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EMBEDDED AI  RESEARCH SCIENTIST,  SEBASTIAN VOGEL

• Sebastian Vogel

− PhD in “Efficient Processing of DNNs” from RWTH Aachen, Germany

− 2016-2021 with Bosch Corporate Research, Renningen, Germany

▪ Quantization, Hardware-Accelerator Architectures for DNNs, NAS

− At NXP since Feb. 2021 as research scientist for Embedded AI

▪ Hardware-aware Neural Architecture Search, Quantization

− Presentation mostly shows work published while at Bosch Research

• NXP department: CTO Automotive System Innovations (‘R&D’)

− Scouting & analysing AI research (in-house, via university collaborations)

− Translate recent SOTA to NXP requirements & research projects

− Small impactful projects with opportunities for student assignments

NXP headquarters in Eindhoven 

(High Tech Campus) **

Bosch Research in Renningen

(Research Campus) *

* source Bosch Campus: https://www.bosch.com/research/about-research/research-locations/

** source NXP Headquarters: https://www.nxp.com/company/about-nxp/worldwide-locations/netherlands:NETHERLANDS

https://www.bosch.com/research/about-research/research-locations/
https://www.nxp.com/company/about-nxp/worldwide-locations/netherlands:NETHERLANDS
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PORTFOLIO OF NXP

• Functionality:

− Compute 

− Connectivity

− HMI

• Data:

− Radar

− UWB

− Analytics

− Vision

• Applications:

− Automotive

− IoT/edge

− Industrial automation

− Drones

For AI deployment:

− Applications

− Chips

− Constraints

→ different requirements 

on neural network architectures

Slide courtesy: Gerardo Daalderop gerardo.daalderop@nxp.com

mailto:willem.sanberg@nxp.com
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NXP CTO (‘R&D’)

Automotive System Innovations (ASI)

− Prototyping systems 

with NXP solutions, e.g.:

− Radar, AI/ML ‘brain’, Network

− In-house & collaborations

Demo

Pedestrian pose detection (left)

Lane estimation (right)

Slide courtesy: Willem Sanberg willem.sanberg@nxp.com

mailto:willem.sanberg@nxp.com
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EFFICIENT NNS WITHOUT MULTIPL IERS

OVERVIEW

• Quantization of Neural Networks w/o Multipliers

− Self-supervised quantization of pre-trained DNNs

− Logarithmic quantization at arbitrary base

− Bit-shift-based quantization
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Quantization of DNNs
(w/o Multipliers)
Self-supervised quantization

Logarithmic number representation

Bit-shift-based quantization
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SELF-SUPERVISED QUANTIZATION OF PRE -TRAINED NEURAL NETWORKS

DOES NOT REQUIRE LABELLED TRAIN ING DATA

• Quantizing pre-trained neural networks, i.e., determining the quantization step size 𝛼
− Without the need for labeled training data through self-supervised quantization[7]

− Unlabeled calibration enough

[7] Vogel et al., Self-Supervised Quantization of Pre-Trained Neural Networks for Multiplierless Acceleration, DATE 2019

𝑦(𝑙) = Φ 𝑏(𝑙) +𝑤(𝑙)𝑥(𝑙) 𝑦 𝑙+1 = Φ 𝑏(𝑙+1) +𝑤(𝑙+1)𝑦𝑞
(𝑙)

𝑦𝑞
(𝑙)

= 𝑞𝑢𝑎𝑛𝑡 𝑦 𝑙 , 𝛼 𝑦 𝑙+1 = Φ 𝑏(𝑙+1) +𝑤(𝑙+1) 𝑦(𝑙) + 𝑦Δ
(𝑙)

= Φ 𝑏 𝑙+1 +𝑤 𝑙+1 𝑦 𝑙 + 𝑦𝑝𝛥
𝑙

propQE

= 𝑦(𝑙) + 𝑦Δ
(𝑙)

