
AI at the speed of Life.

NeuronFlow: An Architecture for Edge AI

Orlando Moreira, Chief Architect and Fellow

AI at the Speed of Life

We provide brain-inspired chips for
intelligent devices at the Edge:

• Responsive

• Autonomous

• Low Power
• Low Latency

1

GrAI Matter Labs

GrAI Matter Labs

Paris
• Science Center

• System & Applications Engineering

Silicon Valley
• Product Marketing & Sales, CEO

• Customer Solutions

Eindhoven
• Silicon Design Center

• SDK Engineering

AI at the Speed of Life
3

Edge AI
Requirements

Secure & Small End-
point AI

Ultra-Low latency
Real-time Responses

Low Power
Fan-less design

Ease of Programmability
Fast Time To Market

High Accuracy
Reliable and Robust

AI at the Speed of Life

0

10

20

30

40

50

60

70

80

Resnet-50
224x224

4

Life-Ready Ultra-Low Latency at Low
Power

.

Typical 5-10W

Lower is better

< 0.5W

25X

Intel Myriad-X Google Coral Nvidia Nano GrAI VIP

https://docs.openvinotoolkit.org/latest/openvino_docs_performance_benchmarks.ht
ml#resnet_50_tf

https://coral.ai/docs/edgetpu/benchmarks/

https://developer.nvidia.com/embedded/jetson-benchmarksGrAI VIP based on GrAIFlow SDK estimates

latency

Brain inspired Computing
Click to add text

• Very simple distributed structure replicated over and over

6

Brain-inspired computing: scalability

• Animal vision much more power efficient than silicon.
• There must be something we can learn from it.
• This leads us to bio-mimicry.
• But how does the brain do what it does?

7

Brain-inspired computing: low power

Vision
System

Power
consump
tion

Human Vision 6 W

GPU ~250W

Artificial neurons that closely mimic brain cell
behavior:

• neurons communicate through value-less spikes.
• weighted synapses with delayed spike transport

• neurons with persistent state
• temporal execution model

• synaptic relay of spikes includes a temporal
delay

• neuron state decays over time
• requires a global concept of time and time base

functions

8

Neuromorphic Model: Spiking Neural networks

9

Challenges for Neuromorphic going Digital

• spikes offer little/no gain over values due to addressing and
memory access overhead.

• temporal behavior: simulating ”brain” time requires costly global
synchronization.

• exponential decay of neuron state is very costly

IBM’s TrueNorth Intel’s Loihi

10

Avoiding the pitfalls of biomimicry

Image from www.leonardodavinci.net

“Just as the Wright brothers did not design an
aircraft with wings that flap, but still gained
inspiration from observing how birds glide and
turn, a practicable approach for replicating animal-
like intelligence is to combine mimicry of selected
aspects of neurobiological solutions with entirely
different implementation mechanisms, such as
silicon-based electronics.”

McDonnel et al “Engineering intelligent electronic systems based on computational neuroscience”

We discovered how to fly by
getting inspiration from birds
but not by exactly mimicking birds.

Focus on the secret sauce.

Sparsity
Click to add text

Sparsity

• Sparsity in structure

• Pruning of needless weights

• In many image-processing networks >70% weights can be

pruned without significant loss of accuracy.

• Sparsity in activation

• Many pixels have no relevant feature data.

• resulting in 0-valued activations.

• With RELU: ~50% of activations are 0-valued

• Even without training for activation suppression!!!

• Sparsity in time

• Image changes little from instant to instant

• why should we always re-process whole frames?12

13

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

Key To
Life-Ready AI:
Exploiting Sparsity

13

Process everything

14

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

Key To
Life-Ready AI:
Exploiting
Sparsity

14

Process everything

15

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

15

Key To
Life-Ready AI:
Exploiting
Sparsity

Process everything

16

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

16

Key To
Life-Ready AI:
Exploiting
Sparsity

Process everything

17

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

17

Key To
Life-Ready AI:
Exploiting
Sparsity

Process everything

Process only the changes

NeuronFlow

18

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

18

Key To
Life-Ready AI:
Exploiting
Sparsity

Process everything

Process only the changes

NeuronFlow

19

• Sparsity in time • Sparsity of connections • Sparsity in activationSparse Compute

GPUs, NPUs..

