
Electrical Engineering

Dr. ir. Maurice Peemen

Domain Specific Architectures:
Efficient Processing of Deep Neural Networks

My Background

• Masters Electrical Engineering at TU/e

• PhD work at TU/e

• Thesis work with Prof. Dr. Henk Corporaal
• Topic: Improving the Efficiency of Deep Convolutional Networks

• Staff Scientist at Thermo Fisher Scientific (formerly FEI Company)

• Electron Microscopy Imaging Challenges

• Manager Research & Development

• Leading a research team to progress microscopy with cutting edge algorithms

2

3 Proprietary & Confidential

We enable our customers to make the world healthier, cleaner and safer

Delivering diagnostic tests,

vaccine/therapy development

and production to fight

COVID-19 globally

Gold-standard PCR testing

Supporting innovative

research and development

of cleaner, more efficient

power sources

Electron microscopy for advanced
materials analysis Vanquish UHPLC QA / QC lab

Ensuring the quality and

safety of medicines

Our Mission is our purpose

4 Proprietary & Confidential

• Queen Maxima at the group of Prof. Eric Snijder at LUMC

Recent News: Queen Maxima visiting the researchers working on vaccines for Corona

SARS-CoV-2 virus particles imaged with

TEM. Spike protein visible as protrusions

on the surface of each particle

Image captured and pseudo-colored at

the NIAID Integrated Research Facility

(IRF) Maryland

High Performance Data Processing: Combining Domains

5

High Performance Computing
and Algorithms

The key method to study the
mechanics of the spikes
of the new Corona virus

Imaging Cryo-Specimen: Need 4 Signal

Contrast problems

• Radiation damage
• Low electron dose

• Solutions to extract info
• Cameras + Algorithms

6

Adenovirus, Phoebe
Stewart, Tecnai Polara,

Vanderbilt

Single Particle Analysis (SPA) workflow

7

The key method to
study the

mechanics of the spikes
of the new Corona virus

Detailed ACE2 receptor: How does it bind to the human
cell?

Side and top views of the pre-fusion structure of the COVID-19 S protein with a single RBD in the up
conformation. The two RBD-down protomers are shown as cryo-EM density in either white or grey and
the RBD-up protomer is shown in ribbons coloured green (credit: adapted from Wrapp, D, et al.).

https://science.sciencemag.org/content/early/2020/02/19/science.abb2507

Single Particle Analysis (SPA) workflow

Biological sample
(ThermoFisher)

Sample
Preparation
(FEI)

CryoHolder Image Acquisition
Titan Krios (FEI)

EPU
(FEI)

Particle extraction
(FEI WIP)

3D Reconstruction
(Academic opensource)

Amira Visualization
(FEI)

9

Image processing challenges in SPA workflow

10

Large volume data acquisition – Mapping the brain

11

Career opportunities in Thermo Fisher

From experience I can say that Thermo Fisher is a great company to work

• Innovation and Science is always connected to your day2day work

• Great development and career opportunities

• A diverse and friendly enviroment

https://jobs.thermofisher.com/global/en

Please have a look

12

https://jobs.thermofisher.com/global/en

Electrical Engineering

Dr. ir. Maurice Peemen

Domain Specific Architectures:
Efficient Processing of Deep Neural Networks

Transistors are not getting more efficient

Slowdown of Moore’s law
and Dennard Scaling

General purpose
microprocessors

struggle to become faster
or

more efficient

Only the number of
transistors per chip
increases nowadays

14

1

100

10000

1000000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year of introduction

Transistors (x1000) Frequency (MHz) Performance TDP (W) Cores

Utilize those extra transistors
Accelerate general purpose

“black box” programs

• 1st, 2nd, 3rd – level caches

• 512-bit SIMD FP Units

• 15+ stage pipelines

• Branch prediction

• Out-of-order execution

• Speculative prefetching

• Multithreading

• Multiprocessing

More transistors switching
means more power

15

1

100

10000

1000000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year of introduction

Transistors (x1000) Frequency (MHz) Performance TDP (W) Cores

Performance scaling for general purpose slows down

Energy budget limits performance

• 2X perf. scaling per tech node
not possible anymore

• Small upgrades to existing cores
may give 10% improvement

• What if order-of-magnitude
improvements are required?

