
Electrical Engineering

Dr. ir. Maurice Peemen

Domain Specific Architectures:
Efficient Processing of Deep Neural Networks



My Background

• Masters Electrical Engineering at TU/e

• PhD work at TU/e

• Thesis work with Prof. Dr. Henk Corporaal
• Topic: Improving the Efficiency of Deep Convolutional Networks

• Staff Scientist at Thermo Fisher Scientific (formerly FEI Company)

• Electron  Microscopy Imaging Challenges

• Manager Research & Development

• Leading a research team to progress microscopy with cutting edge algorithms

2



3 Proprietary & Confidential

We enable our customers to make the world healthier, cleaner and safer

Delivering diagnostic tests,  

vaccine/therapy development 

and production to fight 

COVID-19 globally

Gold-standard PCR testing

Supporting innovative 

research and development

of cleaner, more efficient

power sources

Electron microscopy for advanced 
materials analysis Vanquish UHPLC QA / QC lab

Ensuring the quality and 

safety of medicines

Our Mission is our purpose



4 Proprietary & Confidential

• Queen Maxima at the group of Prof. Eric Snijder at LUMC 

Recent News: Queen Maxima visiting the researchers working on vaccines for Corona

SARS-CoV-2 virus particles imaged with 

TEM. Spike protein visible as protrusions 

on the surface of each particle

Image captured and pseudo-colored at 

the NIAID Integrated Research Facility 

(IRF) Maryland



High Performance Data Processing: Combining Domains
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High Performance Computing  
and Algorithms 

The key method to study the
mechanics of the spikes 
of the new Corona virus



Imaging Cryo-Specimen: Need 4 Signal

Contrast problems

• Radiation damage
• Low electron dose

• Solutions to extract info
• Cameras + Algorithms
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Adenovirus, Phoebe 
Stewart, Tecnai Polara, 

Vanderbilt



Single Particle Analysis (SPA) workflow
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The key method to 
study the

mechanics of the spikes 
of the new Corona virus



Detailed ACE2 receptor: How does it bind to the human 
cell?

Side and top views of the pre-fusion structure of the COVID-19 S protein with a single RBD in the up 
conformation. The two RBD-down protomers are shown as cryo-EM density in either white or grey and 
the RBD-up protomer is shown in ribbons coloured green (credit: adapted from Wrapp, D, et al.).

https://science.sciencemag.org/content/early/2020/02/19/science.abb2507


Single Particle Analysis (SPA) workflow

Biological sample
(ThermoFisher)

Sample 
Preparation 
(FEI)

CryoHolder Image Acquisition
Titan Krios (FEI)

EPU 
(FEI)

Particle extraction 
(FEI WIP)

3D Reconstruction
(Academic opensource)

Amira Visualization
(FEI)
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Image processing challenges in SPA workflow
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Large volume data acquisition – Mapping the brain
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Career opportunities in Thermo Fisher

From experience I can say that Thermo Fisher is a great company to work

• Innovation and Science is always connected to your day2day work

• Great development and career opportunities

• A diverse and friendly enviroment

https://jobs.thermofisher.com/global/en

Please have a look
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Transistors are not getting more efficient

Slowdown of Moore’s law
and Dennard Scaling

General purpose
microprocessors

struggle to become faster 
or

more efficient

Only the number of 
transistors per chip 
increases nowadays
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Utilize those extra transistors
Accelerate general purpose 

“black box” programs 

• 1st, 2nd, 3rd – level caches

• 512-bit SIMD FP Units

• 15+ stage pipelines

• Branch prediction

• Out-of-order execution

• Speculative prefetching

• Multithreading

• Multiprocessing

More transistors switching 
means more power
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Performance scaling for general purpose slows down

Energy budget limits performance

• 2X perf. scaling per tech node
not possible anymore

• Small upgrades to existing cores
may give 10% improvement

• What if order-of-magnitude 
improvements are required?
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The flexibility price of general-purpose processors

Where does the energy go?

