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My Background

Masters Electrical Engineering at TU/e
PhD work at TU/e

e Thesis work with Prof. Dr. Henk Corporaal
e Topic: Improving the Efficiency of Deep Convolutional Networks

Staff Scientist at Thermo Fisher Scientific (formerly FEI Company)
e Electron Microscopy Imaging Challenges

Manager Research & Development
* Leading a research team to progress microscopy with cutting edge algorithms

TU/e



Our Mission is our purpose
I

Healthler | Cleafn_er . Safer

Electron microscopy for advanced
materials analysis

Delivering diagnostic tests, 3 Supporting innovative .
vaccine/therapy development research and development - Ensuring the quality and
and production to fight of cleaner, more efficient safety of medicines
COVID-19 globally power sources
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WY N 0B,

- We enable our customers to make the world healthier, cleaner and safer




Recent News: Queen Maxima visiting the researchers working on vaccines for Corona

* Queen Maxima at the group of Prof. Eric Snijder at LUMC

Py A

P

SARS-CoV-2 virus particles imaged with
TEM. Spike protein visible as protrusions
on the surface of each particle

Image captured and pseudo-colored at
the NIAID Integrated Research Facility
(IRF) Maryland




High Performance Data Processing: Combining Domains

High Performance Computing
and Algorithms

g1 1001 10 011 »
10101 010 1 | s | o~ . .
D11 50 11 0.6 1.0.60 202> 10 | '~ mechanics of the spikes

010101010101 ' | | ~ of the new Corona virus
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Contrast problems

* Radiation damage
* Low electron dose

e Solutions to extract info
* Cameras + Algorithms

Ade‘novikhs, Phoebe
Stewart, Tecnai Polara,
Vanderbilt




Single Particle Analysis (SPA) workflow

Nature Method of the year 2015

How good can cryo-EM become?

Robert M Glaeser

unit-magnitude, digital count. At present,
the FEI Falcon camera uses a 14-um pixel
size, whereas the Gatan K2 camera, with
5-um pixels, converts the electron events
into counts. If these two features were
combined, the resulting signal-to-noise
ratio (SNR) in the camera output would
finally come close to the irreducible ‘shot-
noise’ limit, which is due to the random

| COVID-19 |

The key method to
study the
mechanics of the spikes
of the new Corona virus

TU/e



Detailed ACE2 receptor: How does it bind to the human
cell?

; . RBD down
sy

Viral membrane
Side and top views of the pre-fusion structure of the COVID-19 S protein with a single RBD in the up
conformation. The two RBD-down protomers are shown as cryo-EM density in either white or grey and
the RBD-up protomer is shown in ribbons coloured green (credit: adapted from Wrapp, D, et al.).

TU/e


https://science.sciencemag.org/content/early/2020/02/19/science.abb2507

Single Particle Analysis (SPA) workflow

.

Ty
——) —) _aﬁ‘gn —)

Biological sample Sample CryoHolder Image Acquisition

(ThermoFisher) Preparation Titan Krios (FEl)

(FEI)

EPU Particle extraction 3D Reconstruction Amira Visualization
(FEI) (FEI WIP) (Academic opensource) (FEI)

TU/e



Image processing challenges in SPA workflow

When we shoot the molecules with an electron beam,
the orientation of the particles leaves a unique “shadow”

P 45 a0
S e X
@ & BN W“

Zooming in, we can see

. Thgse“shadows" contain all the 3-divmensiona structural features that
information of the molecule, compressed into a 2D
tell us how the molecule

functions in the cell

10
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Large volume data acquisition — Mapping the brain

TU/e
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Career opportunities in Thermo Fisher

From experience | can say that Thermo Fisher is a great company to work
* Innovation and Science is always connected to your day2day work
* Great development and career opportunities

 Adiverse and friendly enviroment

https://jobs.thermofisher.com/global/en

Please have a look

TU/e
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Transistors are not getting more efficient

Slowdown of Moore’s law _
. @ Transistors (x1000) < Frequency (MHz) A Performance OTDP (W) =Cores
and Dennard Scaling : : ! . . . .

: 1 1 1 1 1 1 D 1
S R S S ' o1 em T
General purpose 1000000 | : . w&ﬁ% |
! :@3@1 ) !

microprocessors

= 11 1 : 1 i
struggle to become faster o | ! ! ! ! a
or : " o
more efficient
o

Only the number of
transistors per chip

increases nowadays 1
2000 2002 2004 2006 2008 2010 2012 2014 2016

U U

Year of introduction
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Utilize those extra transistors

Accelerate general purpose
“black box” programs

o 1st 2nd 3rd_ |eye| caches
e 512-bit SIMD FP Units

e 15+ stage pipelines

* Branch prediction

e QOut-of-order execution

* Speculative prefetching
* Multithreading

e Multiprocessing

More transistors switching
means more power

15

@ Transistors (x1000) < Frequency (MHz) A Performance OTDP (W) =Cores

U U

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year of introduction
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Performance scaling for general purpose slows down

Energy budget limits performance L e
; B Minimum B Maximum B Mean Oldeal Scaling 2.3
« 2X perf. scaling per tech node !
. 1.6
not possible anymore g
1.0x
* Small upgrades to existing cores L T

may give 10% improvement

*  What if order-of-magnitude

0.9x
improvements are required? 1000 bmmmeem e || | | | ; _ ]
100 III:I II I I

150nm 130nm 90 nm 65 nm 45 nm 32 nm 22 nm 14 nm

Performance PassMark Score

Technology node

16 TU/e
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The flexibility price of general-purpose processors

Where does the energy go?
RISC @ 45 nm, 0.9V
ADD op. 0.5 pJ out of 70 pJ for the ADD instruction