16

The flexibility price of general-purpose processors

Where does the energy go?

RISC @ 45 nm, 0.9 V

ADD op. 0.5 pJ out of 70 pJ for the ADD instruction

Overall efficiency:
1 / 850 = 0.12 %

17

Reduce the price of flexibility: SIMD

Perform more effective work per instruction

Very programmable

1/140 vs 16/180 → 10 times efficiency improvement

Further improve efficiency further: unrolling

Maximize effective operations

Minimize load stores

E.g. 1/5 effective vs 9/11 → additional 4 times efficiency increase

~40 times
efficiency

improvement

Multi-level Caches

• Sub-optimal for easy predicable access
patterns

• Better alternative for DSA

• Dedicated scratchpad memories

Homogeneous Multi-processors

• Sub-optimal when small predictable
compute kernels dominate workload

• Standard processors; large programs and OS

• Add domain specific processors for a narrow
range of tasks but perform these extremely
fast and efficient. Intellectual Property Block

System on a chip (SOC)

20

Boost efficiency further: Domain Specific Architectures

Guidelines for DSAs

1. Use dedicated memories to minimize distance over which data is moved

• Software controlled scratchpads versus multi-level cache

2. Invest the resources saved from dropping advanced microarchitecture into
more arithmetic units and/or bigger memories

• No out-of-order execution, multithreading, prefetching, address coalescing, etc.

3. Use the easiest form of parallelism that matches the domain

• Expose simple parallelism to software: VLIW vs Out-of-order

4. Reduce data size and type to the simplest needed for the domain

• Narrow data types give less pressure on memory, also enable more arithmetic units

5. Use a domain specific programming language

• Examples are Halide for vision processing and Tensorflow/Pytorch for DNNs

21

Example Domain: Deep learning applications

22

Self-driving
cars

AlphaGo

Live
machine

translation

Smart
robots

Face Detection

23

Intelligent vision applications are everywhere

Applications in many domains

Examples: Security, Industrial, Medical, Automotive

24

Old man
Breathing ✓
Heart beat ✓

No action

Train a Deep Neural Networks for the task

• Focus on massive amounts of data and training instead of algorithm complexity

• Use relatively simple compute kernels that are intensively reused

• Massive amount of parallelism

• Excellent candidate algorithm for a Domain Specific Architecture

25

30 km/h 50 km/h 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

Background images hard to suppress Random background image patches

What is inside these Deep Neural Networks?

26

Presynaptic neuron Postsynaptic neuron

Cell body Synapses

Perceptron Model (1957)

Feed forward processing

Tuning the weights by learning

Non-linear separability (1969)

27

i i

i

y b x w
 

= +  
 



∑=p

w1

w2

w3

wK

x1

x2

x3

xK

Bias

b

Synaptic

weigths

Summing
junction

φ(p)
Output

y

Activation

function

0 0

0 0

0 1

0 0

0 0

0 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0 1

0 0

1 1

0 0

0

0

Example input
vector

x1

x2
Class1

Class2

Decision boundary
w1x1 + w2x2 + b = 0

Decision boundary
w1x1 + w2x2 + b = 0

x1

x2
Class1

Class2

Multi Layer Perceptron (1979)