RISC @ 45 nm, 0.9 V

ADD op. 0.5 pJ out of 70 pJ for the ADD instruction

Overall efficiency:
1 / 850 = 0.12 %
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Reduce the price of flexibility: SIMD

Perform more effective work per instruction

Very programmable

1/140 vs 16/180  →  10 times efficiency improvement



Further improve efficiency further: unrolling

Maximize effective operations

Minimize load stores

E.g. 1/5 effective vs 9/11 →  additional 4 times efficiency increase

~40 times 
efficiency 

improvement



Multi-level Caches

• Sub-optimal for easy predicable access 
patterns

• Better alternative for DSA

• Dedicated scratchpad memories

Homogeneous Multi-processors

• Sub-optimal when small predictable 
compute kernels dominate workload

• Standard processors; large programs and OS

• Add domain specific processors for a narrow 
range of tasks but perform these extremely 
fast and efficient. Intellectual Property Block

System on a chip (SOC)
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Boost efficiency further: Domain Specific Architectures



Guidelines for DSAs

1. Use dedicated memories to minimize distance over which data is moved

• Software controlled  scratchpads versus multi-level cache 

2. Invest the resources saved from dropping advanced microarchitecture into 
more arithmetic units and/or bigger memories

• No out-of-order execution, multithreading, prefetching, address coalescing, etc.

3. Use the easiest form of parallelism that matches the domain

• Expose simple parallelism to software: VLIW vs Out-of-order

4. Reduce data size and type to the simplest needed for the domain

• Narrow data types give less pressure on memory, also enable more arithmetic units 

5. Use a domain specific programming language

• Examples are Halide for vision processing and Tensorflow/Pytorch for DNNs
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Example Domain: Deep learning applications
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Self-driving 
cars

AlphaGo

Live 
machine 

translation

Smart 
robots



Face Detection
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Intelligent vision applications are everywhere

Applications in many domains

Examples: Security, Industrial, Medical, Automotive
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Old man
Breathing ✓
Heart beat ✓

No action



Train a Deep Neural Networks for the task

• Focus on massive amounts of data and training instead of algorithm complexity

• Use relatively simple compute kernels that are intensively reused

• Massive amount of parallelism

• Excellent candidate algorithm for a Domain Specific Architecture 

25

30 km/h 50 km/h 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

Background images hard to suppress Random background image patches



What is inside these Deep Neural Networks?
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Presynaptic neuron Postsynaptic neuron

Cell body Synapses



Perceptron Model (1957)

Feed forward processing

Tuning the weights by learning

Non-linear separability (1969)

27

i i

i

y b x w
 

= +  
 



∑=p  

w1  

w2  

w3  

wK  

x1

x2

x3

xK

Bias

b

Synaptic 

weigths

Summing 
junction

φ(p) 
Output

y

Activation 

function

0 0

0 0

0 1

0 0

0 0

0 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0 1

0 0

1 1

0 0

0

0

Example input 
vector

x1

x2
Class1

Class2

Decision boundary
w1x1 + w2x2 + b = 0

Decision boundary
w1x1 + w2x2 + b = 0

x1

x2
Class1

Class2



Multi Layer Perceptron (1979)

Training is done by error back-propagation
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Multi-Layer Perceptron as Vector Matrix Product

Each fully connected layer 𝑦𝑛 = 𝐹 𝑊 × 𝑦𝑛−1

• Can have many zeros, since ReLU turns negative numbers into zeros

• Operations: 2x Number of Weights

• Operations/Weight: 2

Can have many weights

• Eg dim[i-1]=4096 and dim[i]=2048

• 8M weights and 16M ops
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Training Versus Inference

Inference with a network architecture and a tuned set of weights can be the end-application

• Many names: inference, prediction, scoring implementation, evaluation, running, testing

Obtaining a tuned set of weights by training is computationally much more demanding

• Often supervised learning

• For example, ImageNet competition

• 1.2 M photos, each labeled to one of 1000 categories

• The winner by evaluating 50k secret photos

• See which trained network has the lowest error rate
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Training a network: Stochastic Gradient Descent (SGD)

• Collect annotated training data

• The neural network is a function of inputs 𝑥𝑖 and weights 𝜃: 𝑓 𝑥𝑖; 𝜃

• Start with feed forward run through the network: 𝑥𝑖 ➙ ෞ𝑦𝑖

• Evaluate predictions, i.e. results and labels into a loss function: ℒ 𝑦, 𝑓 𝑥𝑖 , 𝜃
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Training a network: Stochastic Gradient Descent (SGD) 2
• Compute the error gradients

