
Memory Controllers for High-Performance and Real-Time MPSoCs

Requirements, Architectures, and Future Trends

Benny Akesson1, Po-Chun Huang2, Fabien Clermidy3, Denis Dutoit3, Kees Goossens1,
Yuan-Hao Chang4, Tei-Wei Kuo2,4, Pascal Vivet3, and Drew Wingard5

1 Eindhoven University of Technology, the Netherlands
2 National Taiwan University, Taiwan

3 CEA LETI, France
4 Academia Sinica, Taiwan

5 Sonics Inc., USA

ABSTRACT

Designing memory controllers for complex real-time and high-
performance multi-processor systems-on-chip is challenging,
since sufficient capacity and (real-time) performance must
be provided in a reliable manner at low cost and with low
power consumption. This special session contains four pre-
sentations that describe these challenges and proposed solu-
tions for DRAM and flash memory controllers, respectively.
The first presentation discusses performance and reliability
issues in flash memories, while the second identifies chal-
lenges in providing DRAM access to memory clients with
mixed time-criticality. The third presentation proposes an
integrated approach to optimize cost and performance of
the DRAM subsystem, and the last one describes how wide
DRAM interfaces enabled by 3D technology improve DRAM
performance and reduces power.

Categories and Subject Descriptors: B.8.2 [Performance
and reliability]: Performance Analysis and Design Aids

General Terms: Design, Performance, Reliability, Verifi-
cation

1. INTRODUCTION
Memories are key components in any modern computer

system, and the performance of these devices is critical in
Multi-Processor Systems-on-Chips (MPSoCs) in both the
real-time and high-performance domains. Contemporary
systems have complex memory hierarchies with diverse types
of volatile and non-volatile memories, such as DRAM and
flash. It is the daunting task of the memory controllers in the
systems to manage these devices such that sufficient capac-
ity and (real-time) performance are provided to the memory
clients in a reliable manner, while limiting cost and power
consumption. To address this challenge, memory controllers
have advanced architectures, policies, and scheduling algo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

rithms that continue to evolve as we move closer to the mem-
ory and power walls.

This special session comprises four presentations about
DRAM and flash memory controllers for real-time and high-
performance MPSoCs, covering technology trends, require-
ments, and architectures. The remainder of this paper is
structured in four sections, each corresponding to one of
the presentations. Section 2 starts by presenting trends and
challenges in consumer flash-memory devices. The archi-
tecture of a typical flash controller is presented along with
potential solutions to improve reliability and performance
in consumer products. In particular, technologies for ad-
dress translation, striping, real-time performance, and wear-
leveling are discussed. Section 3 then presents the require-
ments of mixed time-criticality systems that have a mix of
memory clients with firm, soft, and no real-time require-
ments. These requirements are complex and conflicting, and
cannot be efficiently satisfied by current memory controllers.
Future research challenges are identified to design memory
controllers suitable for these systems. Section 4 explains how
to optimize the cost and performance of a DRAM subsystem,
where the memory clients have conflicting quality-of-service
(QoS) requirements. An integrated approach is proposed
that manages memory traffic from the processor interface,
through the interconnect, to the DRAM controller. Lastly,
Section 5 describes how the transition from a single off-chip
DRAM to DRAM stacked on top of logic using 3D technol-
ogy improves performance and reduces power consumption,
hopefully enabling us to take a step back from the impending
memory and power walls.

2. CHALLENGES AND SOLUTIONS FOR

CONSUMERFLASH-MEMORYDEVICES

(Huang, Chang, and Kuo)

Flash memories have been widely adopted in various con-
sumer and even enterprise products in recent years because
of its non-volatile, shock-resistant, and power-economic char-
acteristics. With the density advancement of semiconduc-
tors, high-density and low-price multi-level-cell (MLC) flash
chips have replaced the role of single-level-cell (SLC) flash
chips in many applications and dominated the market of
consumer flash-memory devices, such as solid-state drives
(SSDs) and flash cards. However, compared to SLC flash
memory, MLC flash memory has lower read/write perfor-
mance, higher bit error rate, and lower endurance. This
situation is exacerbated, as the development trend increases

the cell density of MLC flash memory to further reduce the
unit cost. In addition, the fast growing capacity of both
MLC and SLC flash memory also introduces new challenges
to the flash management designs with respect to the scala-
bility issue. As a result, retaining the performance and reli-
ability of consumer flash-memory devices will become more
challenging in the near future.
In this presentation, the characteristics, system architec-

ture, and development trends of consumer flash-memory de-
vices are discussed in Section 2.1. Then, performance/reliability
issues and their solutions are investigated and discussed in
Section 2.2. Section 2.3 presents conclusions.

