of communication cycles as shown in

Fig. 2. Each cycle is of fixed length and is indexed by a

cycle counter that is incremented from 0 to 63 after which

the counter is reset to �f���• Every such cycle consists of a

4Note that because there was no switching involved in the previous cases,
these parameters were not relevant.

Fig. 4. The plots of xdk] with �^�• com
munication (Case I).

Fig. 5. The plots of �n�|�•[k] with ET com
munication (Case II).

Fig. 6. The plots of �n�|�•[k] with our switch
ing scheme (Case III).

static (ST) segment that is partitioned into time slots. We use

ST segment schedules for �`�• communication. Further, there

is a dynamic (DYN) segment that is partitioned into minislots

indexed by a minis lot counter. The DYN segment schedules

are used for ET communication. A slot counter counts the

communication slots in ST and DYN segment in order to

indicate time windows for admissible message transmissions.

Each FlexRay message mi is assigned a schedule (Si, Bi, Ri)
for uniquely specified transmission points where Si denotes

the assigned slot number, Ri specifies the number of cycles

that must elapse between two allowable transmissions and Bi
denotes the cycle offset within 64 cycles.

�O���•Simulator
Our simulator is made up of a SystemC based FlexRay event

simulator in order to simulate communication delays and the

discrete-time system model in order to simulate the discrete

time control system. The FlexRay simulator consists of several

submodules:

• FlexRay clock provides the global time base

• Event generator generates input event streams based on

the system description

• FlexRay communication model implements the FlexRay

protocol and computes the message delays

The message delays are used by the discrete-time system

model to compute the sensor-to-actuator delays in order to

simulate the stability of the system.

Discrete-Time Control System Model: The discrete-time

system model is implemented in Matlab as a discrete time

control system of the form (1). We consider a distributed

control architecture as depicted in Fig. 1 (a). A task in mode

M is represented by tuple Ti = {pr, or, M, er} where

PiM, oftI and er are the period, offset and the schedule of

the task in mode M. The task offset oftI in �`�• (static segment)

communication schedule is chosen such that the tasks are

triggered at the beginning of its ST slot. For the ET (dynamic

segment) communication schedules, oftI is chosen such that

r�l = 1. For example, the sensor task Ts is triggered with

offset Os, the controller task Te is processed on the same

processor with offset Oe �H�•Os + rs where rs is the worst

case response time of Ts. Subsequently, the controller output is

packetized in message me that is transmitted via the FlexRay

bus with period �g�•= h and time delay T. The actuator task Ta
is triggered with an offset Oa = Os and performs the input to

the plant.

TABLE I
�R�e�b�h�J�i�Z�j�e�c�•�e�W�•�m�J�i�Z�e�l�j�•�Q�e�c�k�i�e�a�!�j�Q�Y�U�T�l�a�U�i�•�Q�e�	�T�U�j�Z�X�c�•�Q�Y�e�Z�Q�U�j�•

�P�y�• schedule 2:� x[kF x[k] 2:�u[kF � i (seconds)
�^�• �B���<�•x �&�#���• �4���@�,�@�<�•X �&�#�5�• �#���&�4�•

�P�%�• ET �<���D�<�4�B�•x �'�#�=�• �D���&�@�#�0�•X �'�#�=�• �,���4�,�•
Case A �9���9�4�D�4�•x �&�#�=�• �@���9�D�D�4�•X �&�#�=�• �#���9�<�•
Case �N�• �'���0�<�9�'�•x �'�#�=�• �,���0�<�#�@�•X �'�#�=�• �#���0�<�•

�^�• �&���B�&�0�<�•x �&�#���• �&���,�B�9�@�•X �&�#�6�• �#���&�4�•

�P�+�• ET �9���4�4�@�D�•x �'�#�7�• �0���#�D�0�0�•X �'�#�:�• �#���,�B�•
Case A �9���4�4�@�D�•X �&�#�7�• �0���#�D�0�0�•X �&�#�:�• �#���,�B�•
Case �N�• �'���B�'�0�<�•X �'�#�1�• �'���,�B�9�@�•X �'�#�7�• �#���'�4�•