𝑞𝑢𝑎𝑛𝑡 ⋅ : 𝑦 ↦ 𝑦𝑞 = 𝛼 ⋅ clip round
𝑦

𝛼
,−2𝑁−1, 2𝑁−1 − 1

= 𝑦 𝑙+1 + 𝑦𝑝𝛥
𝑙

𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑦Δ
𝑙 2

Option 2: Minimize squared propagated quantization errorOption 1: Minimize the squared QE

𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑦𝑝Δ
𝑙 2

QE

https://ieeexplore.ieee.org/document/8714901
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SELF-SUPERVISED QUANTIZATION OF PRE -TRAINED NEURAL NETWORKS

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

Quantization VGG16

top-1+ top-5++

ResNet50

top-1   top-5

InceptionNet

top-1   top-5

Dilated Model

mIoU§ pix.acc.#
FCN8s

mIoU   pix.acc.

Calibration samples 100 36 36

Float32 baseline 69.58 89.04 72.99 90.93 75.61 92.48 55.63 92.85 66.48 94.65

𝑦𝑞 max abs (naïve) 66.36 88.82 64.75 86.69 0.00 0.02 51.70 91.14 64.68 93.41

𝑦𝑞 min MSE (Opt. 1) 68.51 88.79 70.08 88.95 69.66 89.40 54.23 92.00 65.04 93.29

𝑦𝑞 min propQE (Opt. 2) 69.09 88.97 71.31 90.61 73.89 91.67 55.65 92.79 66.49 94.46

propQE vs baseline -0.49 -0.07 -1.68 -0.32 -1.72 -0.81 +0.02 -0.06 +0.01 -0.19

Semantic SegmentationClassification• 8bit quantization (per-tensor) of activations only

Float 32bit Linear 8bit (params & act.)

[4] [4]

+ Top-1 accuracy: % of correctly classified labels
++ Top-5 accuracy: % of correct label within first 5 predicted labels

§ mIoU: mean intersection over union
# pix.acc.: mean overall pixel accuracy

https://publications.rwth-aachen.de/record/782557
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FEW-BIT  QUANTIZATION WITH ARBITRARY LOG -BASE IS  A PROMISING APPR OACH 

FOR PRESERVING PRE -TRAINED NETWORK ACCURACY

• As of 2018, few-bit-quantization lacked behind 

SOTA floating point training and resulted in 

complex training routines and hard to master 

training “ingredients”

• Quantization of pre-trained DNNs favorable

• CNN accelerators incorporate a considerable

amount of multiply-accumulate (MAC) engines

• Reducing the bit-widths optimizes for power and 

memory requirements

• Adders and bit-shifts lead to considerably 

reduced area requirements compared to MACs

𝑥 ⋅ 𝑤

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

[4]

𝑎log𝑎(𝑥)+log𝑎(𝑤)

https://publications.rwth-aachen.de/record/782557
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• Logarithmic quantization incorporates an intrinsic pruning effect

when choosing base 𝑎 < 2 [8]

𝑥 ⋅ 𝑤 =

= 𝑎log𝑎(𝑥)+log𝑎(𝑤)

= 2log2 𝑎 ⋅ log𝑎 𝑥 +log𝑎 𝑤

= 2 log𝑎 𝑥 +log𝑎 𝑤 ≫ො𝑎

= 2Fractional log𝑎 𝑥 +log𝑎 𝑤 ≫ො𝑎 ⋅ 2Integer log𝑎 𝑥 +log𝑎 𝑤 ≫ො𝑎

= 2Fractional log𝑎 𝑥 +log𝑎 𝑤 ≫ො𝑎 ≪ Integer log𝑎 𝑥 + log𝑎 𝑤 ≫ ො𝑎

𝑎 ∈ 22
−ෝ𝑎
| ො𝑎 ∈ ℕ0

[8] Vogel et al., Efficient hardware acceleration of CNNs using logarithmic data representation with arbitrary log-base, ICCAD 2018