2.1 Architecture and design issues
A flash memory chip usually contains one or more sub-

chips, each of which is composed of planes. A plane consists
of blocks, and each block includes a fixed number of pages.
A block is the unit for erase operations and a page is the
basic unit for read/write operations, where a page could
not be overwritten unless its residing block is erased. Due
to cost considerations, MLC flash memory has surpassed
the market share of SLC flash memory and has become the
major storage media in consumer devices, where a cell of
SLC flash memory stores 1-bit data and an MLC×n flash
memory cell stores n-bit data. As shown in Table 1, the
low-price MLC flash memory (e.g. triple-level-cell (MLC×3)
flash memory) has lower access performance and reliability,
compared to its counterpart SLC flash memory. In addition,
it also introduces two new write constraints. That is, a page
cannot be partially programmed and pages in a block must
be written sequentially from the first one. In order to obey
the write constraints, the write performance of MLC-based
flash-memory devices is thus exacerbated.

Table 1: Comparisons of flash chips. [37–39]

Cell type SLC MLC×2 MLC×3

Price (USD/32 Gb) 25.1 4.08 3.87
Page size (KB) 4 8 8
Block size (pages) 128 256 384
Page read time (µs) 35 75 100
Page write time (ms) 0.3 1.3 2.5
Block erase time (ms) 0.7 3.8 3
Endurance (P/E cycles) ≥ 10000 ≈ 3000 ≤ 1000

As shown in Figure 1, a consumer flash-memory device
usually consists of a controller, ROM for the storage of the
firmware, and RAM to store the address translation and
management information. It might consist of one or more
flash chips, and could be classified into two major types.
One is the SSD that is designed for the replacement of hard
drives and is usually consists of several chips (e.g. 8 chips).
The other is the flash card (e.g. USB flash drive and SD
card) that is commonly used as storage for user’s data and
is usually composed of one or two chips. Both types have
the characteristic of fast growing capacity to challenge the
performance of flash management designs, in terms of space
scalability. Since SSDs usually have huge capacity and re-
quire high access performance, chips of an SSD are usually
distributed to multiple channels, and each channel can be
accessed independently to increase the degree of parallelism
when accessing flash chips. In contrast, flash cards usually
require low unit cost. They usually include a controller with
limited computing power, a small size of RAM, and low-
cost MLC flash chips. Based on the above observations, the
technical issue is how to improve the inherent performance

and reliability issues of MLC flash memory, considering the
characteristics of SSDs and flash cards.

Figure 1: A flash-memory device architecture.

2.2 Challenges and solutions

2.2.1 Performance issues
Performance is an important factor of a storage device.

There are three key factors that affect the performance of
a flash-memory device. These are the address translation,
garbage collection, and the access time to the flash chips.

The address translation to translate the logical block ad-
dresses (LBAs) to their corresponding physical block ad-
dresses (PBAs) is required because out-place update is adopted
to update data to a free page instead of writing to the orig-
inal place. The rationale behind this is to prevent erasing
blocks on every data update to improve the write perfor-
mance. In order to perform the address translation, flash
translation layer (FTL) is first proposed by Intel to man-
age the translation information at the page level [26]. As
the capacity of flash-memory devices grows, the size of the
address translation table of FTL is too large to fit in the lim-
ited RAM space of flash-memory devices. In order to solve
this issue, BL is proposed to reduce the size of the mapping
information by adopting a block-level address translation
mechanism that is to map each LBA to a physical block
and an offset in the block [13]. However, BL could cause
excess live-data copying, because a write to update existing
data requires a free block to store the updated data and the
valid data in the same block of the existing data. In order
to compromise between performance and RAM space, vari-
ous hybrid mapping mechanisms, such as NFTL and FAST,
were proposed to manage the translation information at the
block level, while the updated data are temporarily man-
aged with the page-level translation mechanism [4,33]. Due
to the fast growing capacity of flash-memory devices, the
limited RAM space could eventually not accommodate the
block-level address translation information, so that many
new management strategies (e.g., DFTL and CBMS) [14,21]
are proposed to write the translation information to flash
memory and some others even try to design address trans-
lation mechanisms with scalable (or adaptive) translation
granularities [52].

