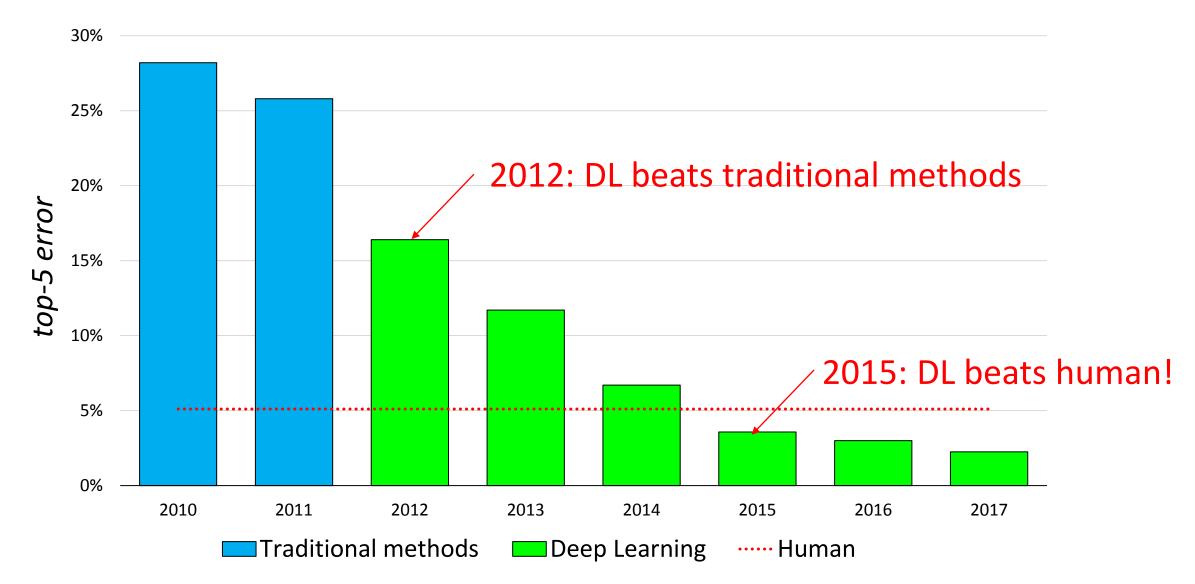


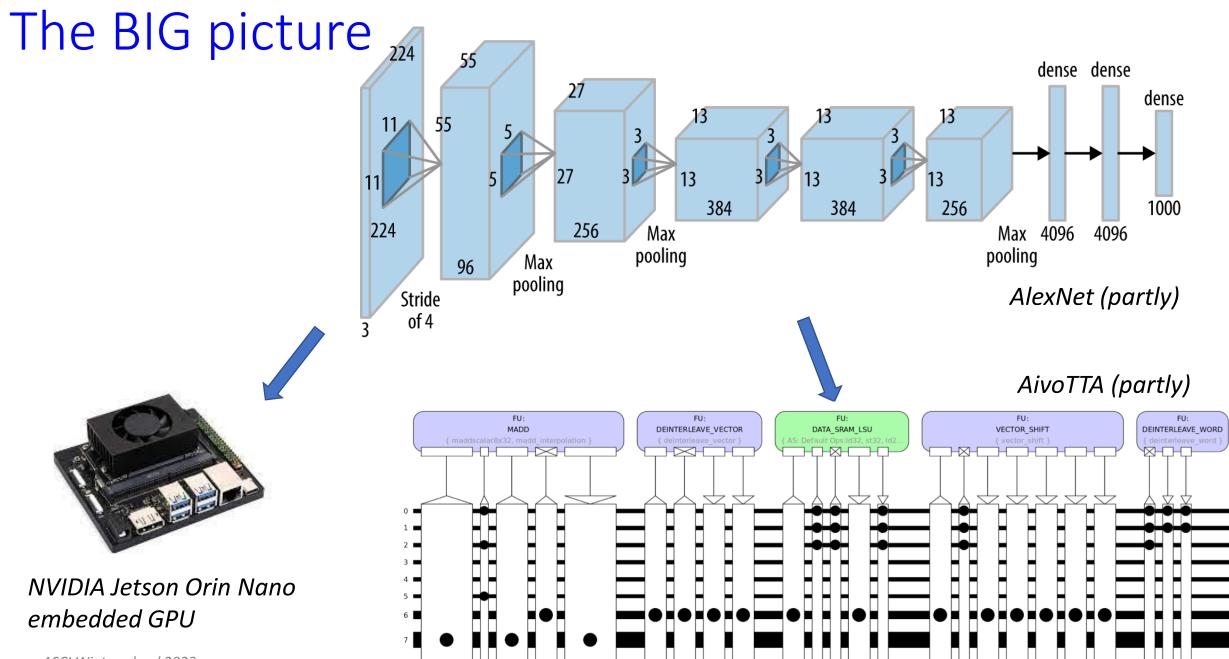
ASCI – Winterschool on Efficient Deep Learning Systems Oud Poelgeest: Nov 28-Dec 1, 2023

Once-Over-Lightly

Henk Corporaal www.ics.ele.tue.nl/~heco TUE

ImageNet Winners (top-5 classification error)





ASCI Winterschool 2023

3

21 MWatt 606k CPU cores 8.3M GPU cores

3

-

Frontier #1 top500.org

OENERGY

Hewlett Packard Enterprise

AMD

ASCI Winterschool 2023

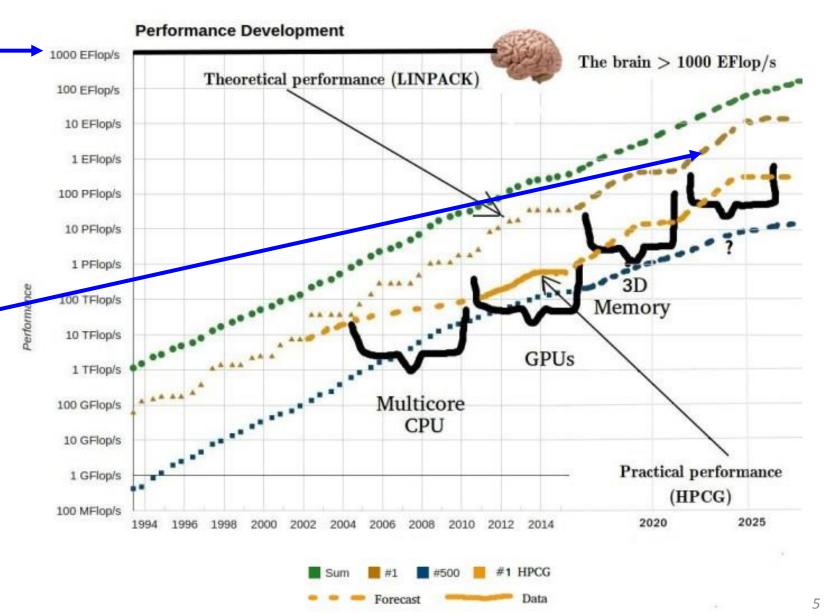
FRONTIER

Inspiration: Our Brain is extremely powerful & efficient

- Power = 20 Watt
- Speed = 1000 Exa Op/s*
- Energy/operation = Power / Speed = $2x10^{-5}$ fJ/operation
- Compare to **Frontier**
 - Power = 21 MW
 - Peak = 1.194 ExaFlop/s
 - 680 m^2
 - Energy/op. = 19 pJ/op

*Tim Dettmers:

"making deep learning accessible" 2015



Once over lightly

- What's (Deep) Learning?
 - self learning algorithms
 - using huge data sets to learn
 - deep: many "learning layers"
 - brain inspired, based on neurons and synapses (connections)
 - high classification accuracy
- CNN: Convolutional Neural Network
 - Learning
- Other Network Models
- Optimizations
- Architectures