Overall efficiency: D-cache I-cache Register Control AL
1/850=0.12% access  access access
w | sp | s fep| |
Overhead
o EEEEE— ) T
ADD DY N e
% 0.5 p
st s | se fem|
Overhead
& s e )

TU/e



Reduce the price of flexibility: SIMD

Perform more effective work per instruction
Very programmable
1/140vs 16/180 - 10 times efficiency improvement

TU/e



Further improve efficiency further: unrolling

Maximize effective operations
Minimize load stores
E.g. 1/5 effective vs 9/11 - additional 4 times efficiency increase

o oo | vowe | w | comol |

0P
~40 times
op | kcache | RF | comrol ||| [[[[I[]  []]
= efficiency
I
I
I
|
|
0P
ST DCache | MCache | RF |  Contol

TU/e



Boost efficiency further: Domain Specific Architectures

. . Flexibility
Multi-level Caches System on a chip (SOC)

* Sub-optimal for easy predicable access CPU
patterns
» Better alternative for DSA / GPU

> FPGA

* Dedicated scratchpad memories
Homogeneous Multi-processors

e Sub-optimal when small predictable

compute kernels dominate workload
ASIP

e Standard processors; large programs and OS
* Add domain specific processors for a narrow
range of tasks but perform these extremely ASIC

fast and efficient. Intellectual Property Block o
Efficiency

2 TU/e
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Guidelines for DSAs

1. Use dedicated memories to minimize distance over which data is moved

e Software controlled scratchpads versus multi-level cache

2. Invest the resources saved from dropping advanced microarchitecture into
more arithmetic units and/or bigger memories

* No out-of-order execution, multithreading, prefetching, address coalescing, etc.
3. Use the easiest form of parallelism that matches the domain

* Expose simple parallelism to software: VLIW vs Out-of-order
4. Reduce data size and type to the simplest needed for the domain

* Narrow data types give less pressure on memory, also enable more arithmetic units
5. Use a domain specific programming language

* Examples are Halide for vision processing and Tensorflow/Pytorch for DNNs

TU/e



Example Domain: Deep learning applications

Self-driving jflb S
cars L4

Live
machine
translation

In front of the school @

Top to pause.

robots

2 TU/e



Face Detection
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Intelligent vision applications are everywhere

Applications in many domains

Examples: Security, Industrial, Medical, Automotive

N

:’F | [!J ooy -

&

TU/e
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Train a Deep Neural Networks for the task

Focus on massive amounts of data and training instead of algorithm complexity
Use relatively simple compute kernels that are intensively reused

Massive amount of parallelism
Excellent candidate algorithm for a Domain Specific Architecture

30 km/h 50 km/h 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

l

Background images hard to suppress Random background image patches

TU/e



What is inside these Deep Neural Networks?

-1"‘. :. -.-—..ﬁ .:I'- -lp-"-\-.—.._‘ — - -} l; I.' e e

o S

Presynaptic neuron Postsynaptic neuron
I

. .g
;\
Cell body Synapses

— e TS o Bl L
2% TU/e



Class;
|
Perceptron Model (1957) "',
m B O -A A
DE,A’/ED A Class,
Feed forward processing - Al &AAA
A
Tuning the weights by learning a7 a Ba s,
Non-linear separability (1969) y=0|b Decision boundary
=p| b+ X -w a
i b WiX1+ Waxz+ b =0
Example input .
vector Synaptic Bias . el

weigths

. R(z)=maxz(0, z)

Activation 0.

function ¥ B
Output 0.

pp)—> y 0. ¢

Summing
junction

27
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Multi Layer Perceptron (1979)

Training is done by error back-propagation

Input Hidden Output
Layer Layer Layer
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Multi-Layer Perceptron as Vector Matrix Product

Each fully connected layer y,, = F(W X y,,_1)

e Can have many zeros, since ReLU turns negative numbers into zeros

* Operations: 2x Number of Weights
* Operations/Weight: 2

Layerfi-1]

Dim[j-1]

Can have many weights

Input

 Egdim[i-1]=4096 and dim[i]=2048
 8M weights and 16M ops

Vector matrix multiply

Nonlinear function

VMX

Dim[i-1]

Layerfi]

nif

Diml[i]

Dim[i]

Output

Weights

TU/e
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Training Versus Inference

Inference with a network architecture and a tuned set of weights can be the end-application

 Many names: inference, prediction, scoring implementation, evaluation, running, testing

Obtaining a tuned set of weights by training is computationally much more demanding

[a & r

 Often supervised learning N L QA MU N e

* For example, ImageNet competition
1.2 M photos, each labeled to one of 1000 categories
* The winner by evaluating 50k secret photos

* See which trained network has the lowest error rate



/\ weigths
\/ e

Training a network: Stochastic Gradient Descent (SGD)

e Collect annotated training data

* The neural network is a function of inputs x; and weights 6: f(x;; 8)

e Start with feed forward run through the network: x; — 7;

* Evaluate predictions, i.e. results and labels into a loss function: L(y,f(xi, 9))

e/ (610 9 = £(xi; 6) £, (. 6)

b

X10

X20

Summing
junction

< e, L 5
(vi — 1)

" TU/e



N N

\/ XK-1o
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Training a network: Stochastic Gradient Descent (SGD) 2

 Compute the error gradients
* Update the coefficients to reduce error
* Repeat

of (x;;0)
pt+l = gt —
f(xi;0)
Synaptic .
/\ Welgths Blbas

X10

X20

Summing
junction

A

0y

of

y = f(x;6)