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

[4]

LOG-QUANT WITH ARBITRARY LOG -BASES INCORPORATES INTRINSIC PRUNING E FFECT [ 8 ]

LUT w/ 2 ො𝑎 entries

https://dl.acm.org/doi/10.1145/3240765.3240803
https://publications.rwth-aachen.de/record/782557
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• Optimal log-bases are determined by minimizing the propagated quantization error (propQE)

• Different optimal log-bases are found for weights and activations

• For ResNet50, the same optimal log-base is found in every layer

→ No HW-flexibility required for changing the log-base

THE SAME OPTIMAL LOG -BASE IS  FOUND FOR ALL LAYERS,  

MAKING A HW- IMPLEMENTATION LESS COMPLEX

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

Activations – ResNet50

[4]

Weights – ResNet50

[4]

https://publications.rwth-aachen.de/record/782557
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• In ResNet50, the same optimal log-base is found in every layer

• In InceptionResNet, there are exceptions to this behavior,

yet choosing a single optimal log-base for all layers achieves still considerably good results

LOGARITHMIC QUANTIZATION OF CNNS WITH ARBITRARY LOG -BASE

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

Activations – ResNet50 Weights – ResNet50

[4]

Activations – InceptionResNet Weights – InceptionResNet

https://publications.rwth-aachen.de/record/782557
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• Logarithmic quantization of weights* and activations at 5 bit

Quantization

B
it

-

W
id

th VGG16

top-1+ top-5++

ResNet50

top-1   top-5

InceptionNet

top-1   top-5

Dilated Model

mIoU§ pix.acc.#
FCN8s

mIoU   pix.acc.

Calibration samples – 100 36 10

lin-quant baseline 8 69.12 89.06 71.67 90.73 73.71 91.57 55.62 92.78 66.47 94.44

𝑤: log21/2 𝑦: log21/4 5 68.46 88.36 66.89 87.08 64.65 85.55 54.83 92.65 66.05 94.39

log vs linear – -0.66 -0.70 -4.78 -3.65 -9.06 -6.02 -0.79 -0.13 -0.42 -0.05

Semantic SegmentationClassification

LOG-BASED QUANTIZATION ACHIEVES COMPETIT IVE RESULTS COMPARED TO L INEAR QUANT.

ON SEVERAL DNN ARCHITECTURES

* per-tensor quantization and biases @8bit (linear) per-tensor

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

Logarithmic 5bitLinear 8bit

[4] [4]

+ Top-1 accuracy: % of correctly classified labels
++ Top-5 accuracy: % of correct label within first 5 predicted labels

§ mIoU: mean intersection over union
# pix.acc.: mean overall pixel accuracy

https://publications.rwth-aachen.de/record/782557
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LOG-BASED MAC -ELEMENTS ARE COMPLEX BUT HAVE REDUCED INTERFACE BI T-WIDTHS

• Log-based number representations allow reducing the external bit-widths and 

therefore, optimize external bus and memory requirements

• Nevertheless, an implementation of a log-based MAC*-element consists of more stages 

than its linear implementation

[4]

* MAC – multiply-accumulate

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

https://publications.rwth-aachen.de/record/782557
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ARE THERE WAYS TO ADDRESS THE DISCUSSED DOWNSIDES 

OF THIS LOG-BASED NUMBER REPRESENTATION?