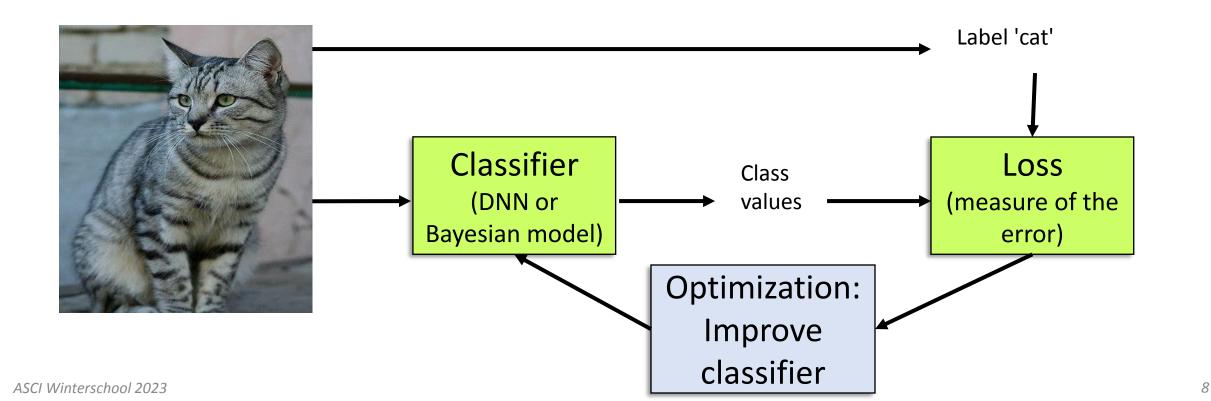
Traditional CS

Machine Learning

Concl: We learn 'by example' ASCI Winterschool 2023

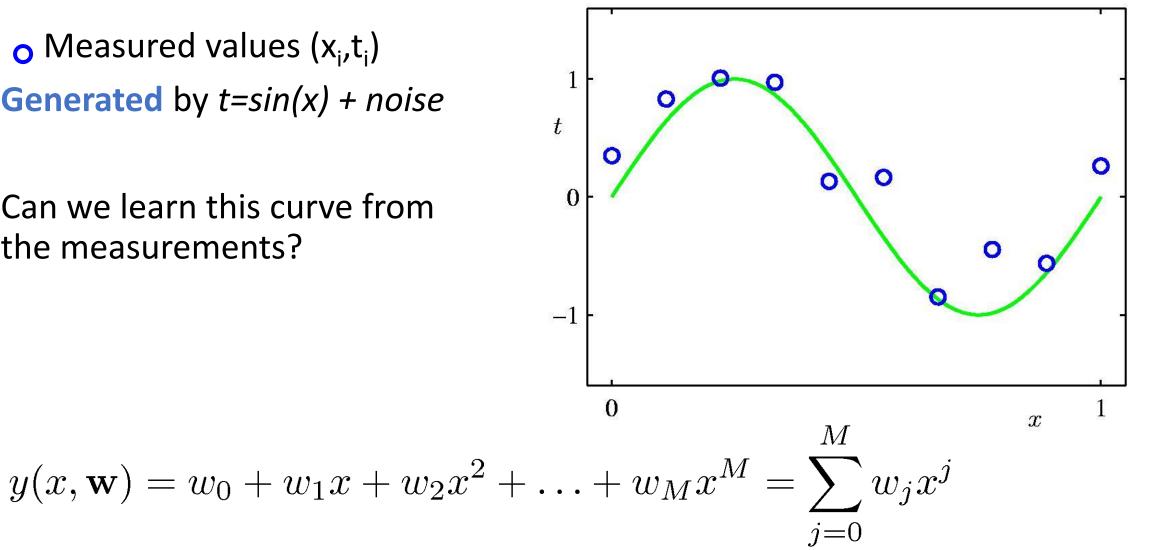
3 key components

- Score function (Classifier) : Function to map input to output
- Loss Function : Evaluate quality of mapping
- Optimization Function : Update classifier



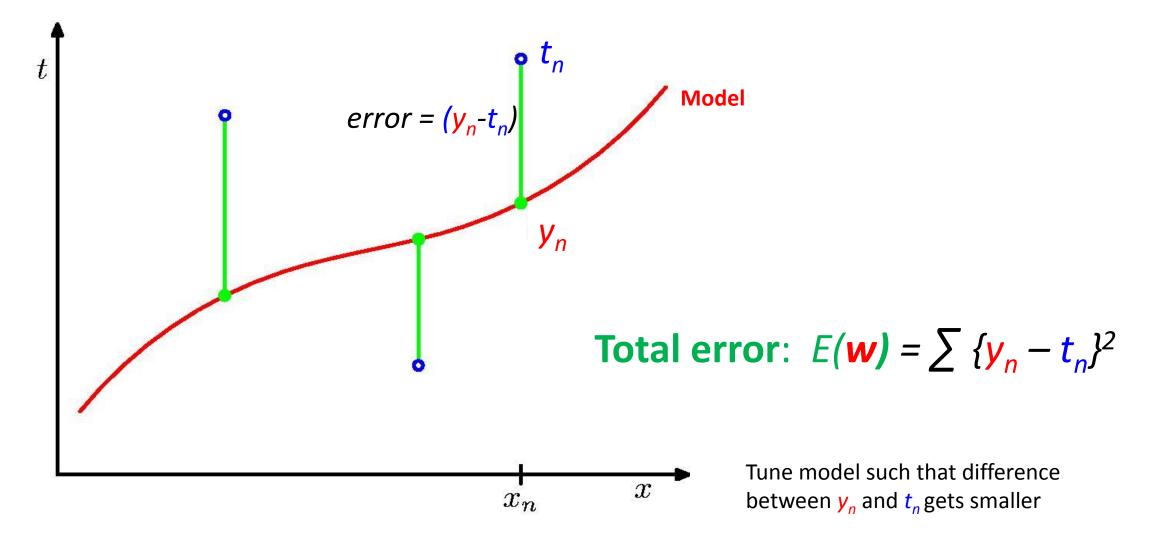
Example: Polynomial Curve Fitting

- • Measured values (x_i, t_i)
- **Generated** by *t=sin(x)* + *noise*
- Can we learn this curve from the measurements?

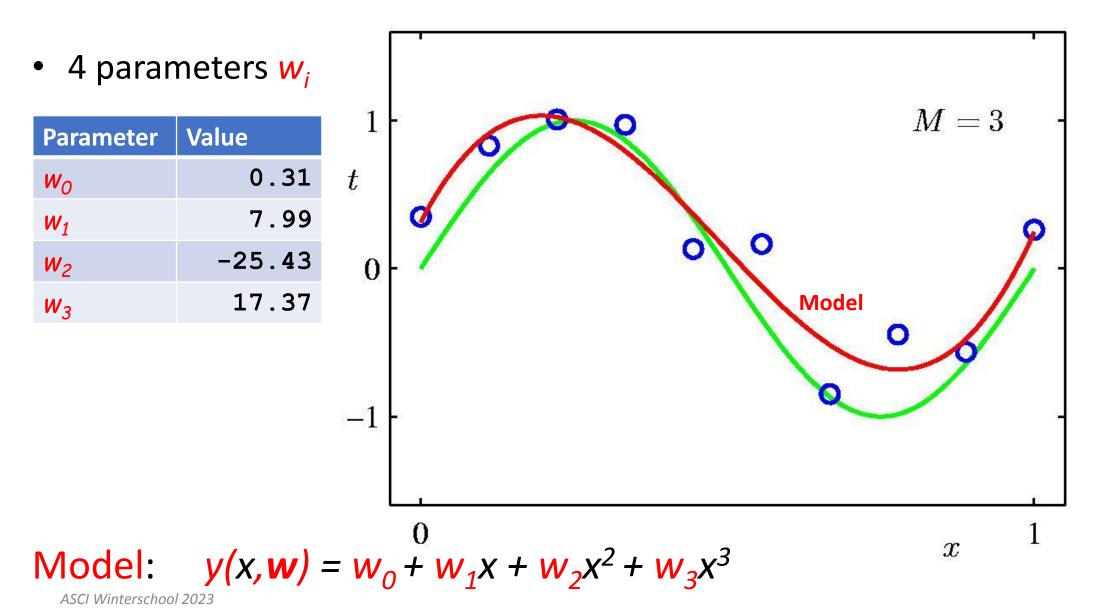


Example taken from C.M. Bishop: Pattern Recognition and Machine Learning

Loss E(w): Sum-of-Squares Error Function

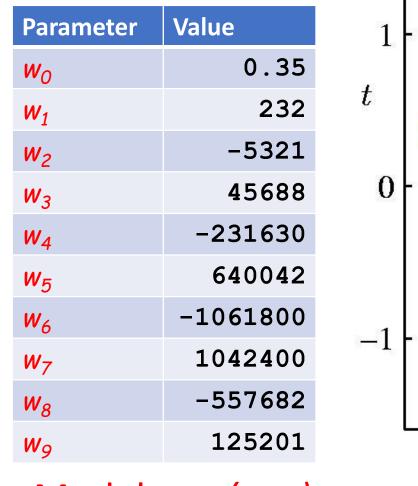


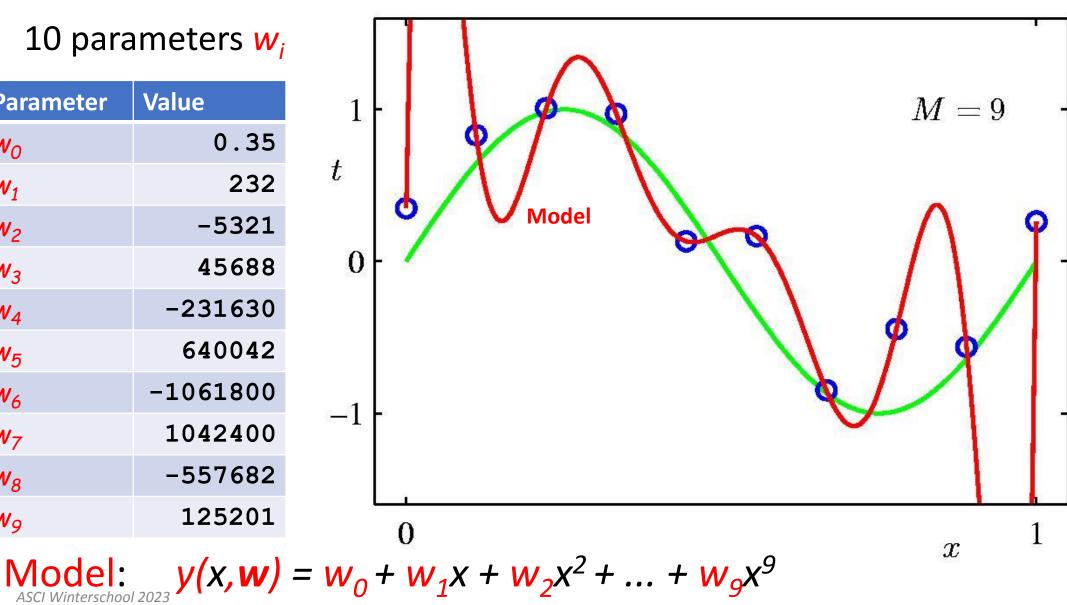
E.g. assume model = 3rd Order Polynomial