Training is done by error back-propagation

28

0 0

0 0

0 0

1 0

0 1

0 0

1 0

1 0

0 0 1 0

0

0

0

0

0

0 1 1 1

0 0 0 0

0

0

Input

Layer

Output

Layer

Hidden

Layer
Input

Layer

Output

Layer

Hidden

Layer

Target

1

0

0

Input

Layer

Output

Layer

Hidden

Layer

Multi-Layer Perceptron as Vector Matrix Product

Each fully connected layer 𝑦𝑛 = 𝐹 𝑊 × 𝑦𝑛−1

• Can have many zeros, since ReLU turns negative numbers into zeros

• Operations: 2x Number of Weights

• Operations/Weight: 2

Can have many weights

• Eg dim[i-1]=4096 and dim[i]=2048

• 8M weights and 16M ops

29

Training Versus Inference

Inference with a network architecture and a tuned set of weights can be the end-application

• Many names: inference, prediction, scoring implementation, evaluation, running, testing

Obtaining a tuned set of weights by training is computationally much more demanding

• Often supervised learning

• For example, ImageNet competition

• 1.2 M photos, each labeled to one of 1000 categories

• The winner by evaluating 50k secret photos

• See which trained network has the lowest error rate

30

Training a network: Stochastic Gradient Descent (SGD)

• Collect annotated training data

• The neural network is a function of inputs 𝑥𝑖 and weights 𝜃: 𝑓 𝑥𝑖; 𝜃

• Start with feed forward run through the network: 𝑥𝑖 ➙ ෞ𝑦𝑖

• Evaluate predictions, i.e. results and labels into a loss function: ℒ 𝑦, 𝑓 𝑥𝑖 , 𝜃

31

∑=p

w0

w1

w2

x0

x1

x2

xK-1

Bias

b

Synaptic
weigths

Summing
junction

φ(p)

Output

y
0-1

Activation
function

wK-1

Input: x

Targets: y

𝑓 𝑥𝑖; 𝜃

𝑦𝑖 − ෝ𝑦𝑖
2

ℒ 𝑦, 𝑥𝑖 , 𝜃ො𝑦 = 𝑓 𝑥𝑖; 𝜃

Training a network: Stochastic Gradient Descent (SGD) 2
• Compute the error gradients

• Update the coefficients to reduce error

• Repeat 𝜕ℒ 𝜃; ො𝑦, 𝑓

𝜕 ො𝑦
𝜕 ො𝑦

𝜕𝑓

𝜕𝑓 𝑥𝑖; 𝜃

𝜕𝜃
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝛻𝜃 ℒ

∑=p

w0

w1

w2

x0

x1

x2

xK-1

Bias

b

Synaptic
weigths

Summing
junction

φ(p)

Output

y
0-1

Activation
function

wK-1

Input: x

Targets: y

𝑓 𝑥𝑖; 𝜃

𝑦𝑖 − ෝ𝑦𝑖
2

ℒ 𝜃; 𝑦, 𝑓ො𝑦 = 𝑓 𝑥𝑖; 𝜃

32

Optimization Through Gradient Descent (3)

Follow the path towards local minima in the parameter space

Stochastic Gradient Descent

Every random sample update the parameter space

33

Generalization

Take an abstract representation

Add details

Add too many details

A common challenge in Machine Learning problems

34

x1

x2

Class1

Class2

Under fitting

x1

x2

Class1

Class2

Good generalization

x1

Class1

Class2

Over fitting

Data set growth over time

35

70,000
samples
32x32 pixels

350,000
samples
2x96x96
pixels

10,000,000
samples
3x250x250
pixels

300,000,000
samples
3x340x340
pixels

Huge amounts of data for training

Large datasets help a lot:

• Less overfitting

• Accurate classification

Better Machine Learning

36

x1

Class1

Class2

Over fitting

The cost of training

Inference time ~100ms on a fast GPU

Training time ~6 hours to several weeks, or even months

Keep in mind that a well-trained network will be used by many

• Many users using the network
totals to many hours of usage

• For some workloads a DSA for
inference has more value

37

The Hype Curve of Neural Networks

38

level of
interest

time

Perceptron
1957

Non-Linear
Separability

1969

Multi Layer
Perceptron

1979

SVM
1998

2006

Today

Building more restricted neurons

39

input

32 x 32

H

W

R

S

filter (weights)
input fmap

Building more restricted neurons

40

input

32 x 32

H

W

R

S

Element-wise
Multiplication

input fmap
filter (weights)