0L(6; Y, f)
ay

LGy, f)

(yi — 71)°
TU/e



Optimization Through Gradient Descent (3)

Follow the path towards local minima in the parameter space
Stochastic Gradient Descent

Every random sample update the parameter space

Loss surface /

0,

33

TU/e
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Generalization

Take an abstract representation

Add details

Add too many details

A common challenge in Machine Learning problems

S
XzA

Under fitting

D\EI A p Class,
0 D\\AAA A

O Aama® aa
0 g
O m
O - O
OO

AL
O \\
O

D Em Bg

X1

XzA

Good generalization
/

o I:I// A A Class,

m™® 444 4

D\\AAI:IAAAA

O m A

A A

O m _ama
O = _

O [l m —

oo O
mEm 0@

—"

Class; >
X1

Over fitting

A A\
O AA A LA
A A/\




Data set growth over time

1E+14

1E+12

1E+10

100000000

1000000

10000

Data elements [floats]

100

1
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70,000
samples
32x32 pixels

Q&
L
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MNIST 1998

350,000
samples
2x96x96
pixels

% 1 O

o« N ¥

10,000,000

3x250x250

“ % & O
< - b

NORB 2005

IMAGENET 2012

300,000,000
samples
3x340x340
pixels

Google

Google JFT 2017
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Large datasets help a lot:
* Less overfitting

* Accurate classification

Better Machine Learning

Prediction
[ ————= 7

Input

h TU/e
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The cost of training

Inference time ~100ms on a fast GPU

Training time ~6 hours to several weeks, or even months

Keep in mind that a well-trained network will be used by many

Many users using the network
totals to many hours of usage

For some workloads a DSA for
inference has more value

(Sports-1M)

Size of
benchmark’s DNN Training
Type of data Problem area training set architecture Hardware time

text [1] Word prediction 100 billion words 2-layer skip I NVIDIA Titan X | 6.2 hours
(word2vec) (Wikipedia) gram GPU

audio [2] Speech recognition 2000 hours (Fisher 11-layer RNN 1 NVIDIA K1200 3.5 days
Corpus) GPU

images [3] Image I million images 22-layer CNN 1 NVIDIA K20 3 weeks
classification (ImageNet) GPU

video [4] activity recognition 1 million videos 8-layer CNN 10 NVIDIA GPUs 1 month

Figure 7.6 Training set sizes and training time for several DNNs (landola, 2016).

TU/e
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10 BREAKTHROUGH

The Hype Curve of Neural Networks 2 TECHNOLOGIES 2013
level of Deep
interest . B B Learning
A Non-Linear ]
Separability Today
1969 %A

. EHE
Multi Layer ]
Perceptron Perceptron AA 2006

» time

TU/e



Building more restricted neurons

input fmap

filter (weights)

:
|

s>

3 TU/e



Building more restricted neurons

filter (weights) input fmap

:
|

H
— ®

Element-wise
Multiplication

40 TU/e



Building more restricted neurons

filter (weights) input fmap
4 output fmap
* ) an output
| i Y, | . activation
v | s
o N o
Element-wise l
v

Multiplication

< W » «—F—>

Partial Sum
Accumulation

41 TU/e



Building more restricted neurons

filter (weights) input fmap

* 0) output fmap

e an output
| A . activation

! Tl
«—s—> @ e @ :

< W > «—F—>

Sliding window
processing

42 TU/e



Biologically inspired object recognition

Convolutional Neural Network

G T TS T T
\ feature maps featurg\s aps _\
C, S 10x 10 5x N \
\ input feature maps feature maps ‘ Ny

32 x 32 28 x 28

subsampling

\ multiple 55 : s \
X
\ output channels (M) convolution]__ s%m@g@%ﬁtim— S
feature extractighy tPle classification
43 input channels (C)

TU/e



Detection and Recognition Application
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Define shape for each layer

Shape varies across layers

* H-Height of input fmap (activations)
W —Width of input fmap (activations)
* C—Number of 2D input fmaps / filters (channels)

* R —Height of 2D filter (weights)
* S—Width of 2D filter (weights)

e M —Number of 2D output fmaps (channels)
 E - Height of output fmap (activations)
* F—Width of output fmap (activations)
* N - Number of input fmaps/output fmaps (batch size)

AlexNet (2012) ILSVRC winner:
* 8 layers, 62Mparameters
* 1.4 GFLOP inference

Input

F1

C1 c2 Cc3 C4 C5
normalization normalization
) N EN
S\ 3\; kk . 3 K EN RS
3 .
o 192 2 128 04
48
; ,7 128 R
; F ) 1305 13 13
e i I i sHAC 1] i
- N + I e 13 ense
“Ass .
192 192 128 Max
Max Ma pooling
pooling pooling (overlapping)
75— (overlapping) (overlapping)

F2  OQutput

GPU 1

J0ag \dense

_’] GPU 2

1000

2048

TU/e
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General CNN acceleration DSA

Layer[i-1]
e Each output feature map has a unique set  (input feature maps)
of weights

* The vector matrix multiply happens for
every input

NumFM[i-1]

P————————————

Layer]i]
(output feature maps)

NumFM/]



What Else Can Deep Neural Nets Do?