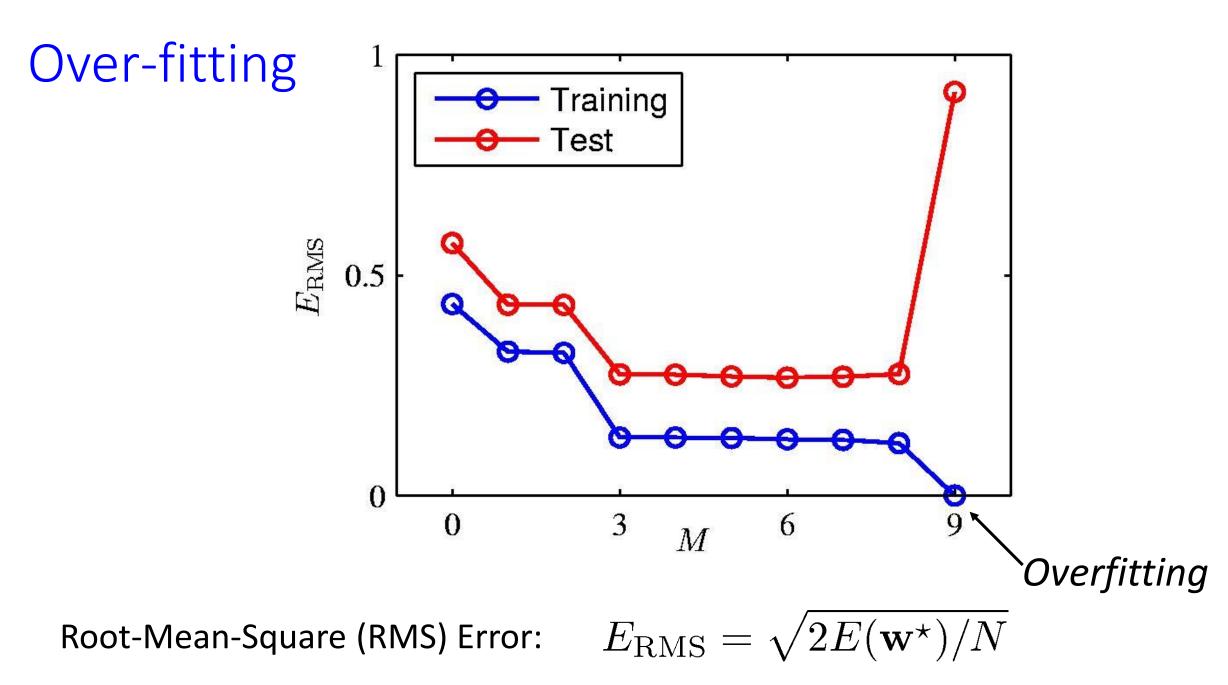
9th Order Polynomial => Overfitting

10 parameters W_i

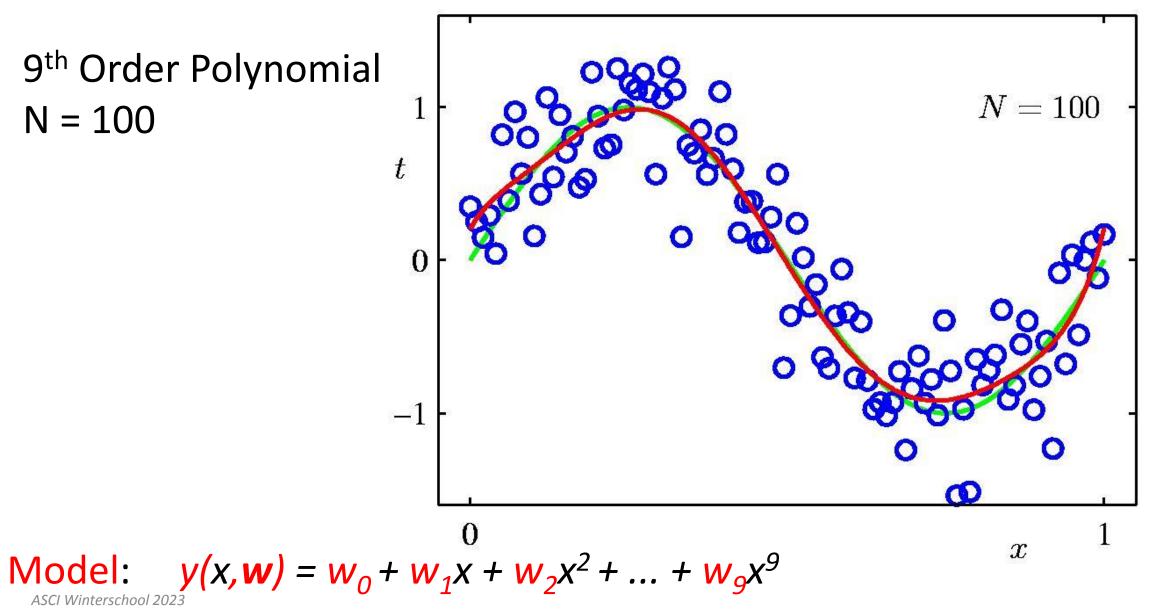




12



Increasing Data Set Size to 100 points



Regularization

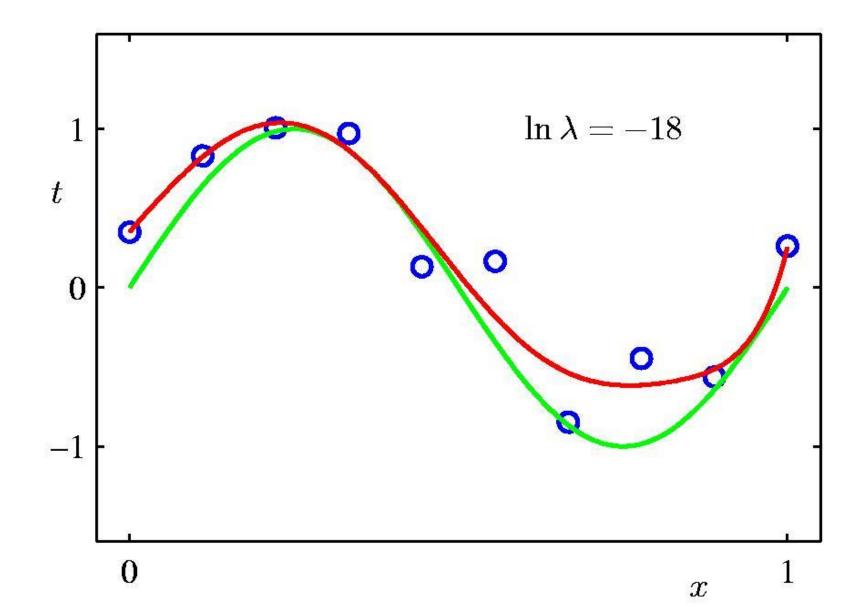
 Penalize large coefficient values => add regularization term:

$$E(\boldsymbol{w}) = \sum \{y_n - t_n\}^2 + \lambda |\boldsymbol{w}|^2$$

• λ is one of the many hyper parameters for learning

ASCI Winterschool 2023

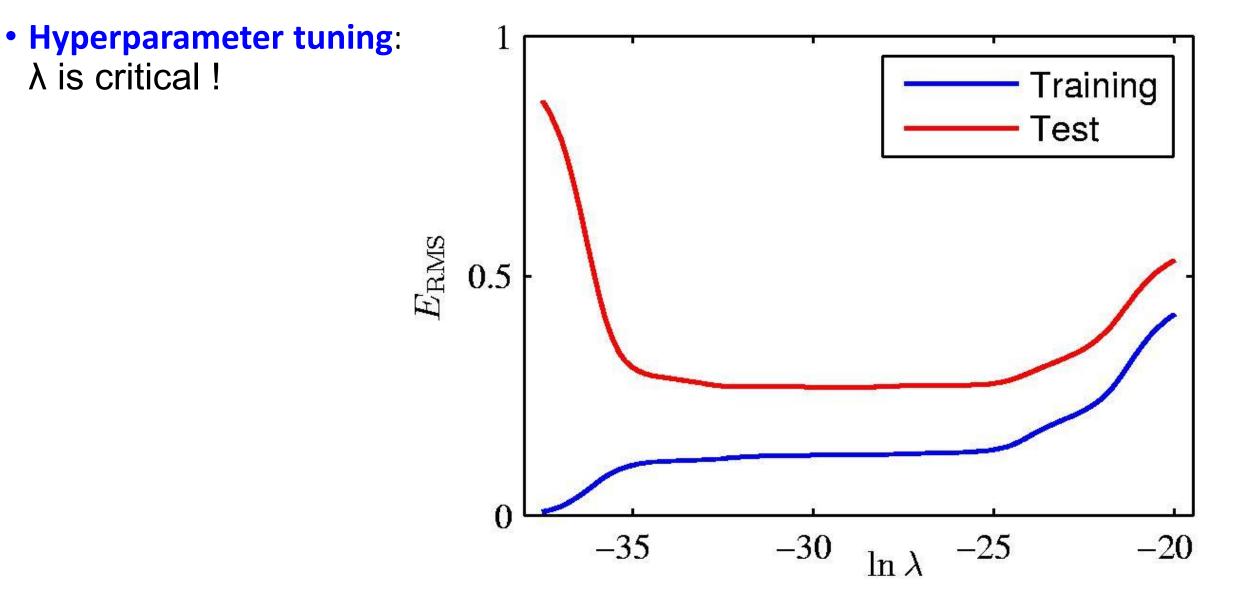
Regularization: $\ln \lambda = -18$, M=9 (10 coeff)