• Update the coefficients to reduce error

• Repeat 𝜕ℒ 𝜃; ො𝑦, 𝑓

𝜕 ො𝑦
𝜕 ො𝑦

𝜕𝑓

𝜕𝑓 𝑥𝑖; 𝜃
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Optimization Through Gradient Descent (3)

Follow the path towards local minima in the parameter space

Stochastic Gradient Descent

Every random sample update the parameter space

33



Generalization

Take an abstract representation

Add details

Add too many details

A common challenge in Machine Learning problems
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Data set growth over time
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70,000 
samples
32x32 pixels

350,000 
samples
2x96x96 
pixels

10,000,000 
samples
3x250x250 
pixels

300,000,000 
samples
3x340x340 
pixels



Huge amounts of data for training

Large datasets help a lot:

• Less overfitting

• Accurate classification

Better Machine Learning
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The cost of training

Inference time ~100ms on a fast GPU

Training time ~6 hours to several weeks, or even months

Keep in mind that a well-trained network will be used by many 

• Many users using the network
totals to many hours of usage

• For some workloads a DSA for
inference has more value
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The Hype Curve of Neural Networks 
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Building more restricted neurons
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Building more restricted neurons
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Biologically inspired object recognition

Convolutional Neural Network
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Detection and Recognition Application
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Define shape for each layer

Shape varies across layers

• H – Height of input fmap (activations)
• W – Width of input fmap (activations)
• C – Number of 2D input fmaps / filters (channels)
• R – Height of 2D filter (weights)
• S – Width of 2D filter (weights)
• M – Number of 2D output fmaps (channels)
• E – Height of output fmap (activations)
• F – Width of output fmap (activations)
• N – Number of input fmaps/output fmaps (batch size)

AlexNet (2012) ILSVRC winner:

• 8 layers, 62Mparameters

• 1.4 GFLOP inference
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General CNN acceleration DSA

• Each output feature map has a unique set
of weights

• The vector matrix multiply happens for 
every input
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What Else Can Deep Neural Nets Do?

Classification Approximation

Optimization Clustering
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Application: Super Resolution from NNs

Low Resolution 
Image

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16

48



Very Deep Super Resolution: VDSR

• Residual learning

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16
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Deep learning models have become huge

• Image Recognition

• AlexNet (2012) ILSVRC winner

• 8 layers, 62Mparameters
• 1.4 GFLOP inference
• 16% error rate

• ResNet (2015) ILSVRC winner

• 152 layers, 60Mparameters
• 22.6 GFLOP inference
• 6.16% error rate
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Bigger = Better



The first challenge: Model Size

• Competition winning networks like AlexNet (2012) and ResNet152 (2015) are large

• About 60M parameters resulting in a coefficient file of 240MB
• Hard to distribute large models through over-the-air updates
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The second challenge: Speed

• Network design and training time have become a huge bottleneck

Error rate Training time

ResNet 18: 10.76% 2.5 days

ResNet 50: 7.02% 5 days

ResNet 101: 6.21% 1 week

ResNet 152: 6.16% 1.5 weeks

Training time benchmarked with fb.resnet.torch using four M40 GPUs

• Such a long training time limits the productivity of ML researchers 
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The third challenge: Energy Efficiency
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1920 GPUs and 280 GPUs, $3000 electric bill per game

On smartphone: battery drains quickly
On data-center: Increased TCO



Accelerator Challenges

Data Movement: Get parameters + activations from RAM

Data movement is expensive

• Energy, latency, bandwidth

Focus on data locality
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Host ProcessorExternal RAM
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2

Accelerator 
3

Accelerator 
1 Local
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Data path
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acc* +

*Action Energy Relative

ALU op 1 pJ – 4 pJ 1x

SRAM Read 5 pJ – 20 pJ 5x

Move 10mm
across chip

26 pJ – 44 pJ 25x

Send to DRAM 200 pJ – 800 
pJ

200x

Read from image
sensor

3.2 nJ – 4 nJ 4,000x

Send over LTE 50 uJ – 600 uJ 50,000,000
x



DianNao (2014)