The performance of a flash-memory device is also seriously
affected by the efficiency of its garbage collection design.
The garbage collection is needed when there is not enough
free space in the flash memory. This is because the out-place
update writes updated data to free pages (called live pages)
and, therefore, invalidate pages (referred to as dead pages) of

the existing data. When the garbage collection is activated,
it needs to select a victim block, copy live pages of the vic-
tim block to free pages, and then erase the victim block.
In order to reduce the overheads on the selection of victim
blocks, a greedy policy is usually adopted to scan the blocks
and select the one whose dead page count and/or live page
count exceed a predetermined threshold as the victim block.
To reduce the overhead of garbage collection, many special
policies are designed to either minimize the live-page copy-
ing (or block erases) or reduce the time on selecting a victim
block [17,32]. In particular, the over-provisioning method is
proposed to reduce the overhead of live-page copies by pre-
serving an over-provisioning area (i.e. preserved area) for
the free space allocation to reduce the frequency of garbage
collection activities. In addition, if the response time of the
device is concerned, the phase garbage collection could be
adopted to improve the response time of the device by split-
ting the live-page copying process into several phases, each
of which could be interrupted by a read/write request (from
the host) before its execution [18]. As for the storage devices
in real-time systems, the real-time garbage collection [12] is
designed to recycle a block in each time period with guaran-
teeing enough free pages for each real-time task to prevent
any real-time task from being blocked over the allowed slack
time and missing its deadline.
Because the access time of MLC flash chips keeps increas-

ing and the development trend of SSDs is to adopt multiple
MLC flash chips on more channels, maximizing the degree of
parallelism on accessing flash chips has become an important
design issue to improve the performance of SSDs. Thus, the
adaptive striping [11] proposes to distribute data of each
write request to each chip/channel evenly, to improve the
write performance of the flash-memory device. However,
adaptive striping requires a page-level address translation
mechanism to support its striping at the page level. In or-
der to support the access to multiple chips/channels with
smaller RAM space for the address translation information,
a set-based mapping [14] is designed to configure pages at
the same offset of every chips a read/write unit as well as the
address translation unit, so that data could be read from or
written to a page set simultaneously to maximize the par-
allelism degree with the size of the mapping information
reduced.

2.2.2 Reliability issues
Due to the high error rate of MLC flash memory and its

popularity in various products with high update frequen-
cies, research on the reliability of consumer flash-memory
devices, as well as the wear-leveling issue, has received a
lot of attention in recent years. Note that flash chips are
tested before shipment, and various efficient testing algo-
rithms, such as march-based algorithms, were designed to
detect various flash-memory faults, e.g. stuck-at-fault, ad-
dress decoder fault, and word-line/bit-line disturb fault [31].
To correct data errors after flash chips are shipped out,

MLC flash chips support a large spare area in each page
to store the redundancy generated by error correction codes
(ECCs) that could correct more error bits so that the hard-
ware ECC, e.g. BCH and RS [7, 8], might need to be re-
designed to enhance the capability in bit-error correction.
On the other hand, many software methods were proposed
to improve the reliability of flash-memory devices. One intu-
itive approach is to generate the parity-check (or XOR) in-
formation over pages of the same block and store the parity-
check information in the last one or two pages of the same
block to “commit” it [14]. When the data error of a page
fails to be corrected by the ECC redundancy stored in its

spare area, the parity-check information with data of other
pages in the same block are loaded to recover the error page
data.

Another direction is to adopt RAID technology to provide
a better capability on the correction of burst errors. How-
ever, the adoption of RAID technology could be complicated
and introduce significant management overhead, due to the
need of out-place updates and the read-modify-write oper-
ation of the RAID technology to update partial data of a
stripe. To solve this problem without sacrificing the data
reliability, a scalable striping methodology for SSDs is de-
signed to stripe data to different numbers of channels/chips
according to the size of the written data, to reduce the risk of
updating partial data of stripes, where a stripe of a different
size also includes a different error correction code to reduce
the space overheads. Different from the hardware ECCs and
the RAID technologies, a two-version strategy is proposed
for flash file systems to maintain two correct page versions
for each chunk of a user data file, so that the file could be
recovered to a consistent version after any one chunk of the
file is corrupted and fails to be corrected by existing ECCs
or RAID technologies [25].