ASCI Winterschool 2023

16

Regularization: E_{RMS} vs. $\ln \lambda$



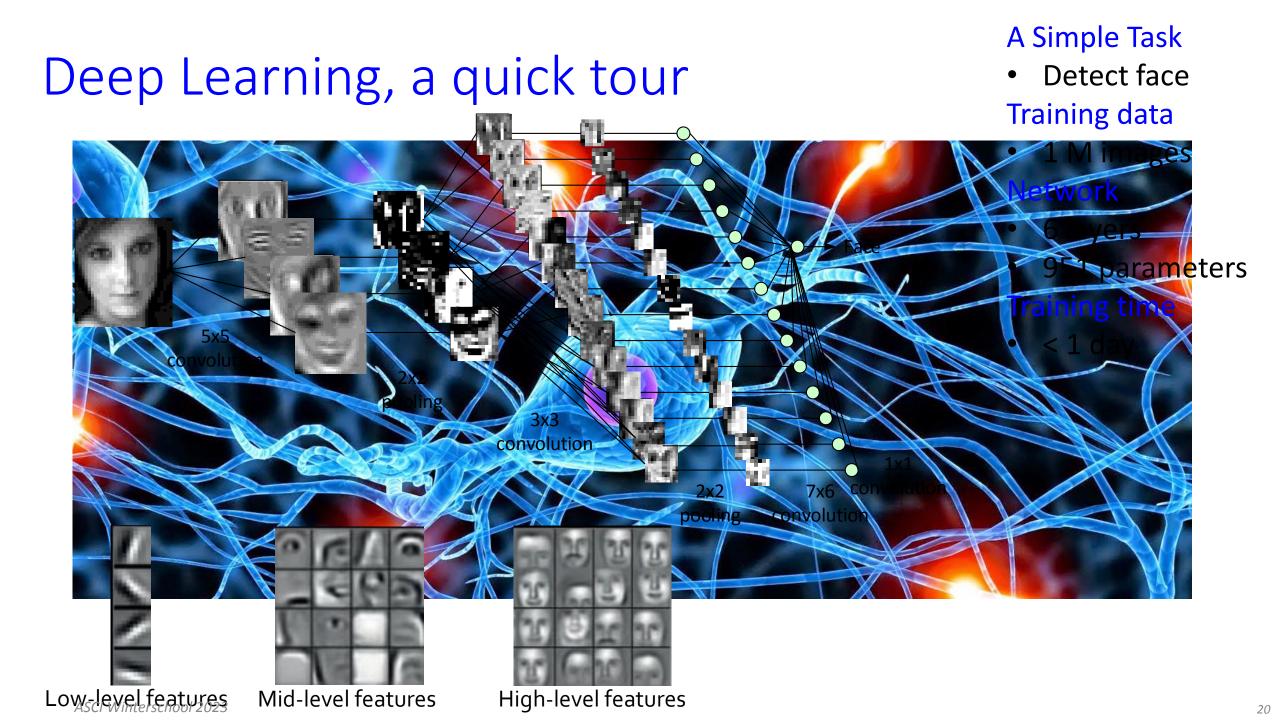
Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$	
w_0^\star	0.35	0.35	0.13	
w_1^\star	232.37	4.74	-0.05	
w_2^{\star}	-5321.83	-0.77	-0.06	
w_3^\star	48568.31	-31.97	-0.05	
w_4^{\star}	-231639.30	-3.89	-0.03	
w_5^{\star}	640042.26	55.28	-0.02	
w_6^\star	-1061800.52	41.32	-0.01	
w_7^{\star}	1042400.18	-45.95	-0.00	
w_8^{\star}	-557682.99	-91.53	0.00	
w_9^{\star}	125201.43	72.68	0.01	
			1	
No regularization			Too much regularization	

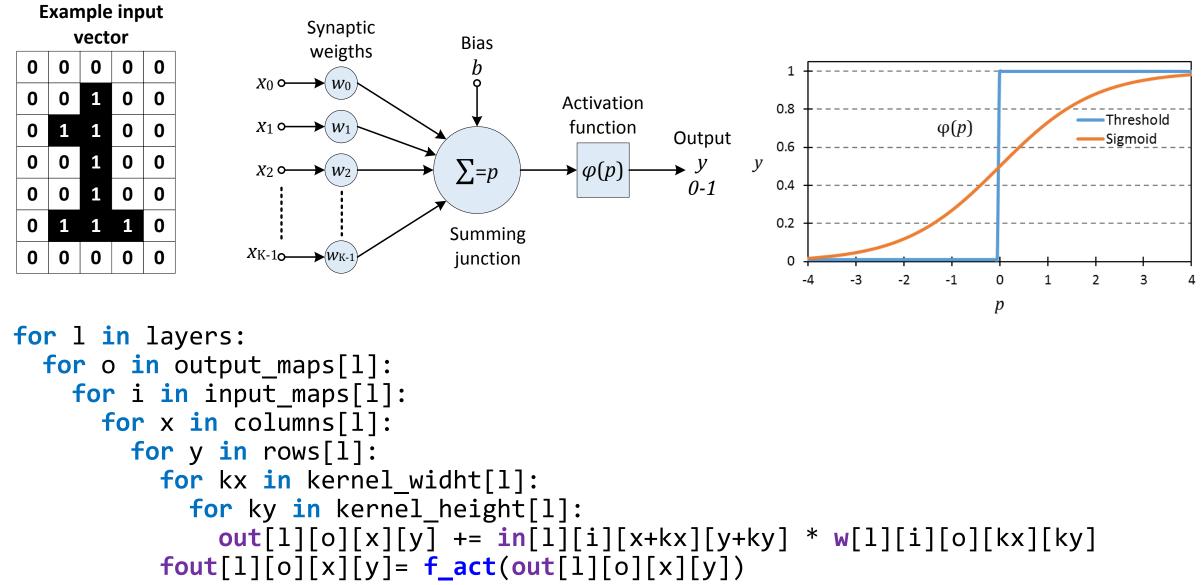
ASCI Winterschool 2023

Once over lightly

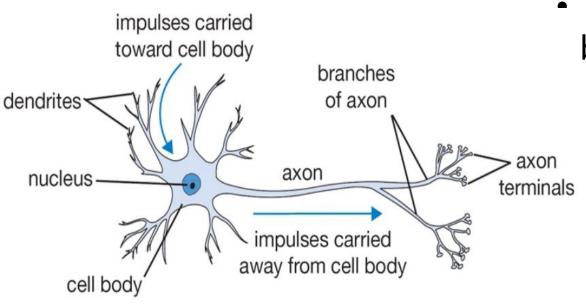
- What's Deep Learning?
- CNN: Convolutional Neural Network
 - Learning
- Other Network Models
- Optimizations
- Architectures