Split Buffers for BW

Vector vector multiply

Hardware adder tree

Partial layer computation

Fetch input neurons

Fetch synapses
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DianNao (2014)

Multiply

Sum neuron inputs

Buffer partial sums
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According to V. Sze et al. “Efficient Processing of Deep Neural Networks”
Proceedings of the IEEE 2017

Non Local Reuse Architecture



In-depth analysis of the Google Tensor Processing Unit

• 2013: Google prepares for the success-disaster of new DNN apps

• Users speaking to phones 3 minutes per day:
With only CPUS, need 2X-3X times whole datacenter fleet

• DNNs applicable to a wide range of problems, so hardware accelerator can be reused for 
speech, vision, language translation, search ranking, etc.

• Goal: Custom hardware to reduce TCO of DNN inference by 10X vs. CPUs

• Must run existing apps developed for CPUs and GPUs

• Very short development cycle: Project start 2014, running in datacenter 15 months later

• Architecture invention, Compiler invention, Hardware, Design, Build, Test, Deploy
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Based upon: In-Data Center Performance Analysis of a tensor Processing Unit
ISCA 2017, Jouppi, Young, Patil, Patterson, et al. 



What came out: TPUv1 card & package

• Accelerator card for servers

• Up to 4 cards / server

• Coprocessor on the PCIe I/O bus

• Host CPU sends TPU instructions to
execute (to simplify HW design)

• Unlike GPU that fetches and executes
own instructions

• Large parallel chunks of work 
done in custom hardware
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

• Matrix Matrix Multiply takes more cycles and has better utilization
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High-level Chip Architecture

• Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units

• 700 MHz clock rate

• Peak: 92 Tera operations/second

• 65,536 * 2 * 700M

• 4 MiB of on-chip Accumulator mem.

• 24 MiB of on-chip Unified Buffer
(activation memory)

• 8 GiB of off-chip weight DRAM mem.

• Two 2133MHz DDR3 DRAM channels

66



TPUv1 Chip area breakdown

• Main focus:

• On-chip memory 35%

• Matrix Multiply Unit 24%

• Control is just 2% 
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TPUv1 from a programmer’s view

• 5 main (CISC) instructions

• Read_Host_Memory
• Reads memory from the CPU memory into the unified buffer

• Read_Weights
• Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit

• MatrixMatrixMultiply/Convolve
• Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multiply, 

an element-wise vector multiply, or a convolution from Unified Buffer into the accumulators
• Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produce a 

B*256 output, taking B pipelined cycles to complete

• Activate (ReLU, Sigmoid, Maxpool, LRN, …)
• Computes activation function

• Write_Host_Memory
• Writes data from unified buffer into host memory
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TPUv1 from a programmer’s view

• Average Clock cycles per instruction: >10

• 4-stage overlapped execution, 1 instruction type / stage

• Execute other instructions while matrix multiplier busy

• Complexity in SW: No branches, in-order issue, SW controlled buffers, SW 
controlled pipeline synchronization
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Relative TPU Performance: 3 Contemporary Chips 2015

TPUv1 is less than half die size of the Intel Haswell processor
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Processor mm2 Clock 
[MHz]

TDP 
[Watts]

Idle 
[Watts]

Memory 
GB/sec

Peak TOPS/Chip

8b int. 32b FP

CPU: 
Haswell 
(18 core)

662 2300 145 41 51 2.6 1.3

GPU: 
Nvidia K80 
(2/card)

561 560 150 25 160 -- 2.8

TPUv1 <331 700 75 28 34 91.8 --



Relative Performance of TPUv1 server

Processor Chips / 
Server

DRAM TDP Watts Idle Watts Observed Busy 
Watts in 

Datacenter

CPU: Haswell (18 cores) 2 256GB 504 159 455

NVIDIA K80 (2 die per card; 4 
cards per server)

8 256GB (host) + 12GB x 8 1838 357 991

TPUv1 (1Core) 4 256GB (host) + 8GB x 4 861 290 384

71



Performance: Inference Datacenter Workload (95%)
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Roofline Visual Performance Model

2 Limits to performance

1. Peak Computation

2. Peak Memory Bandwidth
(for apps with large data that
don’t fit in chache)

Arithetic Intensity (FLOP/Byte 
or reuse) determines which limit

Weight-reuse = Arithmetic
Intensity for DNN roofline

73
Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.