A B

| | ,L),L]

Optimization

N\W

ApprOX|mat|on

Clustering

TU/e



Application: Super Resolution from NNs

Low Resolution Input Image Output Image
Image ' '

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16

48
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Very Deep Super Resolution: VDSR

Residual learning

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16

49
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Deep learning models have become huge

Input C1 c2 c3 C4 Cb F1 F2  Output

normalization normalization

* Image Recognition

e AlexNet (2012) ILSVRC winner %U 3 L[ ’k\ w ><>< e
e 8layers, 62Mparameters D ;_Jf' ﬁé*u Bl 1) U
* 1.4 GFLOP inference I S— o L]
* 16% error rate LA, ™ s I

* ResNet (2015) ILSVRC winner

e 152 layers, 60Mparameters
e 22.6 GFLOP inference
e 6.16% error rate

3x3 conv, 128, /2
3 com,
e 62|




Trends in Deep Learning

1E+11
1E+10 " " @A
@ Model parameters ! ! ! x
1E+09 +--- A  Compute Workload [Macc] Bl Pt Sgh----
100000000 | ___ ===<=Expon. (Model parameters) R .I_..!___
------- Expon. (Compute Workload [Macc]) : : oot
10000000 +------ Fe-=-=-- q----==5 = - - === F------ r------ 1———-—'——‘—‘—-———
l l l l I ot 4
1000000 +------ oo me R D R emmma- L,:"q‘ -----
| | | | LA aca B
100000 -~~~ e o e Ly Pk REL EEE R TEEEE
| | | | r | | a
10000 - -----t--nmnodooooo ey B oo
1 1 1 ..-'. Pl 0 1
1000 -~ I S lyleTl ..x L -
I B, T I I I I
100 +------ e ——— -Iq—)-':'————l ——————— mm——— b m - dmmm——— A m i — -
1 J 1 1 1 1 1
1 ’I 1 1 1 1 1 1
10 +@—+—="— : : : : :

1940 1950 1960 1970 1980 1990 2000 2010 2020
Year of introduction
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The first challenge: Model Size

* Competition winning networks like AlexNet (2012) and ResNet152 (2015) are large

* About 60M parameters resulting in a coefficient file of 240MB
* Hard to distribute large models through over-the-air updates

App Over 200 MB

Connect to a Wi-Fi network to
download “PUBG MOBILE".

OK

- TU/e
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The second challenge: Speed

* Network design and training time have become a huge bottleneck

Error rate Training time
ResNet 18: 10.76% 2.5 days
ResNet 50: 7.02% 5 days
ResNet 101: 6.21% 1 week
ResNet 152: 6.16% 1.5 weeks

Training time benchmarked with fb.resnet.torch using four M40 GPUs

* Such a long training time limits the productivity of ML researchers

TU/e



The third challenge: Energy Efficiency

u AlphaGo 1920 GPUs and 280 GPUs, $3000 electric bill per game

On smartphone: battery drains quickly _
On data-center: Increased TCO =y 5

54



Accelerator Challenges

Data Movement: Get parameters + activations from RAM

*Action | Energy | Relative _

Data movement is expensive

e Energy, latency, bandwidth ALU op 1pl-4p) 1x
SRAM Read 5pJ-20p) 5x
Focus on data locality Move 10mm 26pJ-44p)  25x
across chip
External RAM <€» Host Processor Send to DRAM 200 pJ — 800 200x
ffffffffffff i T | ¢TDtth Read from image :JZ nJ—4n) 4,000x
" Accelerator | . Accelerator | | ata pa 1 } ’
L | ] 3 . Local ’ cc | Sensor
. 4 S | Buffer ' Send over LTE 50 uJ-600u) 50,000,000
. Accelerator | S ’ ’: acc 1| | X

55
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DianNao (2014)

Split Buffers for BW
Vector vector multiply
Hardware adder tree
Partial layer computation
Fetch input neurons
Fetch synapses

56

DianNao: A Small-Footprint High-Throughput Accelerator
for Ubiquitous Machine-Learning

Tianshi Chen Zidong Du Ninghui Sun
SKLCA, ICT, China SKLCA, ICT, China SKLCA, ICT. China
Jia Wang Chengyong Wu Yunji Chen
SKLCA. ICT. China SKLCA. ICT. China SKLCA. ICT. China

Olivier Temam

Inria, France

L
> Control Processor (CP)

Instructions

Inst.

L L R —

ry
—
=
hd

NBout
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According to V. Sze et al. “Efficient Processing of Deep Neural Networks”
Proceedings of the IEEE 2017

DianNao (2014) Non Local Reuse Architecture

Global Buffer

Multiply Weight
Activation

Sum neuron inputs

Buffer partial sums

> Control Processor (CP)

rrrrr > . H .
i g H Instructions

NFU-2 NFU-3

E : - FZE“
<P <\ % g : : L
XYIXX]) e

8 _ -

‘- > . (T,/‘ ’y?/yfy/\.

(Q X N | ’
& TU/e




In-depth analysis of the Google Tensor Processing Unit

 2013: Google prepares for the success-disaster of new DNN apps ‘.°

* Users speaking to phones 3 minutes per day:
With only CPUS, need 2X-3X times whole datacenter fleet Hi, how can | help?

DNNs applicable to a wide range of problems, so hardware accelerator can be reused for
speech, vision, language translation, search ranking, etc.

