AMD Processor Roadmap
Microprocessor Forum 1997

- **AMD-K6**
 - .35µ process
 - MMX™ Technology Enhanced
 - Lower Power
 - Higher Speeds

- **AMD-K6-2**
 - .25µ process
 - 100 MHz Bus
 - 100 MHz Frontside L2
 - Superscalar MMX Technology
 - 3DNow!™ Technology

- **AMD-K7™**
 - .25µ process
 - 100 MHz Bus
 - On-chip, Full Speed Backside L2
 - 100 MHz Frontside L3
 - Superscalar MMX Technology
 - 3DNow! Technology

Performance

- **1H’97**
- **2H’97**
- **1H’98**
- **2H’98**
- **1H’99**

Sharptooth

μP Forum ‘98
AMD-K7™ Processor Overview

- Superior 7th Generation CPU Design
- Leading Performance in Integer, Floating point, and Multimedia
- Operating Frequencies of 500 MHz+ using 0.25µm Technology
- High-speed Alpha™ EV6 Bus Technology
- High-speed Backside Level 2 Cache Controller
- Scalable Multiprocessing Architecture for Workstation and Server Markets
- Processor Module for Standard Motherboard Form Factors
- Optimized Chipsets, Motherboards and BIOS
AMD-K7™ Processor Architecture

◆ Three Parallel x86 Instruction Decoders
◆ 9-issue Superscalar Microarchitecture Optimized for High Frequency
◆ Dynamic Scheduling with Speculative, Out-of-Order Execution
◆ 2048-entry Branch Prediction Table & 12-entry Return Stack
◆ 3 Superscalar, Out-of-Order Integer Pipelines each Containing:
 • Integer Execution Unit
 • Address Generation Unit
◆ 3 Superscalar, Out-of-Order Multimedia Pipelines with 1-cycle throughput
 • FADD (4 cyc latency), MMX ALU (2 cyc latency), 3DNow!
 • FMUL (4 cyc latency), MMX ALU (includes Mul & MAC), 3DNow!
 • FSTORE
◆ Level 1 64K I-Cache & 64K D-Cache, each 2-way Set Associative
◆ Multi-level TLB (24/256-Entry I, 32/256-Entry D)
AMD-K7™ Processor Architecture (Con’t)

- **Two General Purpose 64-bit Load/Store Ports into D-Cache**
 - 3-Cycle Load Latency
 - Multi-banking Allows Concurrent Access by 2 Load/Stores

- **High-speed 64-bit Backside L2 Cache Controller**
 - Supports Sizes of 512KB to 8MB
 - Programmable Interface Speeds

- **High-speed 64-bit System Interface**
 - First Mainstream Systems to have a 200MHz Bus
 - Significant Headroom for Future

- **Deep Internal Buffering to Support Pipelines and External Interfaces**
 - Up to 72 x86 instructions in-flight
 - 32 outstanding load misses
 - 15-entry integer scheduler
 - 36-entry floating point scheduler
Microarchitecture Terminology

- **x86 Instructions** are sent to one of two Decoding Pipelines:
 - **DirectPath**: Decodes common x86 instructions (1-15 byte lengths)
 - **VectorPath**: Decodes uncommon, complex x86 instructions

- Decoding Pipelines can dispatch 3 MacroOps to Execution Unit Schedulers

- Each MacroOp consists of one or two Operations (OPs)

- OPs are issued to the execution units

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Decoding Path</th>
<th>MacroOp Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD EAX, EBX</td>
<td>DirectPath</td>
<td>1 MacroOp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 OP (ADD)</td>
</tr>
<tr>
<td>XOR EAX, [EBX+8]</td>
<td>DirectPath</td>
<td>1 MacroOp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 OP (LOAD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 OP (XOR)</td>
</tr>
<tr>
<td>AND [EBX], EAX</td>
<td>DirectPath</td>
<td>1 MacroOp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 OP (LOAD/STORE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 OP (AND)</td>
</tr>
</tbody>
</table>
Microarchitecture Pipeline

Integer Pipeline

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetch</td>
<td>Scan</td>
<td>Align1</td>
<td>Align2</td>
<td>EDec</td>
<td>Idec</td>
<td>Sched</td>
<td>EX</td>
<td>Addr</td>
<td>DC</td>
</tr>
<tr>
<td>uRom</td>
<td>Rename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Floating Point Pipeline

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stk Rename</td>
<td>Reg Rename</td>
<td>Wr. Sched</td>
<td>Sched</td>
<td>Freg</td>
<td>FX0</td>
<td>FX1</td>
<td>FX2</td>
<td>FX3</td>
</tr>
</tbody>
</table>
x86 Instruction Decoders

- Entry Point Decode
- MROM
- Quadword Queue
- I-CACHE
- 16 bytes
- VectorPath
- DirectPath
- Fetch
- Scan
- Align1
- Align2
- EDEC
- 3 MacroOps
Integer Execution Units

- Three Integer Execution Units (IEU)
- Three Address Generation Unit (AGU)
- 15-entry Integer Scheduler
- Full Out-of-Order Speculative Execution
- Multiplier
Superscalar Multimedia Execution Units

- Three Superscalar Multimedia Execution Units
- 3-issue, Out-of-Order, Fully Pipelined Design
- Separate Register File
Load-Store Unit and Data Cache

- **Load Store Unit (LSU)**
 - 44-entry Load/Store queue
 - Data forwarding from stores to dependent loads

- **2-way, 64KB Dual-Ported Data Cache**
 - MOESI coherency, 64 byte line size
 - 32-entry L1 DTLB and 4-way, 256-entry L2 DTLB
 - 3 sets of data cache tags
System Interface Controller Internals

- I-Miss Address Buffers (2)
- D-Miss Address Buffers (6)
- Victim Address Buffers (8)
- Snoop Address Buffers (8)
- Write Address Buffers (4)
- D-Cache Snoop Tags
- I-Cache Snoop Tags
- L2 Internal Tags
- L2 Controller

System Interface Controller
System and L2 Cache Interfaces

- Alpha EV6 Bus Protocol
- Point-to-Point Topology with Clock Forwarding
- Decoupled Address and Data Busses
 - 72-bit Data Bus w/ ECC
 - Independent Address/Request Bus
 - Independent Snoop Bus
- Up to 20 Outstanding Transactions per Processor
- Scalable Multiprocessing
- L2 Cache Interface
 - 512KB to 8MB using Industry-Standard SRAMs
 - Programmable Interface Speeds
- Low-voltage Signaling
AMD-K7™ Processor Infrastructure

◆ Chipsets
 • Performance-optimized AMD-K7 chipsets are planned from both AMD and leading third-party vendors in 1999

◆ Motherboards
 • High quality, performance-optimized AMD-K7 motherboards are planned from leading vendors at launch in 1H99

◆ BIOS
 • Production BIOS are planned from all leading suppliers including AMI, Award and Phoenix

◆ Mechanical
 • The AMD-K7 processor will utilize existing industry-standard physical/mechanical infrastructure components including cases, power supplies, fans, heat sinks, etc.
AMD-K7™ Processor Summary

- Superior 7th Generation Processor Architecture
 - Advanced Processor Core Design
 - Leading Edge Frequencies: 500MHz+ using 0.25µm Technology
 - High Performance System Interface with low-voltage swing Point-to-Point Topology and Clock Forwarding Technology
 - Scalable Multiprocessing Architecture

- AMD-K7 Processor Module, Chipsets, Motherboards

- Leading Edge Silicon Technology

- Fab 25 and Fab 30 Provide Volume Production Capacity