Convolutional network as a deep loop-nest

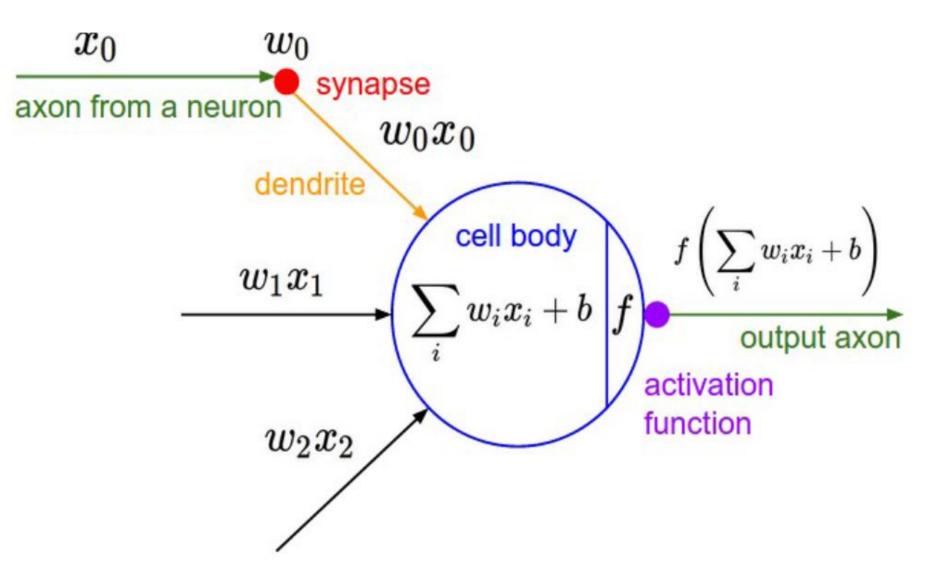


Our Brain

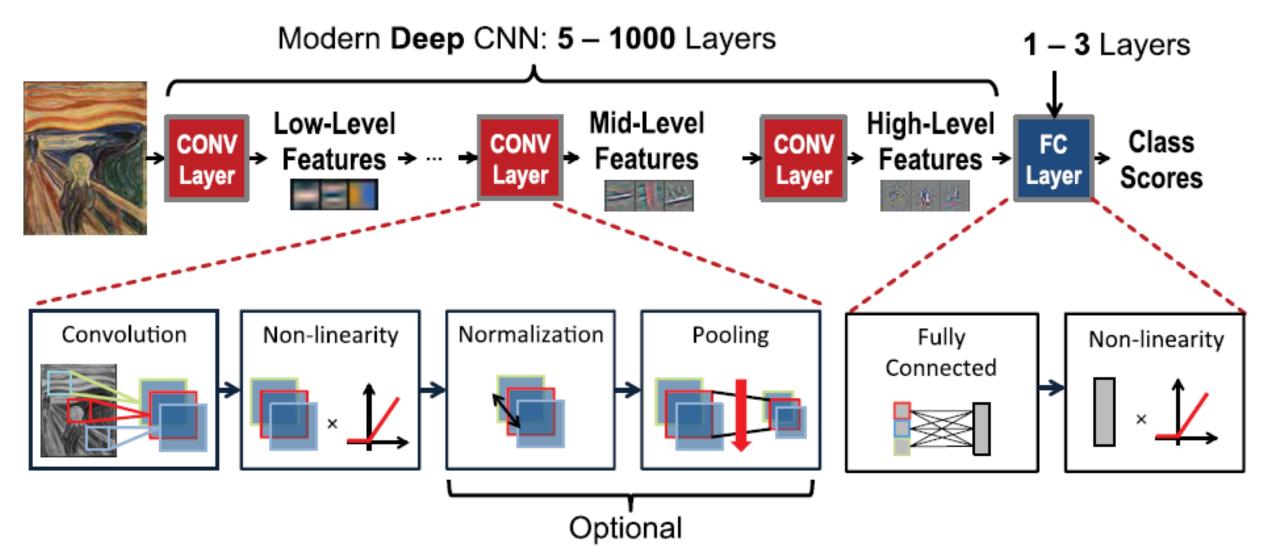


- The basic computational unit of the brain is a **neuron**
 - about 100 Billion neurons in our brain
 - Neurons are connected with nearly 10¹⁴ 10¹⁵ synapses
 - Neurons receive input signals from dendrites and produce output signal along axon, which interact with the dendrites of other neurons via synaptic weights
- Synaptic weights learnable & control influence strength

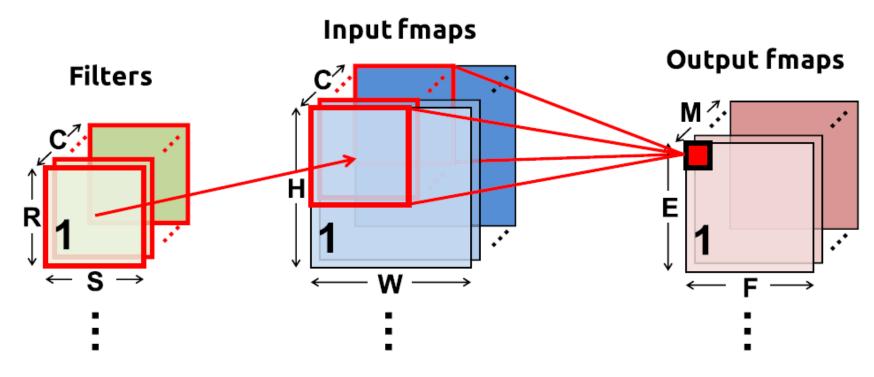
Artificial Neuron



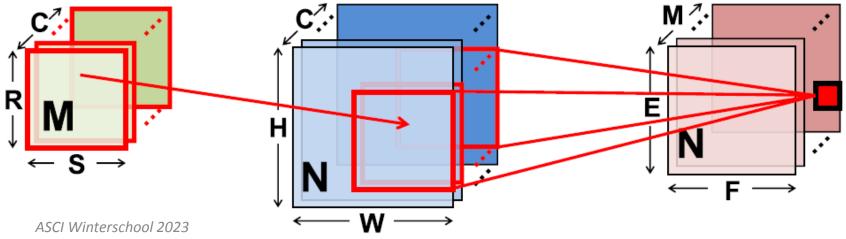
DNN structure



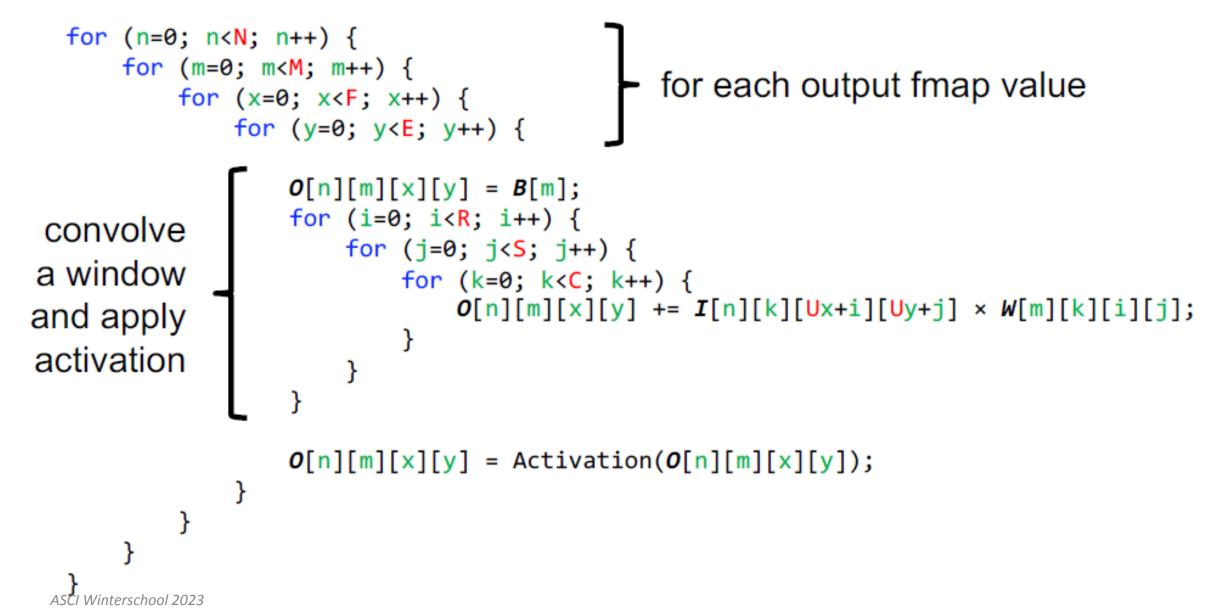
Convolution in CNNs: 1 layer



- N = batch size
- C input feature maps of size HxW
- M output feature maps of size ExF
- M filters of size RxS

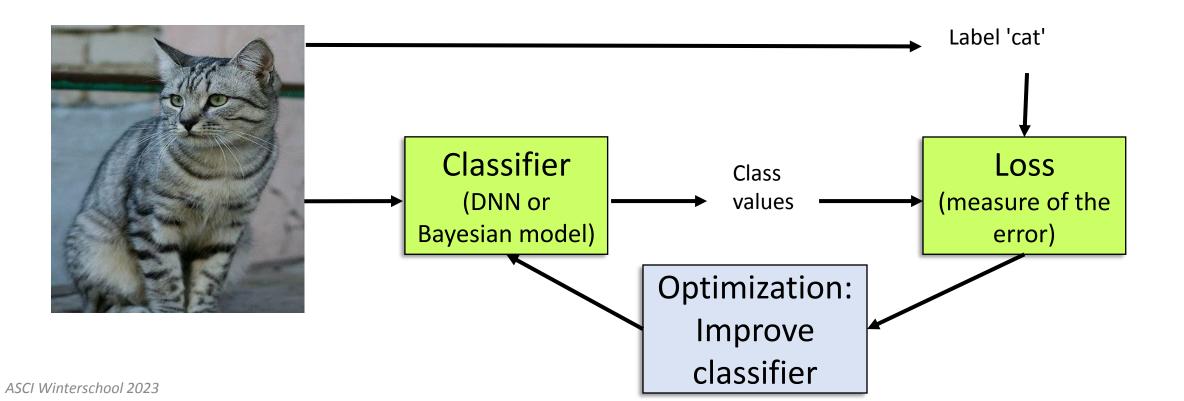


Convolution code

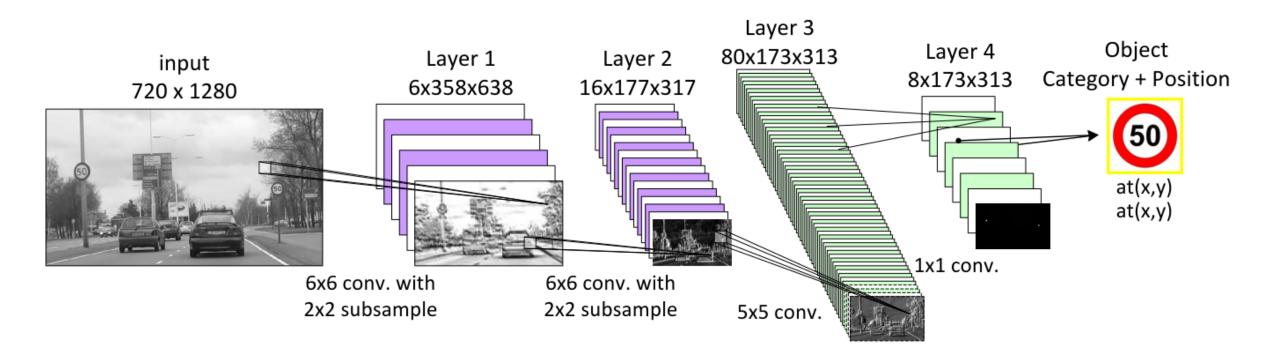


Learning

- Score function (Classifier) : Function to map input to output
- Loss Function : Evaluate quality of mapping
- **Optimization** Function : Update classifier