�^�• �D���#�&�@�0�•x �&�#�6�• �&���4�<�4�<�•x �&�#���• �#���&�#�•

�P�/�• ET �4���,�'�<�B�•x �'�#�:�• �&���&�#�<�B�•X �'�#�:�• �#���,�,�•
Case A �D���#�&�@�0�•X �&�#�7�• �&���4�<�4�<�•X �&�#�:�• �#���&�#�•
Case �N�• �D���#�'�@�0�•x �'�#�7�• �'���4�<�4�<�•X �'�#�:�• �#���'�#�•

�^�• �0���0�&�B�,�•x �&�#���• �<���<�&�<�B�•x �&�#���• �#���&�,�•

�P�3�• ET �&���#�4�,�B�•x �}�d�~�S�• �,���9�0�B�#�•X �}�d�•�S�• �&���#�,�•
Case A �@���4�B�4�9�•x �&�#�E�• �&���B�#�9�0�•X �€�d�|�S�• �#���0�&�•
Case �N�• �'���0�4�9�4�•X �'�#�E�• �'���0���,�0�,�<�•X �'�#�E�• �#���'�D�•

V. RE SULT S

System description: The FlexRay configuration parameters

have been specified using a commercial off-the-shelf design

tool called EB Designer Pro [11]. The cycle length is set

to 5ms with ST segment of length 2ms and 10 static

slots. The rest of the cycle has been distributed to the

DYN segment. Several applications being mapped on

the DYN segment are exchanging 14 messages on the

bus. We consider four distributed control applications

with four control-related messages being transmitted via

FlexRay. Each control application has three tasks, i.e., Ts,
Ta and Te with an architecture shown in Fig. 1 (a) for

all the four control applications. The two of the control

applications are as per (2) and (3). The other control

applications are as per (4) and (5). The sampling interval

h of all the controllers is 20 ms. The controller gains

for C1 and C2 are already mentioned in Section III-B.
For C3 and C4, Klr [3.2492 1.3777 1.0214],
Ktr [3.4318 -1.6184 4.8646] , K;s =
[1.4505 0.9700 1.0840] and K;s =
[-3.3690 -2.5287 -3.6729]. Four control applications

are assigned four DYN segment slots such that the resulting

sensor-to-actuator delay of the control related messages is

�‡�• �G�•T :s: h. The ET communication is realized by four

DYN segment slots (recall Section IV-A) S';s : (30,0,2),
S;s : (33,0,2), S;s : (35,0,2) and S;s : (37,0,2).
We simulate the above distributed architecture in the

co-simulation framework described in Section IV.

0.7] [0.1]
-0.6 , B3 = 0.7 ,
1.1 0.5

0.3] [0.3]
1.1 ,E4= 0.1 .

-2.8 0.5

(4)

(5)

Control Performance: We choose the dwell time for the

four control applications as TJw = � (�$���•TJw = �?���•TJw = �>�•and

Tiw = �A�•(in samples). Therefore, 03 is the highest priority

application and then comes O2, 04 and 01 respectively. We

choose Etr = �$���$�-�•for all the applications. Comparison of

various control performance parameters for different choices

of communication schedules is shown in Table I.

Case �I�• (m=1): In this case, we have one subgroup consisting

of all the applications. We choose the second ST slot for the

�`�• communication, i.e., Str. Table I shows the performance

when all the four control applications have issued mode

change request together (the worst case performance for our

scheme).

Case �M�•(m=2): We divide the control applications into two

subgroups: {01, 02} and {03, 04} and assign second and

third ST segment slots for �`�• communication. The control

performances are shown in Table I.

Discussions: We can see from the Table I that using our

scheme we could achieve a control performance which is

better than performance with only ET communication. At

the same time, we consume lesser T T communication slots

compared to the case when only T T communication is used.

Therefore, we could make a good trade-off between control

performance and use of T T communication slots. Further

more, improvement in control performance is more when we

consume more T T communication slots (e.g., Case B gives

better performance than Case A). Therefore, the consumption

of T T communication slots can be adjusted depending on the

designer's requirement on the control performance. Finally, the

performance improvements are more prominent in the control

applications with more instability (e.g., 01 and 04) compared

to others (i.e., O2 and 03).
Effect of disturbances: Let us consider the application 04
which is initially blocked by higher priority applications for

�$��� (� - � •second. Suppose, large disturbances occur at sensor

signals as x3[k] = � (�$�$�$�•at �•�•= �$���;�•seconds and xdk] = � (�$�$�$�•

at �•�•= �*���;�•seconds. We can see the variation of Xl [k] in Fig.