19

Key To
Life-Ready AI:
Exploiting
Sparsity

Process only the changes

Process everything

NeuronFlow

Sparsity
in Pilot Net

GrAI Matter Labs, Inc. ©2021 All rights reserved.
CONFIDENTIAL 20

PilotNet in SparNet

21

SparNet: Sparse and Event-Based
execution model

• Exploits time-sparsity in a time
series;

• Converts frame-based network to
event-based inference;

• Event-based: change is sent
sporadically, so no frame
structure to input data;

• Only propagates changes, thus
less work needs to be done;

• Requires resilient neuron state;
• Threshold: per neuron, defines

how much change is needed to
warrant propagation.

• To convert a CNN to SparNet, we
set a threshold per neuron.

22

Red = active links and
activated neurons

PilotNet using
SparNet
• SparNet dramatically reduces the number
of operations required.
• Effect is dramatic at high fps:

• same amount change per same time interval;
• but for frame-based processing, load

increases linearly with frame rate;
• higher fps => lower sampling period =>

lower latency

23

Fig. 1: A feed-forward neural network. Circles represent
individual neurons. Green neurons received a spike and should
be updated, red neurons fired after receiving a spike. Execution
goes from left to right, from sensor input to classification
output. Typically, sparsity increases with depth.

power consumption. The next section introduces SpArNet, an
example of efficient DNN inference in NeuronFlow. SpAr-
Net adapts bio-inspired Spiking Neural Networks (SNN) to
perform sparse inference of non-spiking ANNs, without com-
promising accuracy. It adapts known schemes [19] [20] [21]
[22] [23] to NeuronFlow.

B. SpArNet

Fig. 1 illustrates a simplified schematic of a Spiking Neural
Network (SNN). In an SNN with Leaky Integrate&Fire (LIF)
neurons, each neuron has a potential which is updated upon
the integration of its inputs over time. If a neuron’s potential
reaches the predefined threshold, an output spike is fired and
propagated through its output synapses. If not, the spiking
neuron does not generate output. Similar to our brain, only a
small number of neurons is active at a time.

SNNs have two advantages over synchronous processing.
First, unlike a synchronous neuron, an SNN neuron only
updates its potential when there is an input event (spike).
Second, input events can be processed immediately and the
neuron can fire anytime without waiting for an external trigger.

SpArNet shares characteristics of both synchronous ANN
and LIF. It performs the inference of an ANN, but asyn-
chronously, and with the number of operations optimized for
spatio-temporal sparsity. Starting from an ANN, we obtain a
SpArNet with the same topology by quantizing the neurons’
activation functions. In SpArNet, events are valued and repre-
sent quantized changes in a neuron output value. To perform
an inference, each neuron updates its potential upon receiving
an event. If the change in output is higher than a defined
threshold, the neuron will fire an event to its consumers. This
is known as change-based or delta inference.

We use hysteresis quantization, not direct quantization, to
set thresholds [19]. This avoids excessive firing activity. Fig. 2
compares the spiking behavior for these quantization schemes.
In direct quantization, when the input (X) is near the transition
point of two quantization levels, small variations/oscillations
in X may result in several big changes in the quantized X
which is not desirable. Choosing the threshold is a trade-off,

(a) (b)
Fig. 2: Comparison between direct (left) and hysteresis (right)
quantization when the quantization level (threshold) is one.

Fig. 3: Prediction angles for the first 20,000 frames of the
original CNN inference and the proposed SNN inference.

as coarser quantization results in higher quantization error but
generates fewer spikes, resulting in lower computational load.

As an example, our results show a reduction of one to two
orders of magnitude in the number of updates required when
executing PilotNet in GrAI One. PilotNet is a neural network
introduced by NVIDIA [24] along with the dataset1. The
dataset contains a video recording (10 fps) by a camera placed
in front of the car as well as the corresponding steering angles

Fig. 4: Number of MACs for the first 20,000 frames in CNN
versus SparNet inference (original 10fps recording).