The reliability of a flash chip could be indirectly improved
by the adoption of wear-leveling, which distributes block
erases evenly over a flash memory to prevent any block from
wearing out, since the error rate of a block increases as the
block endures more erases. Thus dynamic wear-leveling was
proposed to achieve wear-leveling by moving hot data (i.e.
the frequently updated data) around to prevent them from
staying in any block for a long period of time [11]. Al-
though dynamic wear-leveling does have great improvement
on wear-leveling, the endurance improvement is constrained
because most data are cold (i.e. the infrequently updated
data) and likely to stay intact, regardless of how updates
of hot data wear out other blocks. In addition, the develop-
ment trend of MLC flash chips could endure fewer and fewer
erases over each block. Thus static wear-leveling is proposed
to ultimately prolong the lifetime of MLC flash chips by
moving both the hot and cold data around with limited ex-
tra block erases. One intuitive solution is to keep track of
the erase count of each block with some well-designed data
structures (e.g. multiple lists) so as to distribute block erases
evenly [41]. In order to reduce the required RAM space to
track the block erases, some approximate solutions are pro-
posed to let the distribution of block erases achieve a certain
level of evenness by maintaining the ratio of the number of
block erases to the number of blocks being erased within a
given time period of time [13].

2.3 Conclusions
The objective of this presentation is to discuss the devel-

opment trends of consumer flash-memory devices, as well
as their challenging issues and solutions. In particular, the
key factors of the performance issue, such as address trans-
lation and garbage collection, are discussed along with their
solutions. For the reliability issue, various error correction
technologies are presented to improve the reliability of flash-
memory devices. The wear-leveling is also discussed for the
reliability enhancement of flash-memory devices. With the
rapid dropping cost and fast growing capacity of MLC flash
memory, it is clear that flash-memory devices is an excel-
lent choice for the storage of consumer electronics, yet new
challenging issues will also keep coming up when the flash-
memory devices are adopted in new application scenarios.

3. SDRAM CONTROLLERS FOR MIXED

TIME-CRITICALITY SYSTEMS

(Akesson and Goossens)

Complex contemporary systems are implemented as hetero-
geneous MPSoCs with distributed shared memory hierar-
chies to strike a good balance between performance, cost,
power consumption and flexibility [6,27,30]. These systems
concurrently execute multiple mixed time-criticality applica-
tions, which means they have a mix between firm, soft, and
no real-time requirements. The real-time requirements of the
applications are reflected in the requirements of the mem-
ory clients (IP blocks) in the SDRAM controller. However,
although there are suitable SDRAM controller designs for
firm and soft/no real-time requirements, respectively, there
are no good solutions for systems with all types.
This presentation starts in Section 3.1 by introducing the

architecture and timing behavior of SDRAMmemories. Sec-
tion 3.2 then explains the requirements of memory clients in
mixed time-criticality systems. Sections 3.3 and 3.4 proceed
by reviewing the state of the art in SDRAM controllers for
firm and soft/no real-time memory controllers, respectively.
Section 3.5 then explains why these controllers are unable to
efficiently satisfy the requirements of mixed time-criticality
systems, and identifies research challenges that must be ad-
dressed to evolve towards a mixed time-criticality SDRAM
controller design. Lastly, conclusions are presented in Sec-
tion 3.6.

3.1 SDRAM overview
An SDRAM memory comprises a number of banks, each

containing a memory array with a matrix-like structure, con-
sisting of rows and columns. Each bank has a row buffer
that can hold one open row at a time, and read and write
operations are only allowed to the open row. Once a row
has been opened, read and write bursts can be issued to
access the columns in the row buffer. These bursts have
a programmable burst length (BL) of either 4 or 8 words
for DDR2/DDR3 SDRAM that are transferred from/to the
memory with a data rate of two words per clock cycle.
The SDRAM architecture makes the response time of re-