• In the following, an alternate approach is presented 

addressing the drawbacks of log-based quantization with arbitrary log-base

− Complex MAC-element implementation

− Reduced accuracy on complex DNN architectures

[4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

https://publications.rwth-aachen.de/record/782557
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LOG-BASED MIXED-PRECIS ION QUANTIZATION ADDRESSES S IMPLER IMPLEME NTATION 

AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

• CNN accelerators incorporate a considerable 

amount of multiply-accumulate engines

• Fixed-point multipliers are considerably 

larger (wrt. silicon area) than shift-operations

• Shift-based operation

→ logarithmically quantized weights (4bit)

• Note:

This approach uses linearly quantized 

activations and therefore, integrates 

standard input signals more easily

𝑥 ⋅ 𝑤 𝑥 ≪ log2(𝑤)
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Two-Hot

One-Hot

Float32

One-Hot

Float32
𝑥 ⋅ 𝑤

• Quantization of weights (with bimodal distribution)

• linear

𝑤 ∈ ℤ

LOG-BASED MIXED-PRECIS ION QUANTIZATION ADDRESSES S IMPLER IMPLEME NTATION

AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

[4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

https://publications.rwth-aachen.de/record/782557
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Two-Hot

One-Hot

Float32

One-Hot

Float32
𝑥 ⋅ 𝑤

𝑥 ≪ log2(𝑤)

• Quantization of weights (with bimodal distribution)

• linear

• “one-hot”

LOG-BASED MIXED-PRECIS ION QUANTIZATION ADDRESSES S IMPLER IMPLEME NTATION

AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

[4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

𝑤 ∈ {2𝑧|𝑧 ∈ ℕ0}

https://publications.rwth-aachen.de/record/782557


2 0PUBLIC

Two-Hot

One-Hot

Float32
𝑥 ⋅ (𝑤1 + 𝑤2)

• Quantization of weights (with bimodal distribution)

• linear

• “one-hot”

• “two-hot”

LOG-BASED MIXED-PRECIS ION QUANTIZATION ADDRESSES S IMPLER IMPLEME NTATION

AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

[4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

𝑤1,2 ∈ {2𝑧|𝑧 ∈ ℕ0}

𝑥 ≪ log2 𝑤1 + 𝑥 ≪ log2 𝑤2

https://publications.rwth-aachen.de/record/782557
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• Log-based quantization (per-tensor) of 

weights, biases*, and activations*

Quantization VGG16

top-1+ top-5++

ResNet50

top-1   top-5

InceptionNet

top-1   top-5

Dilated Model

mIoU§ pix.acc.#
FCN8s

mIoU   pix.acc.

Calibration samples 100 36 10

lin-quant baseline 69.12 89.06 71.67 90.73 73.71 91.57 55.62 92.78 66.47 94.44

𝑤𝑞 one-hot, 4 bit 63.85 86.76 46.36 72.11 37.77 64.55 49.52 90.13 60.75 92.10

𝑤𝑞 two-hot, 8 bit 68.91 89.54 70.84 90.35 72.47 91.11 55.34 92.74 66.24 94.41

two-hot vs linear -0.21 +0.48 -0.83 -0.38 -1.24 -0.46 -0.28 -0.04 -0.23 -0.03

Semantic SegmentationClassification

+ Top-1 accuracy: % of correctly classified labels
++ Top-5 accuracy: % of correct label within first 5 predicted labels

§ mIoU: mean intersection over union
# pix.acc.: mean overall pixel accuracy

LOG-BASED QUANTIZATION ACHIEVES COMPETIT IVE RESULTS COMPARED TO L INEAR QUANT.

EVEN ON COMPLEX DNN ARCHITECTURES

* activations, biases @8bit (linear)

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

Two-hot 8bit Linear vs. two-hot 8bitFloat32 Linear 8bit

[4]

https://publications.rwth-aachen.de/record/782557
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• Layers close to the network input are sensitive to one-hot quantization

ResNet50 InceptionNet

MIXED-PRECIS ION LOG -BASED QUANTIZATION ALLOWS TO TRADE ACCURACY 

WITH THROUGHPUT AND NETWORK SIZE [ 9 ]

[9]

[9] Vogel et al., Bit-Shift-Based Accelerator for CNNs with Selectable Accuracy and Throughput, DSD 2019

[9]

https://ieeexplore.ieee.org/document/8875046
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• Layers close to the network input are sensitive to one-hot quantization