* Goal: Custom hardware to reduce TCO of DNN inference by 10X vs. CPUs

* Must run existing apps developed for CPUs and GPUs
* Very short development cycle: Project start 2014, running in datacenter 15 months later
Architecture invention, Compiler invention, Hardware, Design, Build, Test, Deploy

Based upon: In-Data Center Performance Analysis of a tensor Processing Unit

*®ISCA 2017, Jouppi, Young, Patil, Patterson, et al. TU/e
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What came out: TPUv1 card & package

e Accelerator card for servers

 Upto4cards/server

e Coprocessor on the PCle I/O bus

e Host CPU sends TPU instructions to
execute (to simplify HW design)

e Unlike GPU that fetches and executes
own instructions

e Large parallel chunks of work
done in custom hardware




Implement large 2D systolic matrix multiplication unit

e Systolic Execution to compute data on the fly in buffers

* Pipeline control and data

090 S
®@ oo -
|
l

Partial sums

TU/e

* Relies on data from different directions arriving at
regular intervals and being combined

60



Implement large 2D systolic matrix multiplication unit

e Systolic Execution to compute data on the fly in buffers

* Pipeline control and data

@ —= — — Data l
@’g@ =
o % ~
|
|

Partial sums

TU/e

* Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

e Systolic Execution to compute data on the fly in buffers

* Pipeline control and data

* Relies on data from different directions arriving at
regular intervals and being combined

62

|

Partial sums

TU/e



Implement large 2D systolic matrix multiplication unit

e Systolic Execution to compute data on the fly in buffers

* Pipeline control and data

00 [cor |,

Y1=W11X W1 X5+ W39 X3

* Relies on data from different directions arriving at

.- Done
regular intervals and being combined %

s TU/e




Implement large 2D systolic matrix multiplication unit

e Systolic Execution to compute data on the fly in buffers

* Pipeline control and data

il -
© =

Y= WX t W) X5+ W35X3 Partial sums
Y1mW11 Xt W) X5+ W3 X3
* Relies on data from different directions arriving at | % Done
regular intervals and being combined

- TU/e




Implement large 2D systolic matrix multiplication unit

Systolic Execution to compute data on the fly in buffers

Pipeline control and data

L Jwnz m————
iz Juwaz =
e® -

TU/e

Relies on data from different directions arriving at
regular intervals and being combined

Matrix Matrix Multiply takes more cycles and has better utilization

65
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High-level Chip Architecture

Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units

700 MHz clock rate
Peak: 92 Tera operations/second
65,536 * 2 * 700M

4 MiB of on-chip Accumulator mem.

24 MiB of on-chip Unified Buffer
(activation memory)

8 GiB of off-chip weight DRAM mem.
Two 2133MHz DDR3 DRAM channels

14
GiB/s

E

! .
=| ,GiB/s

PCle Gen3 x16

[ oft-chip 10
[[] pata buffer
[[] computation
. Control

Host interface

JL 30Gis
14 GiBls 30

167 GiB/s

Weight FIFO
(weight fetcher) |

N 30cirs

Activation

Normalize / Pool

TU/e




TPUv1 Chip area breakdown

* Main focus:
*  On-chip memory 35%
*  Matrix Multiply Unit 24% Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
e i 0 (96Kx256x8b = 24 MiB) 24%
e Controlis just 2% 26% of ohip
D Host Accumulators g
i Interf. 2% (4Kx256x32b = 4 MiB) 6% A
M ' — _a M
port || Control 2% Activation Pipeline 6% |~ | port
_ “ | dar3
.| [ PCle e | 29,
7| Interface 3% | . | Misc. /O 1%

TU/e
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TPUv1 from a programmer’s view

* 5 main (CISC) instructions

* Read_Host_Memory
* Reads memory from the CPU memory into the unified buffer
Read_Weights
e Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
MatrixMatrixMultiply/Convolve
e Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multiply,
an element-wise vector multiply, or a convolution from Unified Buffer into the accumulators
» Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produce a
B*256 output, taking B pipelined cycles to complete
Activate (RelLU, Sigmoid, Maxpool, LRN, ...)
 Computes activation function

Write_Host_Memory
e Writes data from unified buffer into host memory

TU/e
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TPUv1 from a programmer’s view

e Average Clock cycles per instruction: >10
» 4-stage overlapped execution, 1 instruction type / stage

* Execute other instructions while matrix multiplier busy

 Complexity in SW: No branches, in-order issue, SW controlled buffers, SW
controlled pipeline synchronization

TU/e
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Relative TPU Performance: 3 Contemporary Chips 2015

Processor mm? Clock TDP Idle
[MHz] [Watts] [Watts]

Peak TOPS/Chip

CPU:
Haswell 662 2300 145 41
(18 core)

GPU:
Nvidia K80 561 560 150 25
(2/card)

TPUvV1 <331 700 75 28

TPUv1 is less than half die size of the Intel Haswell processor

TU/e
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Relative Performance of TPUv1 server

Processor Chips / TDP Watts Idle Watts
Server

CPU: Haswell (18 cores) 256GB 504 159

NVIDIA K80 (2 die per card; 4 8 256GB (host) + 12GB x 8 1838 357
cards per server)

TPUV1 (1Core) 4 256GB (host) + 8GB x 4 861 290

Observed Busy

Watts in
Datacenter

455

991

384

TU/e
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Performance: Inference Datacenter Workload (95%)

Layers 1PUvI TPUVI
o | Nonlinear|,., . . | Ops/ ) %
Name |[LOC Sfunction Weights Weight Bgte)h Deployed
FC |Conv|Vector|\Pool| Total Byte D1ZC
MLPO 0.1kl 5 5 RelLU | 20M 200 200 61%
MLP1 | 1k | 4 4 | ReLU | 5M | 168 168 °
LSTMO| 1k | 24 34 sg | Sigmoid, | ooy 6y 64
tanh
: 1 29%
LSTMI1.5k 37 19 56 | MM 3aM | 96 96
tanh
CNNO | 1k 16 16 | ReLU M 2888 8 50
CNNI | 1k | 4 72 13] 89 | ReLU |[100M| 1750 32 °

TU/e




Roofline Visual Performance Model

2 Limits to performance AMD Opteron

. 64.0
1. Peak Computation

2. Peak Memory Bandwidth
(for apps with large data that 16.0
don’t fit in chache)

32.0

peak floating point perf.