quests and the provided bandwidth highly variable for three
reasons: 1) a request targeting an open row can be served
immediately (locality), while it otherwise needs the current
row to be closed and the required row to be opened (no lo-
cality), 2) the data bus is bi-directional and requires several
cycles to switch from read to write and vice versa, and 3)
to prevent data loss, the memory must occasionally be re-
freshed before executing the next request, which results in
several cycles without data transfer. The impact of these
three factors may cause the execution time of an SDRAM
burst to vary by an order of magnitude from a few clock
cycles to a few tens of cycles.
The bandwidth to and from a memory ideally corresponds

to the product of the width of the memory interface, the
clock frequency of the memory, and the data rate. This is
referred to as the peak bandwidth of the memory. However,
for the previously mentioned reasons, the peak bandwidth
of SDRAMs cannot be fully utilized. This is captured by
the concept of memory efficiency, which is the percentage
of clock cycles with useful data on the data bus [2]. The
product of the memory efficiency and the peak bandwidth
determines the net bandwidth, which is the bandwidth that
is useful to the memory clients after considering all types of
overhead. SDRAM bandwidth is a scarce and expensive re-
source due pin and power constraints on the chip. Memory

controllers hence try to maximize memory efficiency to re-
duce cost with common targets being in the range of 70-90%,
depending on the application.

3.2 Memory client requirements
Applications may have different types of real-time require-

ments, depending on the nature of the processing and the de-
gree of pipelining in the processing cores. These application
requirements are reflected in the requirements of their corre-
sponding memory clients. For memory clients of throughput-
driven applications, such as streaming media decoders, band-
width requirements are most important. Conversely, clients
of latency-driven applications, e.g. in the control domain,
primarily have response time requirements. The require-
ments exist in four different classes, depending on the criti-
cality of the application. Applications, such as a Software-
Defined Radio [40], have firm real-time requirements (FRT).
Failure to satisfy the requirements of their memory clients is
highly undesirable and may result in failure to comply with
a given standard, or even violate the functional correctness
of the MPSoC [49]. Other applications, such as media de-
coders, have soft real-time requirements (SRT). Missing a
soft deadline results in quality degradation of the application
output, such as causing visual artifacts in decoded video. Al-
though this is perceived as annoying by the user, it may be
acceptable as long as it does not occur too frequently. There
are also applications with no real-time requirements (NRT),
such as a graphical user interface. Their memory clients do
not have well-defined requirements, but must still be served
fast enough for the application to be perceived as responsive
by the user.

A key challenge with respect to memory client require-
ments is that many modern MPSoCs aremixed time-criticality
systems, which implies that the memory clients have a mix
of FRT, SRT, and NRT requirements [49, 50]. This is a
problem as there are suitable memory controller designs for
FRT and SRT/NRT requirements, respectively, but no good
solutions for mixes between these types.

3.3 Firm real-time controllers
This section discusses memory controllers suitable for mem-

ory clients with FRT requirements, whose bandwidth and/or
response time requirements must be satisfied even in the
worst-case scenario. The goals of these memory controllers
are typically to maximize the guaranteed net bandwidth to
all memory clients and/or minimize their guaranteed re-
sponse times. This is challenging, as both net bandwidth
and response times are highly variable and difficult to bound
tightly.

A problem for FRT memory controllers is that they are
typically unable to exploit locality, since locality is difficult
to guarantee even for the memory accesses of a single appli-
cation, and more or less impossible for interleaved memory
accesses from a set of concurrently executing applications.
This results in bounds on net bandwidth and response times
that are far away from their average values, making it ex-
pensive to provide FRT performance guarantees for general
applications. To minimize this cost, some FRT memory con-
trollers employ a close-page policy, which means that rows
are closed immediately after a burst [43] or set of bursts [1]
is finished to minimize the overhead of opening another row
in the same bank. However, this policy reduces the best-
case memory efficiency, since rows are opened and closed for
every access. As an example, the controller in [1] has a best-
case memory efficiency of only 80% for a 16-bit DDR3-800
memory [28] that interleaves 64 B requests over four banks
with BL = 8. This case happens when all requests are reads.

