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ImageNet Winners (top-5 classification error)
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Traditional methods Deep Learning Human

2012: DL beats traditional methods

2015: DL beats human!
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AlexNet (partly)

NVIDIA Jetson Orin Nano
embedded GPU

AivoTTA (partly)
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The BIG picture



Frontier #1 top500.org
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21 MWatt
606k CPU cores
8.3M GPU cores



Inspiration: Our Brain is extremely powerful & efficient

• Power = 20 Watt

• Speed = 1000 Exa Op/s*

• Energy/operation = 
Power / Speed = 
2x10-5 fJ/operation

• Compare to Frontier
• Power = 21 MW

• Peak = 1.194 ExaFlop/s

• 680 m2

• Energy/op. = 19 pJ/op

*Tim Dettmers:
"making deep learning accessible"
2015 5



Once over lightly
• What’s (Deep) Learning?

• self learning algorithms

• using huge data sets to learn

• deep: many "learning layers"

• brain inspired, based on neurons and synapses (connections)

• high classification accuracy

• CNN: Convolutional Neural Network
• Learning

• Other Network Models

• Optimizations

• Architectures
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Learning
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Machine Learning

Output

Program
Data

Traditional CS Program

Data

Output

Concl: We learn 'by example'
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3 key components
• Score function (Classifier) : Function to map input to output

• Loss Function : Evaluate quality of mapping 

• Optimization Function : Update classifier

Classifier
(DNN or 

Bayesian model)

Loss
(measure of the 

error)

Optimization:
Improve
classifier

Class
values

Label 'cat'
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Example: Polynomial Curve Fitting

• Measured values (xi,ti)

• Generated by t=sin(x) + noise

• Can we learn this curve from
the measurements?

9Example taken from C.M. Bishop: Pattern Recognition and Machine LearningASCI Winterschool 2023



Loss E(w): Sum-of-Squares Error Function
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Model

Total error:  E(w) = ∑ {yn – tn}2

error = (yn-tn)

yn

tn

Tune model such that difference
between yn and tn gets smaller
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E.g. assume model = 3rd Order Polynomial
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• 4 parameters wi

Model

Model: y(x,w) = w0 + w1x + w2x2 + w3x3 

Parameter Value

w0 0.31

w1 7.99

w2 -25.43

w3 17.37
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9th Order Polynomial => Overfitting
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Parameter Value

w0 0.35

w1 232

w2 -5321

w3 45688

w4 -231630

w5 640042

w6 -1061800

w7 1042400

w8 -557682

w9 125201

Model

• 10 parameters wi

Model: y(x,w) = w0 + w1x + w2x2 + ... + w9x9
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Root-Mean-Square (RMS) Error:
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Overfitting

Over-fitting
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Increasing Data Set Size to 100 points 

9th Order Polynomial
N = 100
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Model: y(x,w) = w0 + w1x + w2x2 + ... + w9x9
ASCI Winterschool 2023



Regularization

•Penalize large coefficient values =>
add regularization term:
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• λ is one of the many hyper parameters for learning

E(w) = ∑ {yn – tn}2 + λ|w|2
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Regularization:   ln λ = -18,   M=9 (10 coeff)
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Regularization:   ERMS vs. ln λ
• Hyperparameter tuning:Right value of

λ is critical !
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Polynomial Coefficients   
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Too much regularizationNo regularization



Once over lightly
• What's Deep Learning?

• CNN: Convolutional Neural Network
• Learning

• Other Network Models

• Optimizations

• Architectures

19ASCI Winterschool 2023



Deep Learning, a quick tour

5x5
convolution

2x2
pooling

3x3
convolution

2x2
pooling

7x6
convolution

Face

1x1
convolution

A Simple Task
• Detect face
Training data
• 1 M images
Network
• 6 layers
• 951 parameters
Training time
• < 1 day

Low-level features Mid-level features High-level features
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Convolutional network as a deep loop-nest

for l in layers:
for o in output_maps[l]:
for i in input_maps[l]:

for x in columns[l]:
for y in rows[l]:
for kx in kernel_widht[l]:
for ky in kernel_height[l]:

out[l][o][x][y] += in[l][i][x+kx][y+ky] * w[l][i][o][kx][ky]
fout[l][o][x][y]= f_act(out[l][o][x][y])

∑=p  

w0  

w1  

w2  

x0

x1

x2

xK-1

Bias

b

Synaptic 
weigths

Summing 
junction

φ(p) 