1https://github.com/lhzlhz/PilotNet

3

Fig. 5: PilotNet: the average number of operations per second
increases linearly with fps for CNN. For SpArNet, it saturates.

for each frame of the video2. The output of the network is
the predicted steering angle for the input frame. This network
contains 108K neurons and 1.6M parameters.

Fig. 3 shows the output of PilotNet for the original CNN
inference versus the proposed SNN inference for part of the
dataset. Fig. 4 shows the number of required MAC operations
during inference of PilotNet in the original CNN and our SNN
network for the first 20,000 frames. As the original PilotNet
dataset has a very low frame rate (10 fps), we tested the
network with higher frame-rate recordings3 (480fps). As it is
shown in Fig. 5, savings in number of operations increase with
frame rate, due to increased inter-frame redundancy4.

SpArNet enables sparse asynchronous execution, but ex-
ploiting this in a conventional processor is difficult, and
that may be the reason why regular inference models are
typically preferred. Most bio-inspired models run very slowly
on a conventional computer. We designed NeuronFlow to be
flexible to program and efficient in exploiting all types of
sparsity, as we shall see in the next section.

IV. THE NEURONFLOW ARCHITECTURE

A. Consequences of sparsity for computer architecture

To exploit temporal sparsity, the computing machine must:
• keep a resilient neuron state across time, to track

variation in output and avoid full re-computation of state
every time a change and/or a time-trigger happens.

• process updates to resilient neuron states as synapse input
arrives in a event-based, data-dependent order, since the
neurons to be updated are not known at compile-time;
furthermore, since there are few updates (due to spatial
and temporal sparsity), avoid pulling values from memory
to decide what neurons to update; this suggests a data-
flow execution model, where produced results trigger
consuming computations (instead of relying on a pre-
defined execution order).

2https://youtu.be/ N7nC-8YxzE shows the original PilotNet inference.
3https://youtu.be/LyPTj3Parp0
4https://youtu.be/OySJKJWGrjw shows number of operations for the

PilotNet dataset per frame with a dynamic illustration.

Conventional processor architectures for signal processing,
however, rely heavily on architectural features that are counter-
productive in processing sparse sensor input, as follows.

Data-value-independent execution order: a typical im-
plementation will cycle through all neurons to update them
in a pre-determined order, working in a feed-forward manner
through the layers. Per layer, it accesses the memory-stored
values of output synapses one by one. A high-degree of
parallelism and reuse can be achieved, but each neuron and
each input synapse are visited once. This makes sense when
evaluating the full network; less so when computing sparse
updates. In a sufficiently sparse system, an optimized static-
order of evaluation will not compensate the overhead of so
many redundant updates.

Locality of reference: memory accesses to large, cheap
memory arrays incur high latencies. Communication devices
(busses and NoCs) and DMA accelerators try to alleviate
this by reading large chunks of contiguous data items in
bursts; memory hierarchy techniques like caching work by
creating local copies of frequently accessed, contiguous data
in faster memory. These techniques - burst access, DMA and
caching - make sense when a) the same data are accessed
frequently in succession and b) access to a data item is a good
predictor for a subsequent access to contiguous data (such
as when neuron updates are processed in-order, as described
above). Such techniques make less sense when computing
sparse updates. This is not a fully black and white picture:
in video processing, there is some locality of reference as,
for instance, when an object moves, many contiguous pixels
will change. Nonetheless, employing burst accesses and cache
mechanisms to applications with little locality of reference
may result in costly hardware overhead and in performance
degradation [21], through failed speculative data access and
unnecessarily complex control.

Pull memory model: in conventional computer architec-
tures, the processor must obtain data by requesting it from
memory; it must then wait for data to be sent, with varying
latency depending on where the requested data resides in the
memory hierarchy; this means that the effectiveness of the
processing chain is conditioned by the memory architecture,
and that considerable communication bandwidth and power
must be spent pulling data from memory; moreover, for a
sparse application, this may result in spending resources and
power just to obtain data that do not need to be (re)processed.