TPUv1 Die Roofline
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Haswell (CPU) Die Roofline
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K80 (GPU) Die Roofline
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Many benchmark far below roofline, e.g. MLP0

Increase Batch Size = More Weight Reuse
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Combined log rooflines CPU, GPU, TPUv1
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Perf/Watt TPUv1 vs CPU & GPU
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TPUv1 success due to…

• Large Matrix Multiply Unit

• Software controlled on-chip memory

• Omission of GPU features small, low power die

• Use of 8-bit integers in quantized apps

• Apps in Tensorflow are easy to port at speed

• 15-month design & live introduction

• 30x faster than Haswell CPU, K80 GPU (inference)

• <0.5 die size, 0.5 Watts
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TPU v2

Towards cloud based inference and training

• Support for Training requires more instruction flexibility (TPUv2 is Turing complete)

• Multiple interconnected
TPUs on one mainboard

• Fast interconnection
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For training 8bit integers is not enough

TPUv2 supports Bfloat16: format developed by the Google Brain team
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TPU v2 architecture changes
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Use a TPU Pod 
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Learning tasks take
10 hours on a single TPU

With a TPU v2 Pod this

reduces to 30min



Minor user facing software modifications

The TensorFlow API supports running your workload on different targets:

Local workstation, TPU, TPUPod
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Previous architectures are "Non Local Reuse Architectures"

• Use of large global buffers as shared storage

• Reduce DRAM accesses

• Multicast activations, single cast weights, accumulate partial sums spatially

• Often matrix multiplication based
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Neuro Vector Engine (2016)

Operate on vectors

• Dual port vector memory

• Vector shuffle registers

• Vector MACC array

• Vector Activation

87
M. Peemen et al. “The neuro vector engine: Flexibility to improve convolutional net efficiency” DATE2016 
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Output Stationary

Minimize partial sum R/W
energy consumption

Maximize local accumulation

Broadcast filter weights and
reuse activations spatially
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According to V. Sze et al. “Efficient Processing of Deep Neural 
Networks” Proceedings of the IEEE 2017
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GPU: NVIDIA Volta V100  (GTC May 2017)
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• up to 80 cores, 5120 PEs (FP32)
• 20 MB register space 
• 815 mm2

• 21.1 Btransistors
• 12 nm
• 300 W
• peak: 120 TFlops/s
• (FP16) => 2.5 pJ/op



1 SM core

Units:

• 8 tensor cores/SM

• 64 Int units

• 64 FP32

• 32 FP64

• 32 Ld/St

• 4 SFUs

• 128 LB L1 Data $

• 4 warp schedulers
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Tensor core operation

• D = AxB + C, all 4x4 matrices

• 64 floating point MAC operations per clock
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HotChips 2018: Xilinx adds Vector blocks

93

Speedup:
• ML: 20 x
• MIMO/5G: 4 x



Xilinx Versal AI cores: scalable VLIW vector units
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Compute efficiency for neural network acceleration

Well known paradigm that can be made quantitative

• Energy Efficiency: Gops/Watt

• Sometimes expressed as:  pJ/op

• Area Efficiency: Gops/mm2

95

Accelerator mW V Tech. MHz Gops Gops/W On-Chip Mem. Control mm2 Gops/mm2

NeuFlow [110] 600 1.0 45 SOI 400 294 490 75 kB Dataflow 12.5 23.5
Origami [15] 93 0.8 umc 65 189 55 803 43 kB Config 1.31 42
NVE [109] 54 - TSMC 40 1000 30 559 20 kB VLIW 0.26 115
DianNao [20] 485 - TSMC 65 980 452 931 44 kB FSM 3.02 149.7
ShiDianNao [46] 320 - TSMC 65 1000 128* 400 288 kB FSM 4.86 26.3
Desoli et al. [43] 51 0.58 28 FD-SOI 200 78 1277 6 MB Config 34 2.29
Shin et al. [132] 35 0.77 65 1P8M 50 73 2100** 290 kB FSM 16 4.5
TPU [77] 40,000 - 28 nm 700 46,000 1150 28 MB CISC <331 >139
* Only gives theoretical peak performance, as opposed to actual measurements on a real network.
** Q-table lookup of precomputed multiplication results



Examples of inefficiency

TPU (256x256 systolic array)

Effective utilization for small (efficient)
network layers?