8.0

4.0

Arithetic Intensity (FLOP/Byte

attainable GFLOPs/second

or reuse) determines which limit 2.0 { Kemel 1  Kemel2
1 (Memory i (Computation
10 i Bandwidth ¢ limited)
: E limited) .
Weight-reuse = Arithmetic 0.5

Intensity for DNN roofline g My M, 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.

TU/e
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TPUv1 Die Roofline

TeraOps/sec (log scale)

TPU Log-Log

100 === Roofline

86.0 < LSTMO
LSTM1
MLP1
MLPO
CNND
CNN1

14.1

10

©
[
[ 3N B A

3.7

0.1

1 10 100 1000

Operational Intensity: Ops/weight byte (log scale)
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Haswell (CPU) Die Roofline

TeraOps/sec (log scale)

3.1

Haswell Log-Log

121
*
0.6
0’5 m
A
0.2
L 4
1 10 100 1000

Operational Intensity: Ops/weight byte (log scale)

0.3

® N ¢ >

Roofline
LSTMO
LSTM1
MLP1
MLPO
CNNO
CNN1
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K80 (GPU) Die Roofline

K80 Log-Log
3.4 = Roofline
»— LSTMO
LSTM1
% A MLP1
@ 1.0 09 -~ MLPO
.‘tzn ! 0.7 = & B CNNO
-
9 L # CNN1
- 0.5
9':- X
.
=
0.2
A
1 5 10 50 100 500 1000

Operational Intensity: Ops/weight byte (log scale)

76
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Many benchmark far below roofline, e.g. MLPO

Increase Batch Size = More Weight Reuse

Type | Batch | 99th% Response | Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%
TPUvI| 200 7.0 ms 225,000 80%
TPUvI| 250 10.0 ms 280,000 100%‘

TU/e
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Combined log rooflines CPU,

TeraOps/sec (log scale)

100

10

GPU, TPUv1

10

100

1000

= TPU Roofline
=« K80 Roofline

P O * ¥ #

EN
A
A
e

HSW Roofline
LSTMO
LSTM1
MLP1
MLPO
CNNO
CNN1
LSTMO
LSTM1
MLP1
MLPO
CNNO
CNN1

® LSTMO

LSTM1

Y Star = TPUv1
A Triangle = GPU
O Circle =CPU
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Perf/Watt TPUv1 vs CPU & GPU

B GFU/CPFU @ TPU/CPU & TPU/GPU
100

73
50

23
2.9

Performance/Wait vs. CPU or GPU
[ =)

Total Incremental
Performance/Watt Performance/Watt
(including host CPU) (no host CPU)

TU/e
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TPUv1 success due to...

e Large Matrix Multiply Unit

* Software controlled on-chip memory

* Omission of GPU features small, low power die
e Use of 8-bit integers in quantized apps

* Appsin Tensorflow are easy to port at speed
* 15-month design & live introduction

» 30x faster than Haswell CPU, K80 GPU (inference)
* <0.5diesize, 0.5 Watts

TU/e



TPU v2

Towards cloud based inference and training

* Support for Training requires more instruction flexibility (TPUv2 is Turing complete)

* Multiple interconnected
TPUs on one mainboard

* Fast interconnection

TPU v1 TPUv2
Launched in 2015 Launched in 2017
Inference only Inference and training

&1 TU/e



For training 8bit integers is not enough

TPUv2 supports Bfloat16: format developed by the Google Brain team

fp32: Single-precision |IEEE Floating Point Format Range: ~1e-10 ~3e

Exponent: 8 bits Mantissa (Significand): 23 bits

EEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

fp16: Half-precision |IEEE Floating Point Format Range: ~5.96e"® to 65504
Exponent: 5 bits Mantissa (Significand): 10 bits

EEEEEMMMMMMMMMM

Supported by TPU i
bfloat16: Brain Floating Point Format Same range as fp32 } Range: ~1e"# 10 ~3¢™

Exponent: 8 bits Mantissa (Significand). 7 bits

EEEEEEEEMMMMMMM

TU/e
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TPU v2 architecture changes

TPUv2 Chip

16 GB of HBM

600 GB/s mem BW
Scalar unit: 32b float
MXU: 32b float
accumulation but
reduced precision for
multipliers

45 TFLOPS

HBM
8 GB

core

core

scalar unit scalar unit
o o 0OOooooooo
[ O [ 0O0oooooo
I [ O I | [ O
8 [ [ O ] o [ o O
o o o o o o o o [
] [ [ [ 15 [ [ | [
] [ O [ Oooooooo
0 [ O o [ o

MXU MXU
128x128 128x128

HBM
8 GB

TU/e
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Use a TPU Pod

Learning tasks take
10 hours on a single TPU

With a TPU v2 Pod this

reduces to 30min




Minor user facing software modifications

The TensorFlow API supports running your workload on different targets:
Local workstation, TPU, TPUPod

model_fn(features, labels, mode

input_layer = tf.reshape(features 1, 28, 28, 1

conv1 tf.layers.conv2d(inputs=input_layer

pooli tf.layers .max_pooling2d(inputs=conv1, pool_size=[2,62
strides=2

No further change

loss = tf.losses.softmax_cross_entropy
required for TPU Pod

onehot_labels-onehot_labels, logits-logits
optimizer tf.train.GradientDescentOptimizer(learning_re
optimizer tf.contrib.tpu.Ci ShardOptimizer(optimizer
train_op = optimizer.minimize(loss
tf.contrib.tpu.TPUEstimatorSpec(mode-mode, loss-loss
train_op=train_op