B. The NeuronFlow Architecture

NeuronFlow (see Figure 6) is a scalable many-core array
of event-processing cores with distributed execution control.
In a possible realization, NeuronFlow I, each Neuron Core
is comprised of 1024 neurons states organized in Neuron-
State Memory, 1024 Synapses to keep the neural network
parameters, allowing for the implementation of hundreds of
thousands of synapses per cluster through our proprietary
connection sharing schemes (explained below). The number
of cores in a chip will vary (up to several thousands) based on
the performance target, and the architecture can be scaled post-

4

Consequences of Sparsity
Exploitation for Computer
Architecture

• Temporal sparsity requires resilient neurons

• suggests in/near memory computation;

• Sparsity reduces regularity in compute demand:

• fewer sequential memory accesses as sparsity increases;

• reduced value of caching, network bursts, dma

• Eg: for loop over input array leads to resource

wastage;

• suggests event-driven scheduling;

24

Consequences of Sparsity for Computer Architecture

Impact of training in perfomance

• Activation suppression yields great benefits

• event-driven: each event suppressed eliminates all

computation triggered by the event…

• particularly efficient for RELU activation

• Weight pruning removes many computations

• 70% weight pruning in image networks is not uncommon.

• Weight pruning and quantization affect mappability

by dramatically reducing memory requirements.

25

The Neuronflow Architecture
Click to add text

Neuronflow Array

27

• Sizeable memory per core

• local storage of neuron states and weights

• near-memory computation

• Scalable, distributed execution.

• Sparse computation, event-driven scheduling:

• avoid bulk data movement

• in-place updates;

• data-flow synchronization.

• axon computation unit dramatically reduces

network configuration memory

• GrAI ViP: 12x12 cores, 256KB mem per core

• GrAI ViP: FP16 SIMDx4 datapath

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

NeuronFlow Core

28

Synapse
Memory

Datapath

Network-on-Chip

Neuron
Memory

Axon
Computation

neuronupdate result

Events in Events out

neuron state update

Core memory layout

• Synapse memory: entries represent neuron populations
• (Xi, Yi, Zi) to a 3D map of weight kernels and output neuron addresses

• Neuron memory: stores output neuron states (FMs)
• Axon memroy: send output event (Xo,Yo,Zo) to target (Core, Population)

#MACs triggered per input event: #FMs * K^2 -> computational intensity
29

Xi,Yi,Zi, val

FM1
Ki1

Input event

FM*s
Ks

FMs Co*
P*

Input-stationary and SIMD

• SIMD: static data paralelism in Z (channel first)
• 4 channels per cycle, 1 weight per kernel per cycle
• Per cycle read weights, neuron states, write neuron states,

Z first, then XY
30

val

Z1Ki1,w1

X, Y, Zi event

Z2Ki2,w1

Z3Ki3,w1

Z4Ki4,w1

(X,Y,Z1)

(X,Y,Z2)

16b

16b

16b

16b

(X,Y,Z3)

(X,Y,Z4)

64b word
write to mem

read
weights

read 4
states

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X,Y)

(X,Y)

(X,Y)

(X,Y)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X,Y)

(X,Y)

(X,Y)

(X,Y)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X+1,Y)

(X+1,Y)

(X+1,Y)

(X+1,Y)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X+1,Y)

(X+1,Y)

(X+1,Y)

(X+1,Y)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X+2,Y)

(X+2,Y)

(X+2,Y)

(X+2,Y)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X+2,Y)

(X+2,Y)

(X+2,Y)

(X+2,Y)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X,Y+1)

(X,Y+1)

(X,Y+1)

(X,Y+1)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X,Y+1)

(X,Y+1)

(X,Y+1)

(X,Y+1)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X+1,Y+1)

(X+1,Y+1)

(X+1,Y+1)

(X+1,Y+1)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X+1,Y+1)

(X+1,Y+1)

(X+1,Y+1)

(X+1,Y+1)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X+2,Y+1)

(X+2,Y+1)

(X+2,Y+1)

(X+2,Y+1)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X+2,Y+1)

(X+2,Y+1)

(X+2,Y+1)

(X+2,Y+1)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X,Y+2)

(X,Y+2)

(X,Y+2)

(X,Y+2)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X,Y+2)

(X,Y+2)

(X,Y+2)

(X,Y+2)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X+1,Y+2)

(X+1,Y+2)

(X+1,Y+2)

(X+1,Y+2)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X+1,Y+2)

(X+1,Y+2)

(X+1,Y+2)