Most SDRAM controllers can be classified as either stati-
cally or dynamically scheduled, depending on if the sequence
of SDRAM commands sent to the memory is determined at
design time or at run time. Statically scheduled controllers,
such as [5], execute precomputed schedules of SDRAM com-
mands that have been computed at design time. These
controllers are suitable for memory clients with FRT re-
quirements, since response times and net bandwidth can
be bounded at design time by analyzing the schedule. The
main drawback of these controllers is that their applicability
is limited to single applications whose memory behavior can
be exactly specified at design time, which is typically not the
case in MPSoCs. However, note that such an application-
specific controller can exploit locality, since knowledge about
the exact memory access trace enables rows to be opened
and closed in an optimal manner, resulting in a highly effi-
cient, although very restrictive solution.
Dynamically scheduled memory controllers, on the other

hand, schedule SDRAM commands at run time based on
available requests. The challenge with dynamically sched-
uled FRT controllers, such as [43], is to analyze the behavior
of the command scheduler for requests with arbitrary and
variable sizes, which is required to bound the net bandwidth
and response times. This is why this controller and other
FRT controllers assume requests to have fixed size. To guar-
antee high memory efficiency, the fixed request size is fur-
thermore required to be large enough to exploit bank-level
parallelism by interleaving requests across multiple banks.
This requires sizes in the range of 64-256 B, depending on
the number of banks and the width of the memory interface.
A hybrid memory controller is proposed in [1] that com-

bines aspects of both statically and dynamically scheduled
approaches. The hybrid concept is based on predictable
memory patterns, which are statically computed sequences
(sub-schedules) of SDRAM commands. These patterns are
dynamically scheduled at run time, based on the incoming
requests. The memory patterns exist in five flavors: 1) read
pattern, 2) write pattern, 3) read/write switching pattern,
4) write/read switching pattern, and 5) refresh pattern. The
benefits of this solution is that it lifts the abstraction level
from individual highly inter-dependent SDRAM commands
to patterns, which are sets of commands, that are relatively
independent. This makes both memory scheduling and per-
formance analysis easier. Similarly to [43], the hybrid con-
troller requires large requests that are interleaved over the
memory banks to provide high bounds on memory efficiency.
As an example, 63% memory efficiency is guaranteed in the
worst case for a 16-bit DDR3-800 memory interleaving 64 B
requests over four banks with BL = 8. This case happens
when all requests are writes.

3.4 Soft/no real-time controllers
The same memory controllers are typically used for both

SRT and NRT requirements. They are dynamically sched-
uled controllers that target maximizing net bandwidth to
optimize cost by accommodating more memory clients with
a given memory, and minimize response times to satisfy re-
quirements of latency-driven memory clients. Note that this
type of memory controller considers average memory effi-
ciency and response times rather than the worst-case coun-
terparts. This is because SRT requirements are typically
verified by extensive simulation instead of using the formal
analysis techniques employed for FRT requirements. It is
hence sufficient to assert that application-level deadlines,
which may be at the granularity of thousands of memory
requests, are satisfied with high probability, rather than

providing absolute guarantees at the level of individual re-
quests [49].

Although this class of controllers can have a variety of
policies for opening and closing rows [47], open-page policies
are common, since locality in the memory traffic does not
have to be guaranteed. There only has to be enough local-
ity to offset the penalty of row misses with high probability.
The average memory efficiency of an SRT/NRT controller
is hence typically much higher than for their FRT counter-
parts. The best-case memory efficiency for these controllers
happens if all requests are either reads or writes to the same
row in a bank and is as high as 98%, the only losses being
attributed to mandatory refresh operations.

A benefit of SRT/NRT controllers is that they support
any type of memory traffic. They are hence very general
components, applicable to many systems. The flexibility of
these controllers stems from that they are not concerned
about formal analysis and providing bounds on memory ef-
ficiency, and dynamically schedule memory accesses at the
level of single SDRAM bursts, rather than as sets of in-
terleaved bursts. Scheduling at this finer level of granular-
ity also reduces the average response times for high-priority
clients by reducing blocking effects from clients with lower
priorities. However, since no bank-parallelism is guaran-
teed between consecutive bursts, these memory controllers
are unable to guarantee high memory efficiency in the worst
case. For example, a typical controller for a 16-bit DDR3-
800 memory with BL = 8 only guarantees 16% efficiency for
in case all requests are writes and there is a row miss for ev-
ery burst. This bound is determined by the minimum time
between opening two pages in the same bank (tRC). It is
hence derived from the memory specification rather than the
specifics of the memory controller, and applies by default to
many SRT/NRT memory controllers.