How do we learn all these coefficients



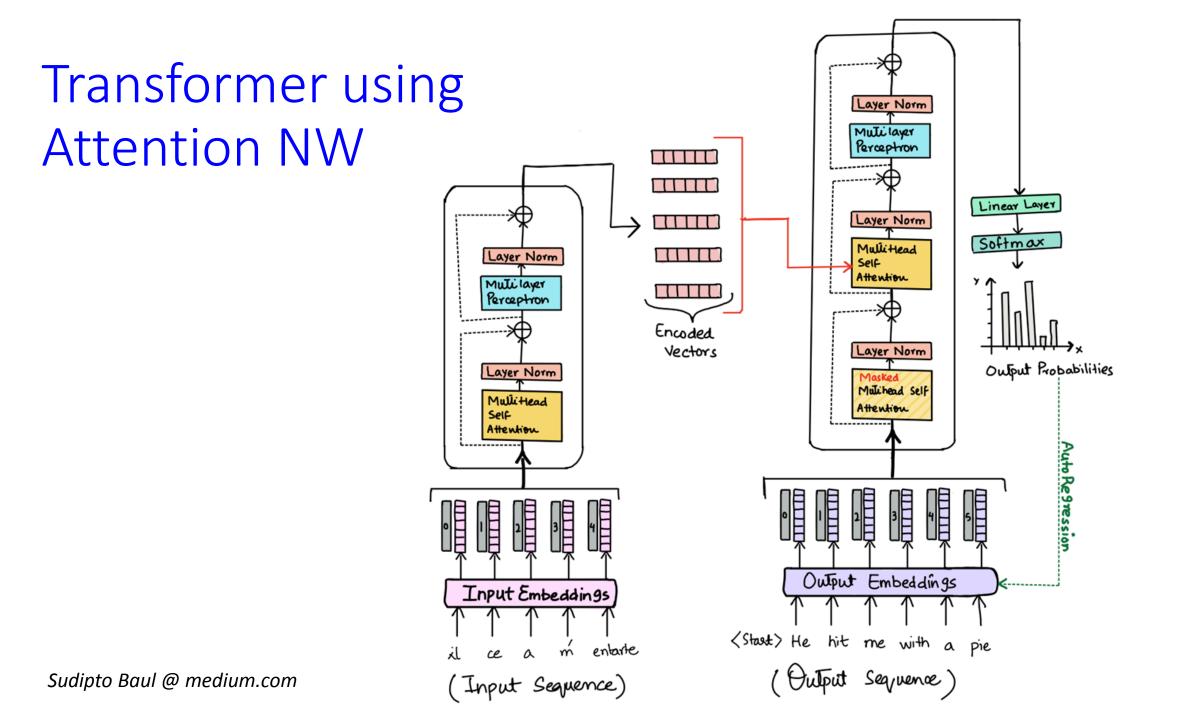
• Back Propagation !!

- calculate partial derivatives: $\delta Loss$ / δw , for all w
- update w
- repeat many times, with many labeled inputs

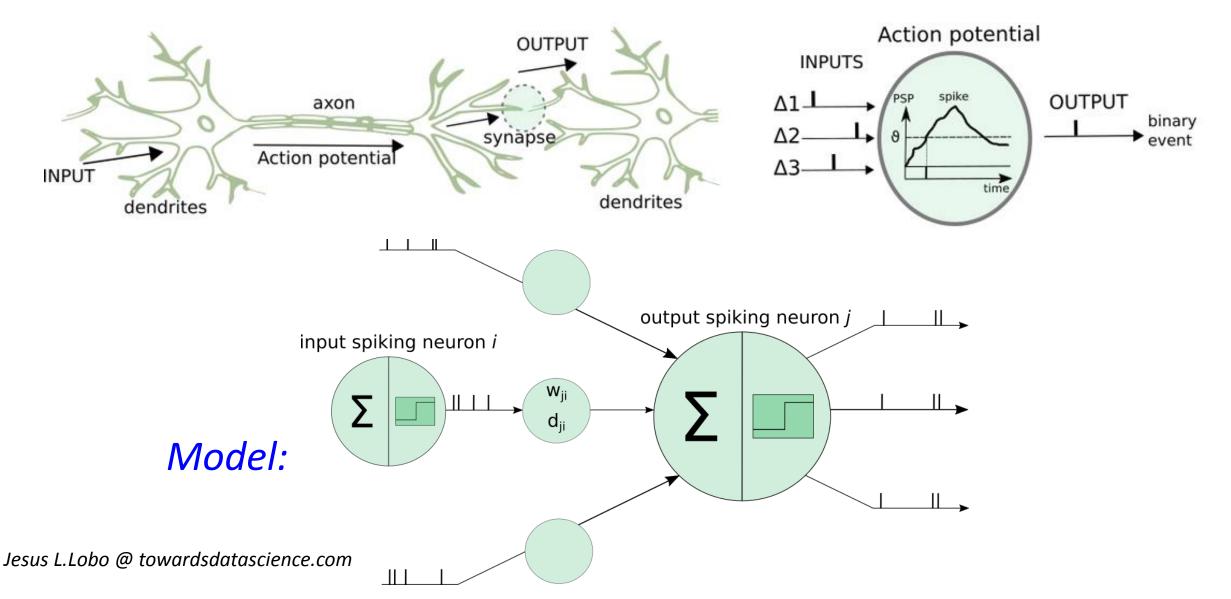
ASCI Winterschool 2023

Once over lightly

- What's Deep Learning?
- CNN: Convolutional Neural Network
 - Learning
- Other Network Models
 - Transformer
 - SNN: Spiking Neural Network
- Optimizations
- Architectures

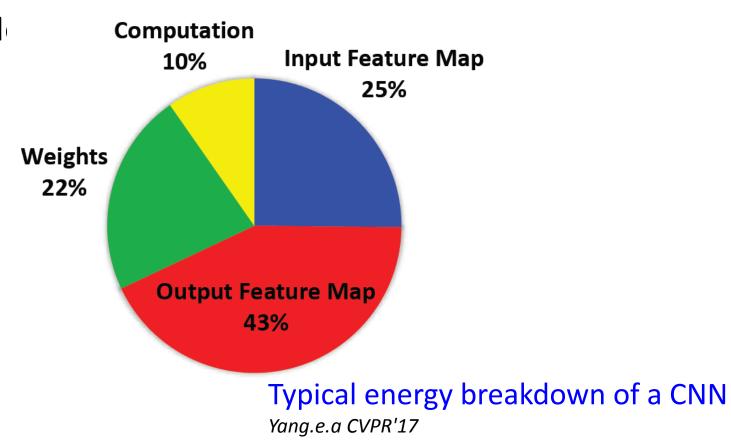


SNN: Spiking Neural Network (more brain inspired)



Once over lightly

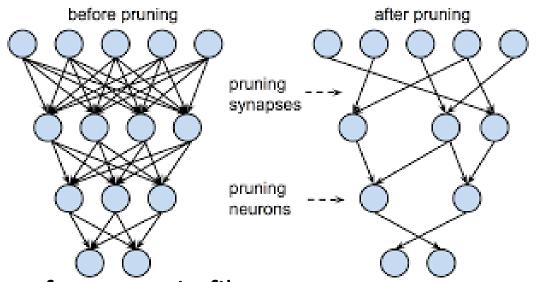
- What's Deep Learning?
- CNN: Convolutional Neural Network
 - Learning
- Other Network M
- Optimizations
 - Pruning
 - Quantization
 - Data reuse
- Architectures



Pruning: Reduce Network

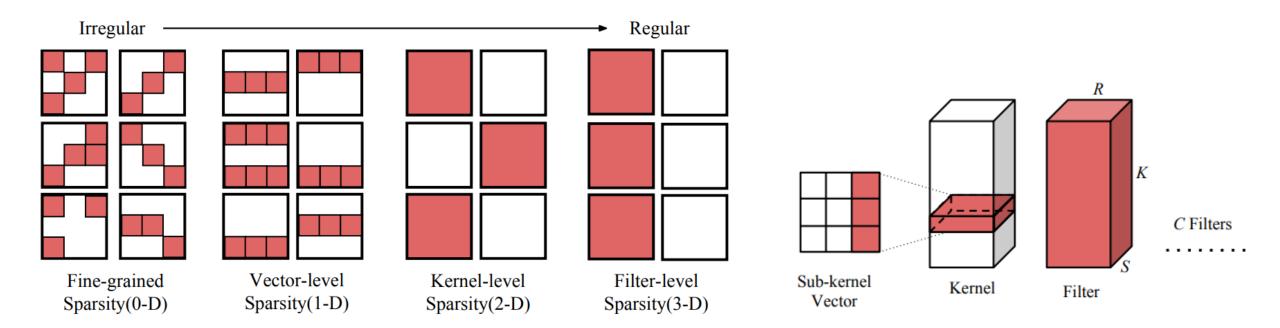
• Fine grain (irregular) pruning

- removing connections with small weigths
- needs special HW for efficiency
- Coarse grain (regular) pruning
 - remove kernel (2D): i.e., skip an input feature map for a certain filter
 - remove complete filter (3D), i.e. reduce nr. of output feature maps
- Structured pruning:
 - try to keep e.g. SIMD regularity (vector computing)
 - decompose filters
 - depth wise convolution
 - N:M type of pruning