Output

y
0-1

Activation 
function

wK-1  

0 0

0 0

0 1

0 0

0 0

0 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0 1

0 0

1 1

0 0

0

0

Example input 
vector
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• The basic computational unit of the 
brain is a neuron
• about 100 Billion neurons in our brain

• Neurons are connected with nearly 1014 –
1015 synapses

• Neurons receive input signals from 
dendrites and produce output signal along 
axon, which interact with the dendrites of 
other neurons via synaptic weights

• Synaptic weights – learnable & control 
influence strength

22

Our Brain
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Artificial Neuron
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DNN structure
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Convolution in CNNs: 1 layer

• N = batch size

• C input feature 
maps of size HxW

• M output feature 
maps of size ExF

• M filters of size RxS
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Convolution code
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Learning
• Score function (Classifier) : Function to map input to output

• Loss Function : Evaluate quality of mapping 

• Optimization Function : Update classifier

Classifier
(DNN or 

Bayesian model)

Loss
(measure of the 

error)

Optimization:
Improve
classifier

Class
values

Label 'cat'
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How do we learn all these coefficients

• Back Propagation !!
• calculate partial derivatives: δLoss / δw , for all w
• update w
• repeat many times, with many labeled inputs

29ASCI Winterschool 2023



Once over lightly
• What's Deep Learning?

• CNN: Convolutional Neural Network
• Learning

• Other Network Models
• Transformer

• SNN: Spiking Neural Network

• Optimizations

• Architectures
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Transformer using 
Attention NW

31

Sudipto Baul @ medium.com 



SNN: Spiking Neural Network (more brain inspired)

32

Model:

Jesus L.Lobo @ towardsdatascience.com



Once over lightly
• What's Deep Learning?

• CNN: Convolutional Neural Network
• Learning

• Other Network Models

• Optimizations
• Pruning

• Quantization

• Data reuse

• Architectures

33ASCI Winterschool 2023

Typical energy breakdown of a CNN
Yang.e.a CVPR'17



Pruning: Reduce Network
• Fine grain (irregular) pruning

• removing connections with small weigths

• needs special HW for efficiency

• Coarse grain (regular) pruning
• remove kernel (2D): i.e., skip an input feature map for a certain filter

• remove complete filter (3D), i.e. reduce nr. of output feature maps

• Structured pruning: 
• try to keep e.g. SIMD regularity (vector computing)

• decompose filters 

• depth wise convolution

• N:M type of pruning

34ASCI Winterschool 2023



From Fine to Coarse-Grained Pruning
• Prune to match the underlying data-parallel hardware
• E.g. prune by eliminating entire filter planes 
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H. Mao et al. “Exploring the regularity of sparse structure in ConvNets” (CVPR 2017)
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Quantization: why?
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Number representations
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Newer floating 
point formats

ASCI Winterschool 2023 38

8 bit, mini float



Going beyond traditional floating point: Posit

ASCI Winterschool 2023 39

Posit (16 bits in this example)

Posit vs Floating point precision
(16-bit numbers)



Reducing external memory accesses

40

Original code

Rescheduled code

VGG16 example:

Conclusion: we need advanced loop transformation to exploit data locality (in local buffers), 
reducing external accesses
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Types of reuse
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Once over lightly
• What's Deep Learning?

• CNN: Convolutional Neural Network
• Learning

• Other Network Models

• Optimizations
• Pruning

• Quantization

• Data reuse

• Architecture examples
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Accelerators: Google's TPU v1 (2016)
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TPU v4 (2021) 
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200W/275 TFlops 
= 0.73 pJ/flop



TPU v4 architecture

45(see servethehome.com)
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BrainTTA (TUE): System-on-Chip for Deep Learning 

ASCI Winterschool 2023

• Technology: 22 nm
• RISC-V + peripherals
• Split Data and Parameter memories (DMEM/PMEM) with banked access
• IMEM: Instruction memory



BrainTTA: the TTA Core

47

3 vMACs:
1. 8-bit MAC

• Scalar-Vector MAC
• Vector-Vector MAC

2. Binary MAC
3. Ternary MAC

vADD:
• Vector-Vector addition
• Residual support

vOPS:
• Requantization
• Binarization
• Ternarization
• MaxPool
• Auxiliary ops

Big on-chip
memories



Really solving the memory bottleneck: 
Computing in Memory (CIM)
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Conclusion
• Deep learning is an extremely fast moving field

• All big players (Big five) invest Billions of Euros

• Efficiency is a big problem, especially when moving AI to the Edge

• Plenty of research opportunities

ASCI Winterschool 2023 49
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