• Layerwise selection allows to trade accuracy with throughput and resulting network size

• The configuration can be selected at run-time

ResNet50 InceptionNet

MIXED-PRECIS ION LOG -BASED QUANTIZATION ALLOWS TO TRADE ACCURACY 

WITH THROUGHPUT AND NETWORK SIZE [ 9 ]

[9] Vogel et al., Bit-Shift-Based Accelerator for CNNs with Selectable Accuracy and Throughput, DSD 2019

[9][9]

https://ieeexplore.ieee.org/document/8875046
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BIT-SHIFT-BASED MAC -ELEMENTS WITH L INEAR QUANTIZATION FOR ACTIVATIONS

OFFER FLEXIBLE MIXED -PRECIS ION COMPUTATION

• Implementations of bit-shift-based MAC*-elements with “one-hot”/”two-hot” weights are 

less complex than log-based MAC-elements with arbitrary log-base

• Mixed-precision capability built in without the need for upper/lower nibble** handling

* MAC – multiply-accumulate

** nibble – 4 bit

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

[4]

https://publications.rwth-aachen.de/record/782557
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QUALITATIVE EVALUATION ON SEMANTIC SEGMENTATION

• Qualitative output of the dilated model for semantic segmentation on cityscapes

• Linear 8bit quantization (left), two-hot 8bit quantization (right), mutual diff. (bottom)

[4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Defense, Jan. 10, 2020
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METHODS FOR QUANTIZ ING PRE -TRAINED NEURAL NETWORKS HAVE BEEN PRE SENTED

AND EVALUATED ON TWO APPROACHES FOR MULTIPL IERLESS EXECUTION OF DNNS

• We discussed a method for quantizing pre-trained neural networks 

without the need for fine-tuning on labeled training data

− Minimizing the propagated quantization error

• Two approaches for few-bit quantization and 

multiplierless processing were discussed

− Logarithmic number representation with arbitrary log-base

− Mixed-precision log-based quantization (“one-hot”/”two-hot”)

propQE

𝑦 𝑙+1 + 𝑦𝑝𝛥
𝑙 𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑦𝑝Δ

𝑙 2
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AVAILABLE STUDENT PROJECT POSIT IONS ( INTERNSHIP & GRADUATION PRO JECTS)

• Automatic neural network quantization and deployment optimization

− optimizing neural networks through quantization and pruning

− taking multiple optimization criteria into account

− investigating options to learn how to quantize/prune neural networks

− automatically determining optimal SW deployment parameterizations for embedded devices

• Hardware-aware NAS for next generation radar-based ADAS

− improving state of the art approaches on object classification with DNNs

− leveraging ML and NN-design know-how from other domains for Radar signal processing

− exploring NN designs that exploit Radar spectrum data, Radar target lists or a fusion of both

− optimizing simultaneously the deployment properties on target hardware and the task accuracy
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AVAILABLE STUDENT PROJECT POSIT IONS ( INTERNSHIP & GRADUATION PRO JECTS)

• Transferring existing NAS methodologies to challenging embedded system tasks

− audio processing (noise cancelation, keyword spotting, etc.)

− battery management and battery health estimation

− predictive maintenance (e.g., anomaly detection)

− with the goal to derive insights on the trade-off between system requirements and task accuracy

• Intelligent automated design & configuration of next generation DL-HW-accelerators

− automatically optimizing configurable HW accelerators and co-adapting neural architectures

− especially focusing on quantization and sparsity features of HW-accelerators

• Hardware-aware NAS for next generation hardware and software

− extending available hardware-aware NAS frameworks to new hardware targets; 

− integrating said NAS frameworks with one of our existing training modalities; 

− conducting extensive experiments in our training modalities.
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Sebastian Vogel

sebastian.vogel@nxp.com

https://www.linkedin.com/in/sebastianvogel
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