From Fine to Coarse-Grained Pruning

- Prune to match the underlying data-parallel hardware
 - E.g. prune by eliminating entire filter planes



H. Mao et al. "Exploring the regularity of sparse structure in ConvNets" (CVPR 2017)

ASCI Winterschool 2023

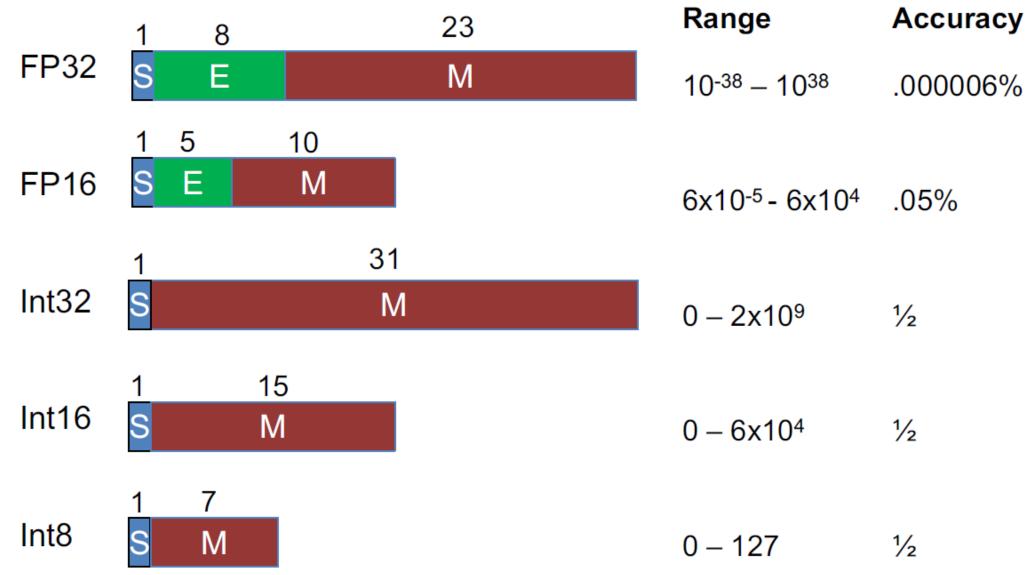
Quantization: why?

Operation:	Energy (pJ)	Relative Energy Cost	Area (μm²)	Relative Area Cos
8b Add	0.03		36	
16b Add	0.05		67	
32b Add	0.1		137	
16b FP Add	0.4		1360	
32b FP Add	0.9		4184	
8b Mult	0.2		282	
32b Mult	3.1		3495	
16b FP Mult	1.1		1640	
32b FP Mult	3.7		7700	
32b SRAM Read (8KB)	5		N/A	
32b DRAM Read	640		N/A	
		1 10 10 ² 10 ³ 10 ⁴		1 10 10 ² 10 ³

ASCI Winterschool 2023

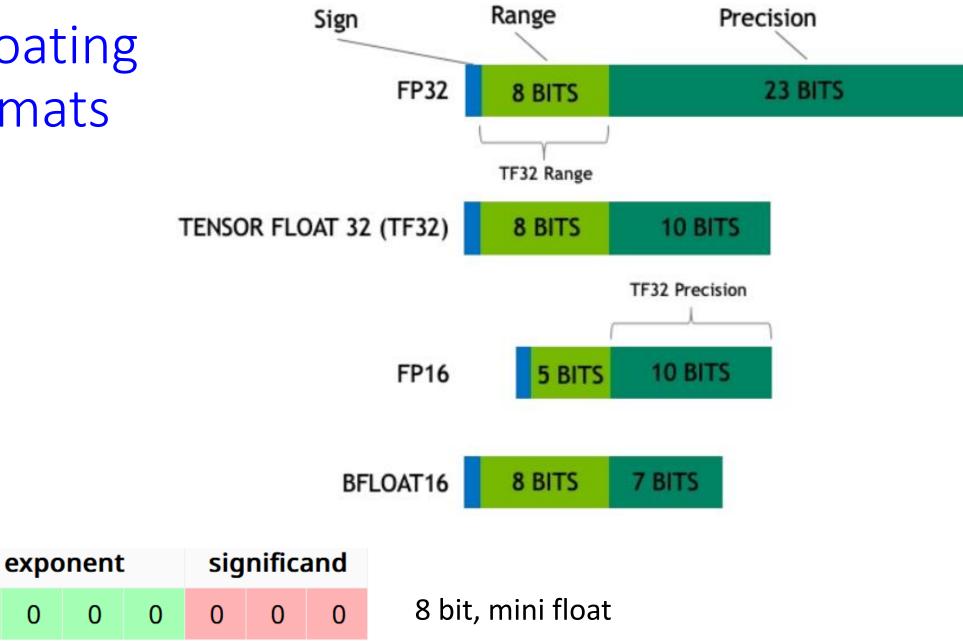
[Horowitz, "Computing's Energy Problem (and what we can do about it)", ISSCC 2014]

Number representations



ASCI Winterschool 2023

Newer floating point formats



sign

0

0

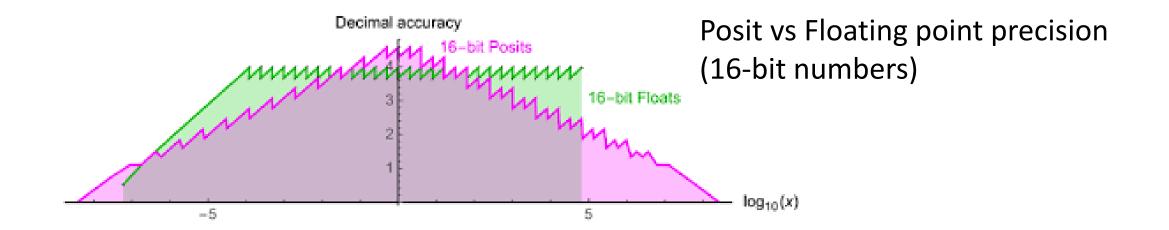
0

0

Going beyond traditional floating point: Posit

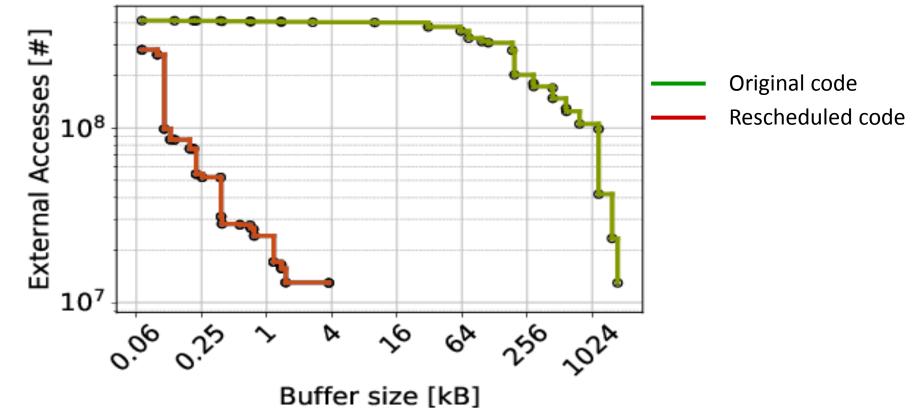
sigr bit	_	ime its	exp	ooner bits	nt	fraction bits	1
0	0 0	0 1	1	0 1	11	011	101
+	25					221/25	

Posit (16 bits in this example)



Reducing external memory accesses

VGG16 example:

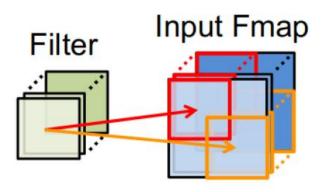


Conclusion: we need advanced loop transformation to exploit data locality (in local buffers), reducing external accesses

Types of reuse

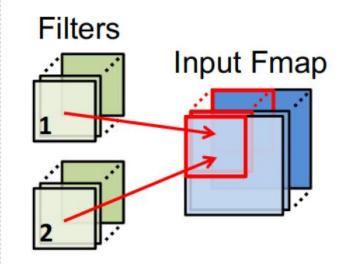
Convolutional Reuse

CONV layers only (sliding window)



Fmap Reuse

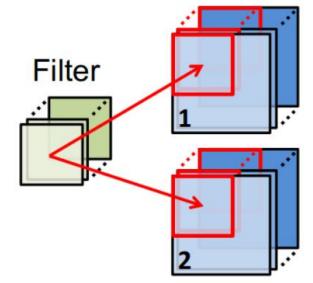
CONV and FC layers



Filter Reuse

CONV and FC layers (batch size > 1)