TU/e



Previous architectures are "Non Local Reuse Architectures"

e Use of large global buffers as shared storage

* Reduce DRAM accesses
e Multicast activations, single cast weights, accumulate partial sums spatially

e Often matrix multiplication based

Global Buffer




Neuro Vector Engine (2016)

Vector
DataBuff Reg Op Saturate Activation
Input Bus SramTer ¢ MACC Output
64 bit Store Load w Bus 64 bit

Operate on vectors : g ';eag : | | A
e Dual port vector memory —
. ! ! (e !
e Vector shuffle registers | | —>x 4 |
wr  Rd MG L + o
* Vector MACC array Port  Port——> Reg — —>Reg —
A | A o7 | | 07| |
* Vector Activation Scratchpad | | | |

Memory } } PE } } Act
1024x 015 1 LUT

64 bit ! ! ! !
wr| | Rd  lIme 1 1 o |
> Port| | |Port —> Reg —> —> Reg —
B | B 815 |85 |
| N |
| ¢ | | |
| M6 | | |
>reg 1 1
1622 | | |

M. Peemen et al. “The neuro vector engine: Flexibility to improve convolutional net efficiency” DATE2016 TU /



According to V. Sze et al. “Efficient Processing of Deep Neural
Networks” Proceedings of the IEEE 2017

Output Stationary

DataBuffer Reg Op Saturate Activation
Input Bus MACC Output
o o o 0 64 bit Store Load w Bus 64 bit
Minimize partial sum R/W Reg | k
. ! 0-3 ;
energy consumption | - | ceeee
. . . | | KX
w 1 ele 00 00
Maximize local accumulation = m | . | deeees
r | |
Port 3 Port : Reg : : : : : : :
Broadcast and B L | Becece
ac Scratchpad ! ! ol0o 00 00
Memory | | PE | ei0o 00 00
. Global Buffer 1024x B — N e ceee
Activation 6abit 3 3 HEEEX
Wr| | Rd IMG ] ] 000 00
> Port| | |Port Reg —> : Bie &6 oo
B| | |B | |85 | i e 000
I i ; ; ; elo 00 oo
P } | . @ o000 00
sum ! ; A ; LT RN RN
Pt o0 000000
3 0000000
IMG e0 000000
! Reg 00000000
sta22 00000000
E— e0 000000
e0 000000
e0 000000
e0 000000
e0 000000

- TU/e



GPU: NVIDIA Volta V100 (GTC May 2017)

up to 80 cores, 5120 PEs (FP32)
20 MB register space

815 mm?

21.1 Btransistors

12 nm

300 W

peak: 120 TFlops/s

(FP16) => 2.5 pJ/op

90
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1 SM core

Units:

* 8tensor cores/SM
* 64 Int units
* 64 FP32
 32FP64
e 32Ld/st
e 4 SFUs

e 128LBL1Data$

4 warp schedulers

91

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

TENSOR TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

Lo/ LD DI LD/ DY
ST ST ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 CORE
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

Lo/ LD/ DI LD/ DI
ST ST ST ST ST ST

CORE

SFU

TENSOR TENSOR

CORE

SFU

FPE4

FPG4

FP64

FP64

FPE4

FP64

FP&4

FPG4

Wi Lo
ST ST

FPE4

FP64

FP64

FP&4

FPG4

FPE4

FP&4

FPG4

[T
ST ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

TENSOR TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

Lot [T TR TR
ST ST ST ST ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 CORE
T FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ 1 LD LD/ LD/
sT ST ST ST

CORE

SFU

TENSOR TENSOR

CORE

SFU

TU/e



Tensor core operation

e D =AxB+C, all 4x4 matrices

* 64 floating point MAC operations per clock
(

D =

FP16 or FP32 FP16 FP16 or FP32
Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

more products

| i |
!
92 - TU/e



018: Xilinx adds Vector blocks

N

HotChips

%%%% %5 Non-Blocking Interconnect SpeeduD:
— %%%% %% Up to 200+ GB/s bandwidth per tile e ML: 20 x
me } Vo * MIMO/5G: 4 x

ISA-based

Vector Processor
Software Programmable
(e.g., C/C++)

Local Memory |
Multi-bank implementation |
Shared across neighbor cores .

5G Wireless Vector
Extensions

Data Mover
Non-neighbor data communication
Integrated synchreonization primitives

03 TU/e

Cascade Interface
Partial results to next core
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Xilinx Versal Al cores: scalable VLIW vector units

Vector R as
Core

Vector
Core

Vector
Core

T

Vector
Core

-
Ty

Vector
Core

Vector
Core

TU/e



Compute efficiency for neural network acceleration

Well known paradigm that can be made quantitative
* Energy Efficiency: Gops/Watt
* Sometimes expressed as: plJ/op

* Area Efficiency: Gops/mm?2

600 1.0 4550l 400 294 490 75 kB Dataflow 12.5 23.5
93 0.8  umc65 189 55 803 43 kB Config 1.31 42
54 - TSMC40 1000 30 559 20 kB VLIW 0.26 115
485 - TSMC65 980 452 931 44 kB FSM 3.02 149.7
320 - TSMC65 1000 128* 400 288 kB FSM 4.86 26.3
51 0.58 28FD-SOI 200 78 1277 6 MB Config 34 2.29

35  0.77 651P8M 50 73 2100** 290 kB FSM 16 4.5
40,000 - 28 nm 700 46,000 1150 28 MB CISC <331 >139

* Only gives theoretical peak performance, as opposed to actual measurements on a real network.