(X+1,Y+2)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki1

Ki2

Ki3

Ki4

FM1

FM2

FM3

FM4

(X+2,Y+2)

(X+2,Y+2)

(X+2,Y+2)

(X+2,Y+2)

accum

accum

accum

accum

mult

mult

mult

mult

Input-stationary and SIMD

val

(X, Y, Zi) event

Ki5

Ki6

Ki7

Ki8

FM5

FM6

FM7

FM8

(X+2,Y+2)

(X+2,Y+2)

(X+2,Y+2)

(X+2,Y+2)

accum

accum

accum

accum

mult

mult

mult

mult

Memory Fragmentation

• With dedicated memories
• neuron/weight ratio varies significantly per

layer;
• memory lost to fragmentation.

channe
ls neurons weights ratio

weight/neuron
input 150528
conv1 3 802816 9408 0,012

conv2_1 64 200704 36864 0,184

conv2_2 64 200704 36864 0,184

conv2_3 64 200704 36864 0,184

conv2_4 64 200704 36864 0,184
conv3_1 64 100352 73728 0,735

conv3_2 128 100352 147456 1,469

conv3_3 128 100352 147456 1,469

conv3_4 128 100352 147456 1,469

conv4_1 128 50176 294912 5,878

conv4_2 256 50176 589824 11,755

conv4_3 256 50176 589824 11,755

conv4_4 256 50176 589824 11,755

conv5_1 256 25088 1179648 47,020

conv5_2 512 25088 2359296 94,041

conv5_3 512 25088 2359296 94,041

conv5_4 512 25088 2359296 94,041
fc 512 1000 512000 512

Total 2.459.624 11.506.880 4,678308554

RESNET18

weights

Neuron
states

neurons

weights

Core allocated to 1st layer Core allocated to Last layer

Unified Memory: avoiding
fragmentation

Event Generator

ALU

Event ControllerEvent List

Neuron States

Configuration
memories

Data memories

Synapse Memory
(populations, weights)Synapse sharing

Axon Memory Event generator

4xSIMD ALU

Event Controller

Unified memory

Unified Memory
64b words

Synapse sharing

Dedicated memory arch Unified memory arch

events, neuron states, weight tables and axons all must fit in 64b words
…but uniform memory instances simplify layout (see layout slide later on).

Memory view: unified SRAM

• Memory choice: maximize bw, minimizing size,
consumption
• 64 bit words: 4 FP16 neuron states per entry.
• 4 memory banks means 4x64b accesses per cycle
• 4x SIMD

• Requirement: one synapse per MAC per cycle
• Per cycle needs:

• read 4 neuron states (64b)
• read 4 kernel weights (64b max)

• depends on quantization and pruning…
• write 4 neuron states (write-back) (64b)

• Per input event:read one population
• Per output event: read one or more axons
• Pipeline constraint: read and write of neurons

state must not access same bank in same cycle
51

SCU

4xSIMD ALU

Event Controller

Unified memory

Unified Memory
64b words

Synapse sharing

Unified memory arch

Pipelined scheduling

52

Pipelining: each layer is allocated statically to one core.
Requires buffers to store the output results of one full layer.

Note: this is very simplified. In practice we can execute several layers per core, and we
split layers in several cores (more on that later). Mostly the layer to core allocation is
constrained by the size of each layer in weights and the amount of memory per core.

Striping

53

Striping:
Execution of a layer starts when enough data is ready to start partial evaluation (eg, line by line).
Much smaller output buffers, lower latency.

AI at the Speed of Life
54

Programming Tool Flow

User Config for
Flow Specification

Model
Zoo

Reference
Training

User
Dataset

Training for
Optimization :

Pruning,
Quantization,

Activation
Suppression,

Model
Compilation,
Mapping and

Scheduling

Binary
Model
Artifact

Deployment
GrAI VIP

Analysis

Profiler

KPIs

Metrics

(images, video, etc)

Mapping units: Cuts

55

• Neuronflow is a self-contained architecture

• no external DRAM access

• No DRAM power consumption, latency…

• But the size of the model is very important

• all parameters and buffers must reside in device memory.