Input Fmaps



Reuse: Activations

Reuse: Filter weights

Once over lightly

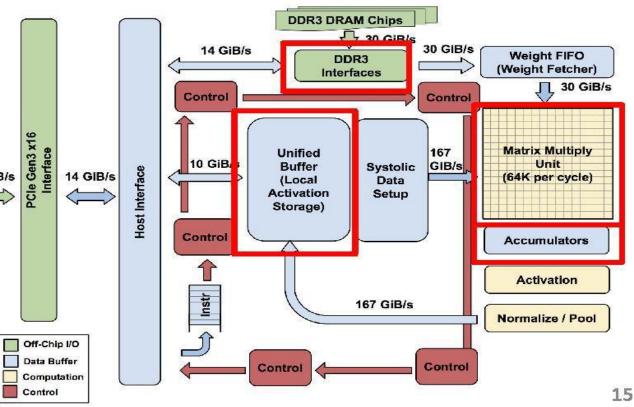
- What's Deep Learning?
- CNN: Convolutional Neural Network
 - Learning
- Other Network Models
- Optimizations
 - Pruning
 - Quantization
 - Data reuse
- Architecture examples

Accelerators: Google's TPU v1 (2016)

Not to Scale

- The Matrix Unit: 65,536 (256x256) 8-bit multiply-accumulate units
- 700 MHz clock rate
- Peak: 92T operations/second
 65,536 * 2 * 700M
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
- 24 MiB of on-chip Unified Buffer, 4 GIB/s (activation memory)
- 3.5X as much on-chip memory vs GPU
- Two 2133MHz DDR3 DRAM channels
- 8 GiB of off-chip weight DRAM memory

TPU: High-level Chip Architecture



ASCI Winterschool 2023

TPU v4 (2021)

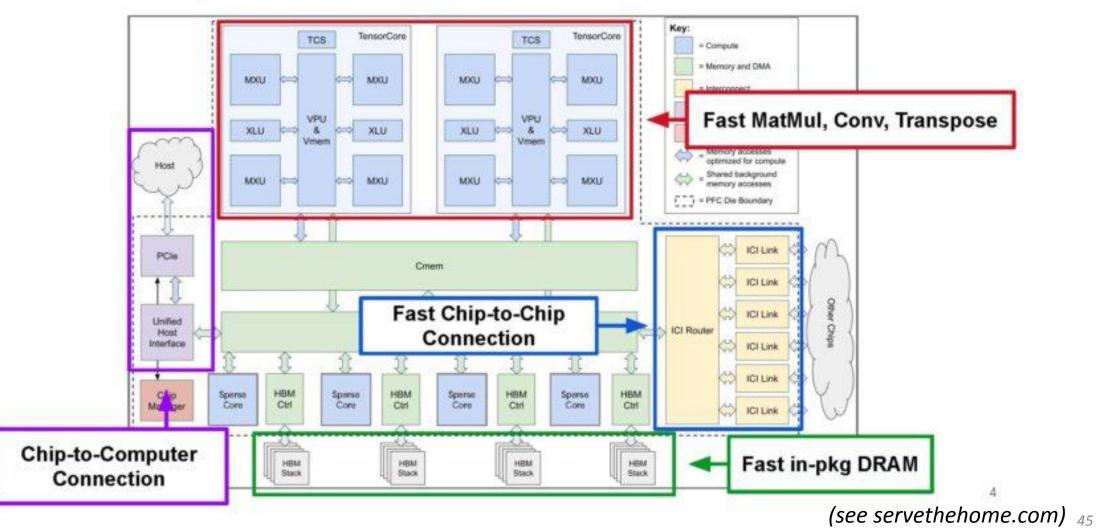
- 7nm process
- Optimized for training, superset of <u>TPU v4i</u>:
 - Two TPUv4i Tensorcores
 - 2X HBM of TPUv4i
 - 3D vs. 2D torus
- 275 peak TFLOPS
 - BF16 with FP32 accumulation
 - Also supports int8 like TPUv4i
- Typical power ~200W
- Jv4i = **0.73** *pJ/flop*

200W/275 TFlops

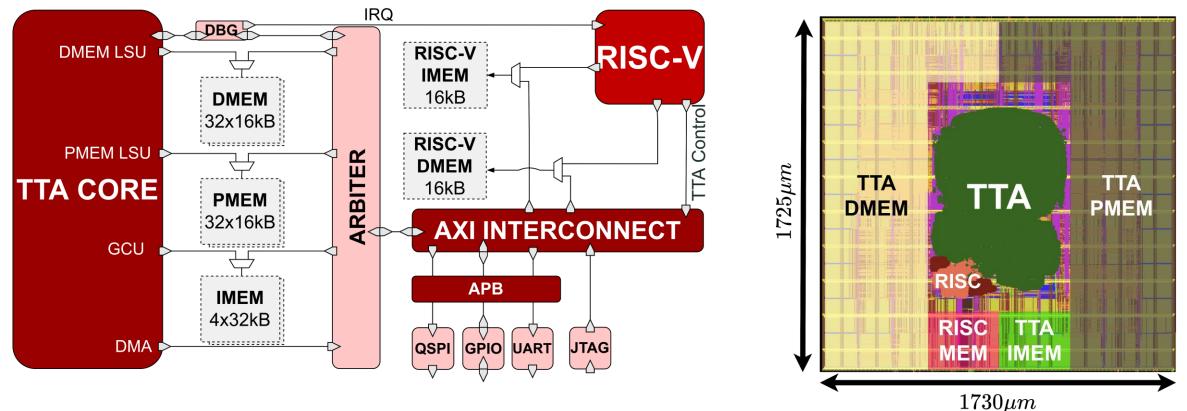
- TDP is higher to guarantee SLOs and prevent throttling
- Peak power and water cooling are cheaper than SLO violations

TPU v4 architecture

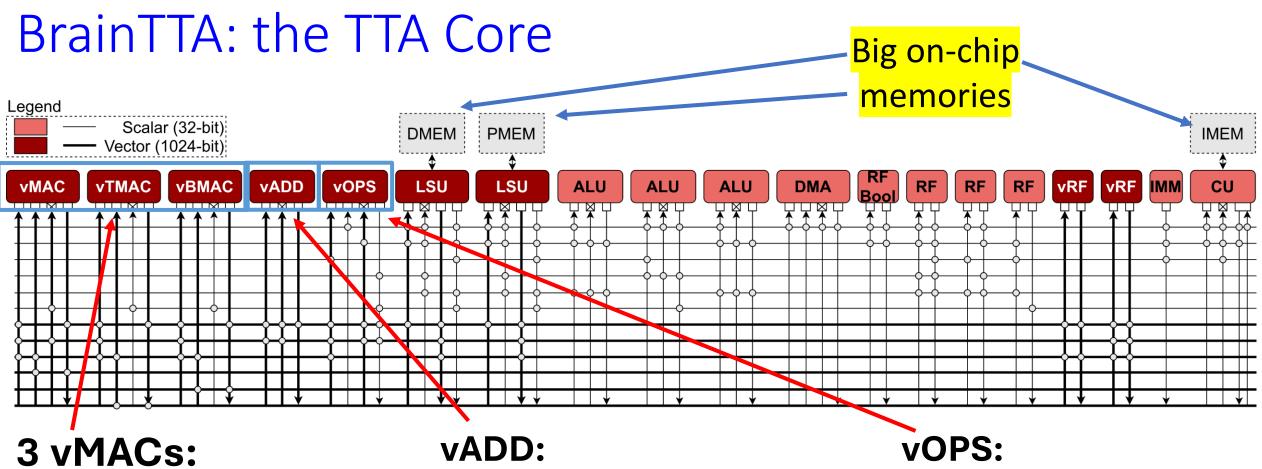
TPUv4 Chip Architecture



BrainTTA (TUE): System-on-Chip for Deep Learning



- Technology: 22 nm
- RISC-V + peripherals
- Split Data and Parameter memories (DMEM/PMEM) with banked access
- **IMEM:** Instruction memory ullet



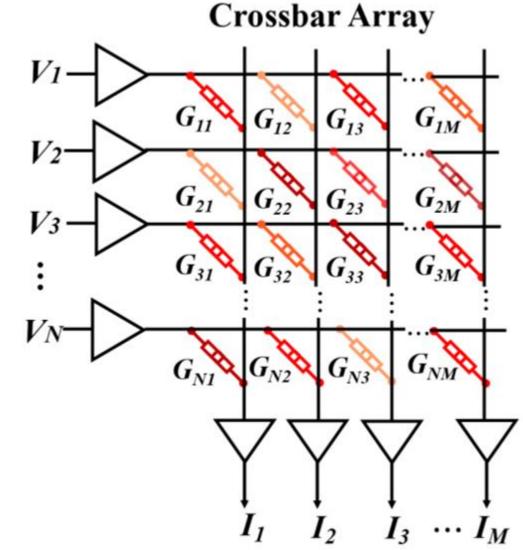
- 1. 8-bit MAC
 - Scalar-Vector MAC •
 - Vector-Vector MAC
- 2. Binary MAC
- **Ternary MAC** 3.

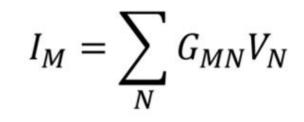
- **Vector-Vector addition**
- **Residual support** ۲

- Requantization
- **Binarization**
- Ternarization
- MaxPool
- Auxiliary ops

Really solving the memory bottleneck: Computing in Memory (CIM)

 $\blacksquare I_M$





Conclusion

- Deep learning is an extremely fast moving field
- All big players (Big five) invest Billions of Euros
- Efficiency is a big problem, especially when moving AI to the Edge
- Plenty of research opportunities