** Q-table lookup of precomputed multiplication results

s TU/e



Examples of inefficiency

TPU (256x256 systolic array)

Effective utilization for small (efficient)
network layers?

* E.g. 16 kernels of 3x3
* Where to obtain the parallelism?
Matrix conversion overhead?

Filter Input Fmap  Output Fmap

3 —

N.P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” ISCA 2017
V. Sze et al. “Efficient Processing of Deep Neural Networks”, Proceedings of the IEEE 2017
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Improving flexibility and efficiency

Processing 1D vectors more flexible than 2D systolic:  p.casufter

Vector

Reg Op Saturate
Input Bus MAcCC
i ihili 64 bit St Load w
More programming flexibility oS Lol e | |
| 03 | |
Operatlons that perform vector 3 3 3 3
permute and merge | § | /\ §
. . . Wi | Rd | IMG e (o]
Register files like Intel AVX - BN NERE EEER L S,
g | | | |
Al A o7 | | 0-7
Scratchpad i i i
Memory i i PE i
1024x 3 . Joas
64 bit I ; ;
Wr | Rd  live | | )
> Port| | |Port > Reg > > Reg
B B 815 | | 8-15
| | a B
==
 ive | |
—> Reg | |
- he22 | \ /

Activation
Output
Bus 64 b

A

97



Input Bus DataBuffer Reg Op MACC Saturate Activation B
64 bit Store Load w Bus 64 bit
: 7>| Reg : : : A
NVE C il ded B S R
ompiier neeade | @ =
e | — . :
Wr | | | Rd | MG | : : | o |
Port| | |Port Reg f f Reg { =
A | A |07 | | 0-7 |
Abstract from the hardware ochatchoad | | | | |
Memory | | PE | | Act
1024x N Cojeas| L[] @" Lt
64 bit ! ! ! I
wr| |Rd ! MG | | o | |
Port| | |Port > Reg : : Reg [ |
B| | B | |81 | | 815 |
| | @ L
| PA i i |
‘ | |ive i i i
A > Reg | | |
xml Task Graph Block Schedule ) VLW | o2 i | |
Rl P N . | Assembling BN : !
ConvNet Generation Scheduling Bundling program
L WriteLocal Read Local i Reg Operation i EXVMAC ! WBSgm
Ld a 0, [bO wO-1] Set i3, Shift i0 i1, Shift W MAC,w6, c2 i0
10 Cycles - —— - -
Ld ab 4 5, [c0,i0-15] Shift i0 i1, Shift W MAC,w7, c2 il
| Wr(c3,i0-i7], 4 | |Ldbs6,[c0,i16-17] Set WO MAC,wS8, c2 i2
M.Peemen e.a., VLIW Code Generation for Ld a1, [w2-4] Seti0 i1, Shift W Set, b0
Convolutional Network Accelerator Ld ab 7 8, [c1,i0-15] Set i3, Shift i0 i1, Shift W MAC, w0, c0 i0
SCOPS 2015 | Wr[c3,i8-i15], 5 | | Ldb9,[c1,i16-17] Shift i0 i1, Set W1 MAC,w1, c0 i1
Lda 2, [w5-8] Seti0 i1, Shift W MAC,w2, c0 i2 Sigm0, Wrback
Ld ab 10 11, [c2,i0-15] Set i3, Shift i0 i1, Shift W MAC,w3, c1 i0 Sigm1, Wrback
| Wr[c3,i16-19----1,6 | |Ldb12,[c2,i16-17] Shift i0 i1, Set W2 MAC,w4, cl il

v NOP Seti0 i1, Shift W MAC,w5, cl i2 TU/e



AivoTTA architecture

Convolutional Network optimized datapath based on Transport-Triggered Architecture (TTA)

Template . "
Weight datapath E emory ]

bus 0-2: general-purpose scalar 32-bit o
1
2
bus 3-5: scalar weights, 32-bit 3
4
5
bus 6: input vectors, 256-bit 6
bus 7: accumulator vectors, 1024-bit
® o
J.lJzerman et al., “AivoTTA: An Energy Efficient Programmable Accelerator for CNN-Based TU /e

Object Recognition” SAMQOS 2018 (research from Tampere Univ of Technology and TU/e)



AivoTTA (several vector units)

C and OpenCL programmable
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Energy breakdown AivoTTA, SAMOS 2018

400 MHz, total 11.3 mW
Summary et
Data
Huge processing and storage demands SRAM
A lot of research on 12%
efficiency improvements Weight
yimp SRAM
17%
DL networks get far more irregular
Flexible, but efficient, architectures needed
I . Control )
Select the sweet spot between flexibility and efficiency Torlls Instruction
SRAM...

12%
Complex code:

Advanced code transformations and automated code generation needed

101 TU/e



Being flexible does not have to be inefficient

Example AivoTTA

Very efficient Gops/W

Memory efficient
Gops/GB

Tech. GOPS GOPS Control
nm) /GB

Neuflow
Origami

NVE

DianNao
ShiDianNao
SoC

DNPU

TPU

AivoTTA 0.6V

65
40
65
65
28
65
28
28

803
559
931
400
1542
2100
1150
1434

521
125

1352
1081

Dataflow
Config.
VLIW
FSM

FSM
Config
FSM
CISC

TTA

TU/e



Beyond Silicon

Infineon NeuroChip
Directly uses biological networks

Difficult to connect to other devices

103 o TU/e



Deep Neural Networks

Neurobiology

¢! Applications

Constraints

. Innovations

104 Neuromorphic
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