input

32 x 32

H

W

R

S

Element-wise
Multiplication

Partial Sum
Accumulation

E

F

input fmap
filter (weights)

an output
activation

output fmap

Building more restricted neurons

41

input

32 x 32

H

W

R

S E

F

input fmap
filter (weights)

an output
activation

Sliding window
processing

output fmap

Building more restricted neurons

42

Biologically inspired object recognition

Convolutional Neural Network

43
feature extraction classification

n2

output

sign
30
50
60
70
80
90
100

1x1

convolution

feature maps

5 x 5

2x2

subsampling

S2

5x5

convolution

n1

feature maps

10 x 10

5x5

convolution

C2

2x2

subsampling

feature maps

14 x 14

S1

feature maps

28 x 28

5x5

convolution

C1

input

32 x 32

multiple
output channels (M)

multiple
input channels (C)

Detection and Recognition Application

44

Define shape for each layer

Shape varies across layers

• H – Height of input fmap (activations)
• W – Width of input fmap (activations)
• C – Number of 2D input fmaps / filters (channels)
• R – Height of 2D filter (weights)
• S – Width of 2D filter (weights)
• M – Number of 2D output fmaps (channels)
• E – Height of output fmap (activations)
• F – Width of output fmap (activations)
• N – Number of input fmaps/output fmaps (batch size)

AlexNet (2012) ILSVRC winner:

• 8 layers, 62Mparameters

• 1.4 GFLOP inference

45

General CNN acceleration DSA

• Each output feature map has a unique set
of weights

• The vector matrix multiply happens for
every input

46

What Else Can Deep Neural Nets Do?

Classification Approximation

Optimization Clustering

47

Application: Super Resolution from NNs

Low Resolution
Image

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16

48

Very Deep Super Resolution: VDSR

• Residual learning

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16

49

Deep learning models have become huge

• Image Recognition

• AlexNet (2012) ILSVRC winner

• 8 layers, 62Mparameters
• 1.4 GFLOP inference
• 16% error rate

• ResNet (2015) ILSVRC winner

• 152 layers, 60Mparameters
• 22.6 GFLOP inference
• 6.16% error rate

50

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1940 1950 1960 1970 1980 1990 2000 2010 2020

Year of introduction

Model parameters
Compute Workload [Macc]

Expon. (Model parameters)
Expon. (Compute Workload [Macc])

Trends in Deep Learning

51

Bigger = Better

The first challenge: Model Size

• Competition winning networks like AlexNet (2012) and ResNet152 (2015) are large

• About 60M parameters resulting in a coefficient file of 240MB
• Hard to distribute large models through over-the-air updates

52

The second challenge: Speed

• Network design and training time have become a huge bottleneck

Error rate Training time

ResNet 18: 10.76% 2.5 days

ResNet 50: 7.02% 5 days

ResNet 101: 6.21% 1 week

ResNet 152: 6.16% 1.5 weeks

Training time benchmarked with fb.resnet.torch using four M40 GPUs

• Such a long training time limits the productivity of ML researchers

53

The third challenge: Energy Efficiency

54

1920 GPUs and 280 GPUs, $3000 electric bill per game

On smartphone: battery drains quickly
On data-center: Increased TCO

Accelerator Challenges

Data Movement: Get parameters + activations from RAM

Data movement is expensive

• Energy, latency, bandwidth

Focus on data locality

55

Host ProcessorExternal RAM

Accelerator
2

Accelerator
3

Accelerator
1 Local

Buffer

Data path

acc* +

acc* +

*Action Energy Relative

ALU op 1 pJ – 4 pJ 1x

SRAM Read 5 pJ – 20 pJ 5x

Move 10mm
across chip

26 pJ – 44 pJ 25x

Send to DRAM 200 pJ – 800
pJ

200x

Read from image
sensor

3.2 nJ – 4 nJ 4,000x

Send over LTE 50 uJ – 600 uJ 50,000,000
x

DianNao (2014)