• Static layer (cut) to core assignment

• all weights and input/output buffers must be stored in the memory of the cores

Layers are cut to fit in core memory.

Cuts are the units of mapping.

Cuts can be done in X, Y or Z, but Z is better in terms of resource usage.

Cuts can be used to increase performance by adding more cores to the processing of one layer.

FM8K18

K21

K31

K41

FM7K17

K21

K31

K41

FM6K16

K21

K31

K41

FM5K15

K21

K31

K41

Simple Cut in Z

56

Core 2
FM4K14

K21

K31

K41

FM3K13

K21

K31

K41

FM2K12

K21

K31

K41

FM1K11

K21

K31

K41

Core 3
FM4K14

K21

K31

K41

FM3K13

K21

K31

K41

FM2K12

K21

K31

K41

FM1K11

K21

K31

K41

FM4K14

K21

K31

K41

FM3K13

K21

K31

K41

FM2K12

K21

K31

K41

FM1K11

K21

K31

K41

No duplicated weights in memory.
Input event executes in parallel.
A cut includes a number of FMs and all
the weights for each FM it contains.
In the example we use an 8 channel
layer that receives input from 4 channels
in a 4x8 conv.

Pipelined schedule: cutting for
performance

57

Layer 2 Layer 2
Layer 1 Layer 1 Layer 1Core 1

Core 2
Core 3

Time

Layer 2

Execution time of Layer 1 = t
Execution time of Layer 2 = 2t
Latency per stripe = t+2t = 3t
Throughput = min (1/2, 1/2t) = 1/2t

Simple model: Slowest stage of the pipeline limits the throughput – critical stage of the pipe

…
…

Layer 2.1 Layer 2.1
Layer 1 Layer 1 Layer 1Core 1

Core 2
Core 3

Time

Layer 2.1

Execution time of Layer 1 = t
Execution time of Layer 2 = 2t
Cut layer 2 by 2 cores
Latency per stripe = t+t = 2t
Throughput = min (1/t, 1/t, 1/t) = 1/t

Layer 2.2 Layer 2.2 Layer 2.1

Throughput can be increased by allocating more cores to a bottleneck layer.
Feature map must be cut.

…
…
…

Pipelined schedule: cutting for
performance

How training affects
mapping/performance

• Weight quantization and
prunning lower memory
requirements per layer which
frees cores to cut slow layers to
improve latency and
throughput.

• Prunning also reduces number
of macs per inference.

• Activation suppression
decreases the number of events
to process, lowering load per
core and power consumption

• ARTS combines prunning and
activation suppression.

59

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

CVPR
#10949

CVPR
#10949

CVPR 2022 Submission #10949. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ARTS: An efficient training schedule for exploring massive activation sparsity

Anonymous CVPR submission

Paper ID 10949

Abstract

Today’s brain-inspired event-based processors enable
efficient inference of Convolutional Neural Networks
(CNNs) at the edge, by exploiting activation sparsity. In
such processors, the speed and energy consumption for the
CNN inference is proportional to the number of non-zero
values in the activation maps. We propose a novel training
schedule, called Adaptive-Regularization Training Sched-
ule (ARTS), which dramatically decreases the non-zero ac-
tivations in a model, by adaptively altering the regulariza-
tion coefficient through training. We evaluate our method
on an extensive range of CNN applications, including im-
age classification, object recognition, and depth estimation.
The results show that our technique achieves 70% to 91%
activation suppression across various network architectures
and applications, and outperforms all state-of-the-art meth-
ods in terms of training time, suppression gains, and accu-
racy. A case study for an commercial event-based archi-
tecture, shows that the activation suppression achieved by
ARTS effectively reduces inference running time and energy
consumption. The results show a decrease in the proces-
sor’s inference latency by 2.5–8.4⇥, with energy savings as
high as 2.3–14.1⇥.