• E.g. 16 kernels of 3x3

• Where to obtain the parallelism?

Matrix conversion overhead?

96

N.P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” ISCA 2017

Transposed Convolution

Filter Input Fmap Output Fmap

V. Sze et al. “Efficient Processing of Deep Neural Networks”, Proceedings of the IEEE 2017



Improving flexibility and efficiency

Processing 1D vectors more flexible than 2D systolic:

More programming flexibility

Operations that perform vector
permute and merge

Register files like Intel AVX
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NVE Compiler needed

Abstract from the hardware

Task Graph 
Generation

Block 
Scheduling

Schedule 
Bundling

Assembling
.xml 

ConvNet
VLIW 

program

Wr[c3,i0-i7], 4

Wr[c3,i8-i15], 5

Wr[c3,i16-i19 - - - -], 6

Read Local
Ld a 0, [b0 w0-1]

Ld ab 4 5, [c0,i0-15]

Ld b 6, [c0,i16-17] Set W0

Reg Operation

Set i0 i1, Shift W

Set i3, Shift i0 i1, Shift W

Set, b0

EX VMAC

MAC,w0, c0 i0

MAC,w1, c0 i1

MAC,w2, c0 i2

MAC,w3, c1 i0

Shift i0 i1, Set W2

Set i0 i1, Shift W

Set i0 i1, Shift W

Ld b 9, [c1,i16-17]

Ld ab 7 8, [c1,i0-15]

Shift i0 i1, Set W1

Set i3, Shift i0 i1, Shift WLd ab 10 11, [c2,i0-15]

MAC,w4, c1 i1

MAC,w5, c1 i2

Ld a  2, [w5-8]

MAC,w6, c2 i0

MAC,w7, c2 i1

MAC,w8, c2 i2

Shift i0 i1, Shift W

Ld a 1, [w2-4]

Ld b 12, [c2,i16-17]

Write Local WB Sgm

Sigm0, Wrback

Sigm1, Wrback

NOP

Set i3, Shift i0 i1, Shift W
10 Cycles

M.Peemen e.a., VLIW Code Generation for 
Convolutional  Network Accelerator
SCOPS 2015
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AivoTTA architecture

Convolutional Network optimized datapath based on Transport-Triggered Architecture (TTA) 
Template

Weight datapath

99
J.IJzerman et al., “AivoTTA: An Energy Efficient Programmable Accelerator for CNN-Based 
Object Recognition” SAMOS 2018 (research from Tampere Univ of Technology and TU/e)

bus 0-2: general-purpose scalar 32-bit

bus 3-5: scalar weights, 32-bit

bus 6: input vectors, 256-bit
bus 7: accumulator vectors, 1024-bit 



AivoTTA (several vector units)

C and OpenCL programmable
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Summary

Huge processing and storage demands

A lot of research on 
efficiency improvements

DL networks get far more irregular

Flexible, but efficient, architectures needed

Select the sweet spot between flexibility and efficiency

Complex code: 

Advanced code transformations and automated code generation needed

101

Data 
SRAM
12%

Weight 
SRAM
17%

Instruction 
SRAM…

Control 
logic
12%

Functional 
units…

Register files
4%

Energy breakdown AivoTTA, SAMOS 2018
400 MHz, total 11.3 mW



Being flexible does not have to be inefficient

Example AivoTTA

• Very efficient Gops/W

• Memory efficient
Gops/GB
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Tech.
(nm)

GOPS
/w

GOPS
/GB

Control

Neuflow 45 490 50 Dataflow

Origami 65 803 521 Config.

NVE 40 559 125 VLIW

DianNao 65 931 - FSM

ShiDianNao 65 400 - FSM

SoC 28 1542 - Config

DNPU 65 2100 - FSM

TPU 28 1150 1352 CISC

AivoTTA 0.6V 28 1434 1081 TTA



Beyond Silicon 

Infineon NeuroChip

Directly uses biological networks

Difficult to connect to other devices
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Deep Neural Networks

104

Neurobiology

Applications

Technology

Constraints

Innovations

Neuromorphic

Machine Learning
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