Split Buffers for BW

Vector vector multiply

Hardware adder tree

Partial layer computation

Fetch input neurons

Fetch synapses

56

DianNao (2014)

Multiply

Sum neuron inputs

Buffer partial sums

57

According to V. Sze et al. “Efficient Processing of Deep Neural Networks”
Proceedings of the IEEE 2017

Non Local Reuse Architecture

In-depth analysis of the Google Tensor Processing Unit

• 2013: Google prepares for the success-disaster of new DNN apps

• Users speaking to phones 3 minutes per day:
With only CPUS, need 2X-3X times whole datacenter fleet

• DNNs applicable to a wide range of problems, so hardware accelerator can be reused for
speech, vision, language translation, search ranking, etc.

• Goal: Custom hardware to reduce TCO of DNN inference by 10X vs. CPUs

• Must run existing apps developed for CPUs and GPUs

• Very short development cycle: Project start 2014, running in datacenter 15 months later

• Architecture invention, Compiler invention, Hardware, Design, Build, Test, Deploy

58
Based upon: In-Data Center Performance Analysis of a tensor Processing Unit
ISCA 2017, Jouppi, Young, Patil, Patterson, et al.

What came out: TPUv1 card & package

• Accelerator card for servers

• Up to 4 cards / server

• Coprocessor on the PCIe I/O bus

• Host CPU sends TPU instructions to
execute (to simplify HW design)

• Unlike GPU that fetches and executes
own instructions

• Large parallel chunks of work
done in custom hardware

59

Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

60

X11

X12

X13

W11

W21

W31

W12

W22

W32

*

Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

61

X2

X3

W11
X1

W21

W31

W12

W22

W32

*

+

Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

62

X3

W11

W21
X2

W31

W12
X1

W22

W32*

+

+

Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

63

W11

W21

W31
X3

W12

W22
X2

W32

+

y1=w11x1+w21x2+w31x3

Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

64

W11

W21

W31

W12

W22

W32
X3

y1=w11x1+w21x2+w31x3

y2=w12x1+w22x2+w32x3

Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

• Matrix Matrix Multiply takes more cycles and has better utilization

65

X11

X12

X13

W11

W21

W31

W12

W22

W32

X21X31

X22X32

X23X33

High-level Chip Architecture

• Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units

• 700 MHz clock rate

• Peak: 92 Tera operations/second

• 65,536 * 2 * 700M

• 4 MiB of on-chip Accumulator mem.

• 24 MiB of on-chip Unified Buffer
(activation memory)

• 8 GiB of off-chip weight DRAM mem.

• Two 2133MHz DDR3 DRAM channels

66

TPUv1 Chip area breakdown

• Main focus:

• On-chip memory 35%

• Matrix Multiply Unit 24%

• Control is just 2%

67

TPUv1 from a programmer’s view

• 5 main (CISC) instructions

• Read_Host_Memory
• Reads memory from the CPU memory into the unified buffer

• Read_Weights
• Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit

• MatrixMatrixMultiply/Convolve
• Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multiply,

an element-wise vector multiply, or a convolution from Unified Buffer into the accumulators
• Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produce a

B*256 output, taking B pipelined cycles to complete

• Activate (ReLU, Sigmoid, Maxpool, LRN, …)
• Computes activation function

• Write_Host_Memory
• Writes data from unified buffer into host memory

68

TPUv1 from a programmer’s view

• Average Clock cycles per instruction: >10

• 4-stage overlapped execution, 1 instruction type / stage

• Execute other instructions while matrix multiplier busy

• Complexity in SW: No branches, in-order issue, SW controlled buffers, SW
controlled pipeline synchronization

69

Relative TPU Performance: 3 Contemporary Chips 2015

TPUv1 is less than half die size of the Intel Haswell processor

70

Processor mm2 Clock
[MHz]

