

3D TECHNOLOGIES: SOME PERSPECTIVES FOR MEMORY INTERCONNECT AND CONTROLLER

CODES+ISSS: Special session on memory controllers

Taipei, October 10th 2011

Denis Dutoit, Fabien Clermidy, Pascal Vivet {denis.dutoit@cea.fr}

3D-IC design: will dream become reality ?

Example of an heterogeneous 3D-IC stack:

Active interposer (mature technology): Services & communication infrastructure ; IO with ESD; Test; Supply distribution; Power management

 This presentation focuses on vertical interconnect between complex MPSoC and memory

Outline

Introduction

- 3D TSV technology choices
 - 3D-IC toolbox
 - Design perspectives
- Improving memory bandwidth
 - The memory link bottleneck
 - Overview of memory interfaces: bandwidth, power consumption, package integration
- Wide IO interface integration: Mag3D circuit
 - Wide IO technology
 - Mag3D circuit: architecture, Wide IO DRAM integration, design implementation challenges and current results
- Conclusion & perspectives

Outline

Introduction

- 3D TSV technology choices
 - 3D-IC toolbox
 - Design perspectives
- Improving memory bandwidth
 - The memory link bottleneck
 - Overview of memory interfaces: bandwidth, power consumption, package integration
- Wide IO interface integration: Mag3D circuit
 - Wide IO technology
 - Mag3D circuit: architecture, Wide IO DRAM integration, design implementation challenges and current results
- Conclusion & perspectives

3D IC: Some definitions

 3D-IC chip stacking: Adding a new vertical interconnect chain in CMOS : Through Silicon Via + backside bump

BEOL FEOL Through Si via (TSV) Chip-to-chip interconnection (Backside microbump) Chip-to-package

BEOL: Back-End-Of-Line FEOL: Front-End-Of-Line

interconnection (bump)

Passivation

3D IC interconnect: Through Silicon Via

3D IC interconnect: inter-chip connections

Current TSV technology and design perspectives

- 1. What can we expect ?
 - 10 µm diameter TSV is challenging
 - Must add guard interval
 - Die thickness is an issue
- 3D design is not yet mature:
 - No accurate CAD tools & models for 3D (CTS, extraction, Thermal, Power ...)
 - No accurate test model for TSV

- Resulting 3D partitioning ?
 - Fine grain partitioning of an operator in two dies using TSV is not a good option
 - ⇒ Coarse grain to medium grain partitioning

⇒ Proposal ? 3D Memory (Wide IO)

Outline

- Introduction
- 3D TSV technology choices
 - 3D-IC toolbox
 - Design perspectives
- Improving memory bandwidth
 - The memory link bottleneck
 - Overview of memory interfaces: bandwidth, power consumption, package integration
- Wide IO interface integration: Mag3D circuit
 - Wide IO technology
 - Mag3D circuit: architecture, Wide IO DRAM integration, design implementation challenges and current results
- Conclusion & perspectives

The memory link bottleneck

- The transfer Bandwidth between
 Memory and processor always
 been an issue for computing:
 - BW = nb of bits x bit rate
- The needs of computing:
 - 2014: 1TB/s
- For Mobile Computing architecture is more constraining, both Graphic and system memory on same support
- The needs of Mobile computing:
 - 2010: 4GB/s
 - 2012: 12GB/s
 - 201X: 100GB/s

Standardization evolves to 3D stacked memory

- JEDEC JC-42.6 Subcommittee for Low Power Memories:
 - LPDDR2, LPDDR3, WidelO
- LPDDR2:
 - Advanced power management features
 - Shared interface for nonvolatile memory (NVM) and volatile memory (SDRAM)
- LPDDR3:
 - Extension of LPDDR2
 - Bandwidth reaching 6.4GBps and allowing 12.8GBps for a dual channel configuration.
 - Supports POP packaging type
- WidelO:

leti

- Breakthrough technology
- Uses chip-level three dimensional (3D) stacking with TSV interconnects
- Bandwidth is 12.8GBps