7 (a). In both cases, the application goes back to steady-state

within �$���2�>�•seconds. Now, consider the same application 04
with disturbance of x3[k] = � (�$�$�•at �•�•= �.���$�•seconds. At the

occurrence of disturbance 04 issues a mode change request,

but mode change protocol does not allow a mode change

until �-���)�8�• seconds as Mtr is occupied by a higher priority

application. The Fig. 7 (b) shows the plot of x1[k] which

comes back to steady-state after �$���2�>�•seconds.

VI. CONCLUDING REMARKS
In the case of distributed control applications communicat

ing over a hybrid (time- and event-triggered) protocol like

FlexRay, there are two possibilities: (i) all control messages

are scheduled on the time-triggered segment, or (ii) all control

Fig. 7. Effect of disturbance in application �P�3�F�•(a) X3 [k] = �&�#�#�#�•at �Ž�•= �#���9�•
seconds and Xl [k] = �&�#�#�#�•at �Ž�•= �&���9�•seconds (b) X3 [k] = �&�#�#�•at �Ž�•= �,���#�•
seconds with �#���&�4�•seconds waiting time for the mode change.

messages are scheduled on the event-triggered segment. Tra

ditionally, depending on (i) or (ii), the controller is designed

accordingly. (i) has the advantage of better temporal behavior

but poor bus utilization and flexibility, while (ii) suffers from

the lack of temporal guarantees and hence possibly poor

control performance. In this paper we have shown how control

applications may be re-engineered to operate in two modes,

which is in line with the bi-model characteristics of the

communication protocol. We have shown that this provides a

good trade-off between control performance and the number of

utilized time-triggered slots. As a part of future work, we plan

to quantify the disturbance model and analyze this problem

from a schedulability-theoretic perspective (i.e., for how long

might an application have to wait after issuing a mode-change

request).

VII. ACKNOWLEDGEMENT

The first author of the paper is an Alexander von Humboldt

Research Fellow at TV Munich, Germany. The generous

grant of the Alexander von Humboldt Foundation is gratefully

acknowledged.

REFERENCES

[1] W. Wolf, "Cyber-physical systems," IEEE Computer, vol. 42, no. 3, pp.
88 - 89, 2009.

[2] H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and S. Chakraborty,
"Optimizing hierarchical schedules for improved control performance,"
in International Symposium on Industrial Embedded Systems (SIES),
2010.

[3] M. E. M. B. Gaid, A. Cela, and �o�•Hamam, "Optimal integrated control
and scheduling of networked control systems with communication
constraints: Application to a car suspension system," IEEE Trans. on
Control System Technology, vol. 14, no. 4, pp. 776 - 787, 2006.

[4] S. Sanili, A. Cervin, P. Eles, and �p���•Peng, "Integrated scheduling and
synthesis of control applications on distributed embedded systems," in
Design Automation and Test in Europe (DATE), 2009.

[5] "ISOICD11898-4, Road Vehicles Controller Area Network (CAN) Part
4: Time-Triggered Communication, International Standards Organiza
tion, Geneva," 2000.

[6] "The FlexRay Communications System Specifications, Ver. 2.1," www.
fiexray.com.

[7] W. Jiang, E. Fridman, A. Kruszewski, and J. Richard, "Switching
controller for stabilization of linear systems with switched time-varying
delays," in IEEE Con! on Decision and Control (CDC), 2009.

[8] G. Chesi, P. Colaneri, J. C. Geromel, R. Middleton, and R. Shorten,
"Computing upper-bounds of the minimum dwell time of linear switched
systems via homogeneous polynomial lyapunov functions," in American
Control Conference (ACC), 2009.

[9] S. Hirche, C.-C. Chen, and M. Buss, "Performance oriented control over
networks switching controllers and switching delay," Asian Journal of
Control, vol. 10, no. 1, pp. 24 - 33, 2008.

[10] .. http://www.esr.ruhr-uni-bochum.de/rtl/syscontrol/node 1 05 .htrnl."
[11] "Elektrobit tresos, www.elektrobit.com ...