TDP
[Watts]

Idle
[Watts]

Memory
GB/sec

Peak TOPS/Chip

8b int. 32b FP

CPU:
Haswell
(18 core)

662 2300 145 41 51 2.6 1.3

GPU:
Nvidia K80
(2/card)

561 560 150 25 160 -- 2.8

TPUv1 <331 700 75 28 34 91.8 --

Relative Performance of TPUv1 server

Processor Chips /
Server

DRAM TDP Watts Idle Watts Observed Busy
Watts in

Datacenter

CPU: Haswell (18 cores) 2 256GB 504 159 455

NVIDIA K80 (2 die per card; 4
cards per server)

8 256GB (host) + 12GB x 8 1838 357 991

TPUv1 (1Core) 4 256GB (host) + 8GB x 4 861 290 384

71

Performance: Inference Datacenter Workload (95%)

72

Roofline Visual Performance Model

2 Limits to performance

1. Peak Computation

2. Peak Memory Bandwidth
(for apps with large data that
don’t fit in chache)

Arithetic Intensity (FLOP/Byte
or reuse) determines which limit

Weight-reuse = Arithmetic
Intensity for DNN roofline

73
Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.

TPUv1 Die Roofline

74

Haswell (CPU) Die Roofline

75

K80 (GPU) Die Roofline

76

Many benchmark far below roofline, e.g. MLP0

Increase Batch Size = More Weight Reuse

77

Combined log rooflines CPU, GPU, TPUv1

78

Perf/Watt TPUv1 vs CPU & GPU

79

TPUv1 success due to…

• Large Matrix Multiply Unit

• Software controlled on-chip memory

• Omission of GPU features small, low power die

• Use of 8-bit integers in quantized apps

• Apps in Tensorflow are easy to port at speed

• 15-month design & live introduction

• 30x faster than Haswell CPU, K80 GPU (inference)

• <0.5 die size, 0.5 Watts

80

TPU v2

Towards cloud based inference and training

• Support for Training requires more instruction flexibility (TPUv2 is Turing complete)

• Multiple interconnected
TPUs on one mainboard

• Fast interconnection

81

For training 8bit integers is not enough

TPUv2 supports Bfloat16: format developed by the Google Brain team

82

TPU v2 architecture changes

83

Use a TPU Pod

84

Learning tasks take
10 hours on a single TPU

With a TPU v2 Pod this

reduces to 30min

Minor user facing software modifications

The TensorFlow API supports running your workload on different targets:

Local workstation, TPU, TPUPod

85

Previous architectures are "Non Local Reuse Architectures"

• Use of large global buffers as shared storage

• Reduce DRAM accesses

• Multicast activations, single cast weights, accumulate partial sums spatially

• Often matrix multiplication based

86

Neuro Vector Engine (2016)

Operate on vectors

• Dual port vector memory

• Vector shuffle registers

• Vector MACC array

• Vector Activation

87
M. Peemen et al. “The neuro vector engine: Flexibility to improve convolutional net efficiency” DATE2016

Vector
MACC

IMG
Reg
0-7

IMG
Reg
8-15

IMG
Reg

16-22

W
Reg
0-3

Reg Op

Scratchpad
Memory

1024x
64 bit

Rd
Port

A

Rd
Port

B

Wr
Port

A

LoadStore

O
Reg
0-7

O
Reg
8-15

Saturate ActivationDataBuffer

PE
0-15

+*
+*
+*
+*

+*

Act
LUT

Wr
Port

B

Input Bus
64 bit

Output
Bus 64 bit

Output Stationary

Minimize partial sum R/W
energy consumption

Maximize local accumulation

Broadcast filter weights and
reuse activations spatially

88

According to V. Sze et al. “Efficient Processing of Deep Neural
Networks” Proceedings of the IEEE 2017