Information from JEDEC web site

IO and power cost for a 100GB/s memory bandwidth

 3D integration of DRAM memory on processor with wide data interconnects provides higher data throughput and lower power consumption than 2D interfaces.

leti

Memory-interface package evolution

leti

Outline

Introduction

- 3D TSV technology choices
 - 3D-IC toolbox
 - Design perspectives
- Improving memory bandwidth
 - The memory link bottleneck
 - Overview of memory interfaces: bandwidth, power consumption, package integration
- Wide IO interface integration: Mag3D circuit
 - Wide IO technology
 - Mag3D circuit: architecture, Wide IO DRAM integration, design implementation challenges and current results
- Conclusion & perspectives

Wide IO technology

- Low power DRAM technology
- 12.8GByte/s peak bandwidth
- ~500mW power
- Quad-channel interface with large data bus operating at low frequency:
 - 128 bit wide data bus
 - Single Data Rate sampling mode @200MHz
 - Separate power-down & self-refresh per channel
- Timing performances:
 - Same as SDR 200MHz
- 1.2V low voltage supply
- Total I/O count including supply is in the range of ~1200:
 - IO physical location standardized at Jedec
 - 4 Arrays of 50x6; Pitch: 50μm x 40μm
 - Placed in the center area of the memory die
- Boundary scan test mode to detect bump connection failure between chips.
- Maximum number of stacked dies is 4

Wide IO DRAM floorplan

3D-IC with Wide IO DRAM

leti

Mag3D test chip program

- Partnership between LETI, STEricsson,
 STMicroelectronics and Cadence
- Wide IO DRAM die is stacked on top of the SoC (Mag3D) in the same package
- Face to Back stacking

leti

 Memory supplies and interconnect signals go through the SoC by means of TSVs

Technology assumptions

Assembly	D2D
Stacking	F2B
TSV process	Via Middle
TSV density	10µm diameter
TSV xy pitch	50µm x 40 µm
Copper Pillars	25µm diameter

Wide IO integration into Mag3D

- 3D test chip baseline is the 65nm LETI MAGALI SoC
- The NoC architecture has been extended to support Wide IO memory
- Four independent data traffic and memory controllers have been added

© CEA. All rights reserved

Wide IO SME: architecture

Mag3D topology & floorplan

PLL

MAG3D few numbers : -CMOS 65nm + TSV middle Ø10µm -8500µm x 8500µm (72mm2) -1.8 M-instances -400 Macros -270 IO pads -985 Bumps (Flip-Chip) -1980 TSV for 3D NoC -1250 TSV for WidelO memory **Performances :** -Units in the [350 - 400] MHz range -Asynchronous NoC ~ 550 MHz

-Overall power : 500mW – 1W

D. Dutoit, CODES+ISSS, Taipei | Oct 10th, 2011 | 19 © CEA. All rights reserved

Physical implementation challenges with 3D design

- Supply distribution for Wide IO memory and micro-buffers
- 3D interconnect routing: flip chip bumps, RDL, TSV and backside micro-bumps
- ESD strategy
- Test constraint integration
- Final verification (LVS for 3D stack)

Conclusion & Perspectives

- TSV technology is mature enough to allow coarse grain partitioning with ~500 TSV per mm²
- In mobile computing, off-package memory interfaces have reached their limit above ~10GByte/s:
- In the coming years, multi-core processor will require more than 100GB/s for a reasonable power budget
- 3D stacking technology enables a power efficiency breakthrough in memory interconnect
- Progress to be done with 3D design flow
- → Be ready to integrate 3D in your current architecture hypothesis

Many Thanks ...

- To our partners in this project
 - STMicroelectronics, ST-Ericsson, CADENCE

Annual Review cooperations = silicon MEMS on production excellence des students pilot first integrative

Save the date now! June 19-20, 2012 MINATEC - GRENOBLE - FRANCE

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thank you for your attention

energie afornique - energies afternotive