1. Introduction
Deep learning (DL) systems—dominantly implemented

as Convolutional Neural Networks (CNNs)—achieve state-
of-the-art computer vision performance. CNNs are not
only more accurate but also easier to develop than hand-
crafted techniques. Thereby, they enable a plethora of ap-
plications, opening new markets and opportunities at the
edge as well as in the cloud. Novel CNN architectures
(e.g. [9, 10, 15, 24, 26]) are continuously being developed
and utilized in a variety of AI applications to satisfy the
ever-growing demand for higher model accuracy. However,
with the accuracy, also the model size (i.e. parameter count)
and computational complexity of CNNs increase [9]. State-
of-the-art CNNs require millions of multiply-accumulate
(MAC) operations per inference, using millions of parame-

0%

20%

40%

60%

80%

100%

1

W
2,2

W
1,2

W
0,2

W
2,1

W
1,1

W
0,1

W
2,0

W
1,0

W
0,0

1

W
2,2

W
1,2

W
0,2

W
2,1

W
1,1

W
0,1

W
2,0

W
1,0

W
0,0

Adaptive Activation
Suppression (ARTS)

Deployment Event-based Processor

Event-based Convolution

14.1x 13.6 x

7.2 x
4.7 x 2.3 x

2.2 x 2.9 x 2.1 x 2.1 x 1.6 x

8.4 x 8.4 x
5.9 x

3.7 x 2.5 x

2.2 x 3.2 x 2.5 x 2.4 x 1.6 x

0%

20%

40%

60%

80%

100%

Non-zero activations

Non-zero activations
Resnet18/Cifar
MobileNetV1/Cifar
MobileNetV1-SSD/KITTI
ResNetV1-SSD/KITTI
Fastdepth/NYU Depth V2

Savings

Energy

Savings
Energy

Latency

Latency

Figure 1. Our proposed method (ARTS) progressively enforces
the amount of zeros in the activation maps, leveraged by event-
based processors to achieve significant inference energy savings
and latency reduction.

ters. The parameter accesses and the execution of the MAC
operations, result in a drastic inference energy consumption
and latency. This makes a high frame-rate CNN inference
only possible on powerful GPUs—not on small/constrained
edge devices. However, the majority of computer vision ap-
plications are located at the edge.

Thus, novel compute architectures and training meth-
ods are required to make state-of-the-art CNNs applicable
at the edge. The most promising architectures for AI at
the edge are event-flow based architectures, with numerous
examples from academia (e.g. DYNAPs [17]) and indus-
try (e.g. TrueNorth [1], Loihi [3], GrAIcore [18]). Event-
based implies that compute is triggered on the arrival of data
(data-flow architecture) rather than instructions at a pro-
gram counter (control-flow architecture). This paradigm is
brain-inspired and enables architectural scaling to massive
core counts at low area and energy requirements. More-
over, event-based architectures profit from the sparsity (i.e.
ratio of zero-values) in the activation maps, as zero-valued
events can be skipped. With the ratio of skipped events, the
compute and memory-access requirements go down propor-
tionally. Hence, an event-based architecture paired with a
training methodology to increase the ratio of zeros in the

1

GrAI VIP
Vision Inference Processor
Life-Ready AI in silicon

Click to add text

AI at the Speed of Life
61

GrAI VIP Vision
Inference
Processor

v

GrAI One to GrAI VIP: Improvements

7.5mm

7.
5m

m

9x9 7.6x7.6

4.5mm

4.5m
m

GrAI One GrAI VIP

TSMC
28 HPC+

Neuron Capacity: 200,704 ~18,000,000

TSMC
12 FFC

Technology scaling: 0.36x

Silicon Complexity:
(transistors)

~318M ~4.5G~14x

Silicon Area (mm2) 20.3 57.02.8x

Package size (mm):

0.7x

90x

Package pins: 120 3242.7x

Max Nr of Parameters: 250,000 ~48,000,000190x

GrAI One to GrAI VIP: Updates

GrAI Core technology: 16-bit INT FP16
Neuron Engines: 196 144

ARM: -- 2 x CM7

Host interface(s): AER PCIe
USB3

Sensor interfaces: 2x MIPI Tx/Rx
Image capture: 2x ISP+F2E

--
--

Debug: -- ARM CS600
External memory: -- QSPI flash
Other connectivity: -- I2S, I2C, SPI, GPIO, UART

AI at the Speed of Life
64

Software
Development Support

GrAIFlow

Model Zoo

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation …

AI at the Speed of Life
65

Life-Ready AI is here_
www.graimatterlabs.ai

AI at the speed of Life.