Vector
MACC

IMG
Reg
0-7

IMG
Reg
8-15

IMG
Reg

16-22

W
Reg
0-3

Reg Op

Scratchpad
Memory

1024x
64 bit

Rd
Port

A

Rd
Port

B

Wr
Port

A

LoadStore

O
Reg
0-7

O
Reg
8-15

Saturate ActivationDataBuffer

PE
0-15

+*
+*
+*
+*

+*

Act
LUT

Wr
Port

B

Input Bus
64 bit

Output
Bus 64 bit

GPU: NVIDIA Volta V100 (GTC May 2017)

90

• up to 80 cores, 5120 PEs (FP32)
• 20 MB register space
• 815 mm2

• 21.1 Btransistors
• 12 nm
• 300 W
• peak: 120 TFlops/s
• (FP16) => 2.5 pJ/op

1 SM core

Units:

• 8 tensor cores/SM

• 64 Int units

• 64 FP32

• 32 FP64

• 32 Ld/St

• 4 SFUs

• 128 LB L1 Data $

• 4 warp schedulers

91

Tensor core operation

• D = AxB + C, all 4x4 matrices

• 64 floating point MAC operations per clock

92

HotChips 2018: Xilinx adds Vector blocks

93

Speedup:
• ML: 20 x
• MIMO/5G: 4 x

Xilinx Versal AI cores: scalable VLIW vector units

94

Compute efficiency for neural network acceleration

Well known paradigm that can be made quantitative

• Energy Efficiency: Gops/Watt

• Sometimes expressed as: pJ/op

• Area Efficiency: Gops/mm2

95

Accelerator mW V Tech. MHz Gops Gops/W On-Chip Mem. Control mm2 Gops/mm2

NeuFlow [110] 600 1.0 45 SOI 400 294 490 75 kB Dataflow 12.5 23.5
Origami [15] 93 0.8 umc 65 189 55 803 43 kB Config 1.31 42
NVE [109] 54 - TSMC 40 1000 30 559 20 kB VLIW 0.26 115
DianNao [20] 485 - TSMC 65 980 452 931 44 kB FSM 3.02 149.7
ShiDianNao [46] 320 - TSMC 65 1000 128* 400 288 kB FSM 4.86 26.3
Desoli et al. [43] 51 0.58 28 FD-SOI 200 78 1277 6 MB Config 34 2.29
Shin et al. [132] 35 0.77 65 1P8M 50 73 2100** 290 kB FSM 16 4.5
TPU [77] 40,000 - 28 nm 700 46,000 1150 28 MB CISC <331 >139
* Only gives theoretical peak performance, as opposed to actual measurements on a real network.
** Q-table lookup of precomputed multiplication results

Examples of inefficiency

TPU (256x256 systolic array)

Effective utilization for small (efficient)
network layers?

• E.g. 16 kernels of 3x3

• Where to obtain the parallelism?

Matrix conversion overhead?

96

N.P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” ISCA 2017

Transposed Convolution

Filter Input Fmap Output Fmap

V. Sze et al. “Efficient Processing of Deep Neural Networks”, Proceedings of the IEEE 2017

Improving flexibility and efficiency

Processing 1D vectors more flexible than 2D systolic:

More programming flexibility

Operations that perform vector
permute and merge

Register files like Intel AVX

97

Vector
MACC

IMG
Reg
0-7

IMG
Reg
8-15

IMG
Reg

16-22

W
Reg
0-3

Reg Op

Scratchpad
Memory

1024x
64 bit

Rd
Port

A

Rd
Port

B

Wr
Port

A

LoadStore

O
Reg
0-7

O
Reg
8-15

Saturate ActivationDataBuffer

PE
0-15

+*
+*
+*
+*

+*

Act
LUT

Wr
Port

B

Input Bus
64 bit

Output
Bus 64 bit

1-D

NVE Compiler needed

Abstract from the hardware

Task Graph
Generation

Block
Scheduling

Schedule
Bundling

Assembling
.xml

ConvNet
VLIW

program

Wr[c3,i0-i7], 4

Wr[c3,i8-i15], 5

Wr[c3,i16-i19 - - - -], 6

Read Local
Ld a 0, [b0 w0-1]

Ld ab 4 5, [c0,i0-15]

Ld b 6, [c0,i16-17] Set W0

Reg Operation

Set i0 i1, Shift W

Set i3, Shift i0 i1, Shift W

Set, b0

EX VMAC

MAC,w0, c0 i0

MAC,w1, c0 i1

MAC,w2, c0 i2

MAC,w3, c1 i0

Shift i0 i1, Set W2

Set i0 i1, Shift W

Set i0 i1, Shift W

Ld b 9, [c1,i16-17]

Ld ab 7 8, [c1,i0-15]

Shift i0 i1, Set W1

Set i3, Shift i0 i1, Shift WLd ab 10 11, [c2,i0-15]

MAC,w4, c1 i1

MAC,w5, c1 i2

Ld a 2, [w5-8]

MAC,w6, c2 i0

MAC,w7, c2 i1

MAC,w8, c2 i2

Shift i0 i1, Shift W

Ld a 1, [w2-4]

Ld b 12, [c2,i16-17]

Write Local WB Sgm

Sigm0, Wrback

Sigm1, Wrback

NOP

Set i3, Shift i0 i1, Shift W
10 Cycles

M.Peemen e.a., VLIW Code Generation for
Convolutional Network Accelerator
SCOPS 2015

Vector
MACC

IMG
Reg
0-7

IMG
Reg
8-15

IMG
Reg

16-22

W
Reg
0-3

Reg Op

Scratchpad
Memory

1024x
64 bit

Rd
Port

A

Rd
Port

B

Wr
Port

A

LoadStore

O
Reg
0-7

O
Reg
8-15

Saturate ActivationDataBuffer

PE
0-15

+*
+*
+*
+*

+*

Act
LUT

Wr
Port

B

Input Bus
64 bit

Output
Bus 64 bit

AivoTTA architecture

Convolutional Network optimized datapath based on Transport-Triggered Architecture (TTA)
Template

Weight datapath

99
J.IJzerman et al., “AivoTTA: An Energy Efficient Programmable Accelerator for CNN-Based
Object Recognition” SAMOS 2018 (research from Tampere Univ of Technology and TU/e)

bus 0-2: general-purpose scalar 32-bit

bus 3-5: scalar weights, 32-bit

bus 6: input vectors, 256-bit
bus 7: accumulator vectors, 1024-bit

AivoTTA (several vector units)

C and OpenCL programmable

100

Summary

Huge processing and storage demands

A lot of research on
efficiency improvements

DL networks get far more irregular

Flexible, but efficient, architectures needed

Select the sweet spot between flexibility and efficiency

Complex code:

Advanced code transformations and automated code generation needed

101

Data
SRAM
12%

Weight
SRAM
17%

Instruction
SRAM…

Control
logic
12%

Functional
units…

Register files
4%

Energy breakdown AivoTTA, SAMOS 2018
400 MHz, total 11.3 mW

Being flexible does not have to be inefficient

Example AivoTTA

• Very efficient Gops/W

• Memory efficient
Gops/GB

102

Tech.
(nm)

GOPS
/w

GOPS
/GB

Control

Neuflow 45 490 50 Dataflow

Origami 65 803 521 Config.

NVE 40 559 125 VLIW

DianNao 65 931 - FSM

ShiDianNao 65 400 - FSM

SoC 28 1542 - Config

DNPU 65 2100 - FSM

TPU 28 1150 1352 CISC

AivoTTA 0.6V 28 1434 1081 TTA

Beyond Silicon

Infineon NeuroChip

Directly uses biological networks

Difficult to connect to other devices

103

Deep Neural Networks

104

Neurobiology

Applications

Technology

Constraints

Innovations

Neuromorphic

Machine Learning

//upload.wikimedia.org/wikipedia/en/9/9f/Memristor.jpg