SRT/NTR memory controllers often feature sophisticated
mechanisms to improve the average memory efficiency or re-
duce average response times. Examples that improve mem-
ory efficiency involve preference for requests that target open
rows in the memory banks [34,36,42,48,51], or that fit with
the current direction (read/write) of the data bus [9, 22, 34,
36, 51]. Example mechanisms that reduce average response
times of applications prefer reads over writes [48], which
is beneficial if reads are blocking while writes are posted,
or let high-priority memory clients preempt lower priority
clients [34]. Although these mechanisms help SRT/NRT
memory controllers fulfill their goals, the interactions be-
tween these mechanisms and dynamic command schedulers
are complex, making it difficult to derive useful bounds on
response times, and even to show that the 16% bound on
memory efficiency applies.

3.5 Mixed time-criticality controllers
Mixed time-criticality systems concurrently execute a set

of applications with a mix of FRT, SRT, and NRT require-
ments. Currently, there are no memory controllers that
deal well with a set of clients that have conflicting FRT
and SRT/NRT requirements. Mixed real-time (MRT) con-
trollers are likely to evolve from existing FRT or SRT/NRT
controller designs. Extending current FRT controllers to in-
clude SRT/NRT requirements requires solving the following
open issues:
1) FRT controllers maximize the guaranteed net bandwidth
and minimize the maximum response times by using close-
page policies, since locality cannot be assumed. However, an
MRT controller must guarantee just enough net bandwidth
(and response times) to satisfy FRT requirements and then
maximize the average net bandwidth and minimize the av-

Figure 2: Best-case and worst-case memory effi-
ciency for different types of memory controllers.

erage response times for the SRT/NRT clients. It hence
makes sense to move from the traditional close-page policy
(FRT in Figure 2) that cannot exploit locality to a pre-
dictable open-page policy that does use locality to improve
the average memory efficiency and reduce average response
times for SRT/NRT applications. For example, by intro-
ducing hit and miss patterns to the controller in [1] for a
16-bit DDR3-800 with BL = 8 and 64 B requests, the best-
case efficiency (for all traffic) can increase from 80% to 98%,
although the guaranteed memory efficiency (and hence net
FTR bandwidth) decreases from 63% to around 40%.
2) FRT applications must have well-specified behaviors, such
as worst-case execution times, memory access patterns, and
request sizes to enable formal analysis, but SRT and NRT
applications typically do not. An MRT controller must hence
guarantee that FRT clients receive their requested service in
a robust manner, regardless of the behaviors of other clients.
This can be achieved by: a) chopping and rounding all re-
quests to fixed-length atomic service units, e.g. as done by
the atomizer block in [1], and b) by scheduling the atomic
service units using a predictable arbiter, such as [3].
3) Current FRT controllers either have assumptions on or
restrict client traffic. This must be extended with support
for variable request sizes of dynamic SRT/NRT applications
that may not have well-specified behaviors. This involves
both generalization of the memory controllers themselves
and of their corresponding performance analyses.
4) Support for multiple use-cases is required to support con-
currently executing FRT applications that may start or stop
dynamically at run time. This requires partial reconfigura-
tion for applications that change, but without disrupting
FRT service of persistent applications.
5) FRT power management strategies are required to reduce
system power consumption, which is identified as a grand
challenge of the coming decade [27].
Conversely, evolving existing SRT controllers to MRT con-

trollers requires deriving bounds on net bandwidth and re-
sponse times of requests. This requires the following chal-
lenges to be addressed:
1) Features such as reordering, read/write grouping, and
preemption must be restricted, to make controllers less dy-
namic. This is necessary to allow analysis of these features
in terms of their worst-case impact on FRT clients. Unfor-
tunately, it may also reduce the average memory efficiency.
2) Even though SRT/NRT controllers support any type of
traffic, this results in very pessimistic worst-case memory ef-
ficiency. By restricting and increasing the scheduling gran-
ularity beyond a single burst, it may be possible improve on
the 16% memory efficiency limiting many controllers today
and reach the 40% we project for MRT controllers.

The worst-case efficiency in Figure 2 is indicative of the
maximum guaranteed FRT bandwidth. The actual band-
width required to offer it, shown by the (imagined) actual
FRT dashed line, depends on the locality of the traffic. A
close-page policy destroys all locality, and the minimum and
maximum actual bandwidths are 63-80%, respectively. An
open-page SRT/NRT controller exploits all locality. How-
ever, in the worst-case with small bursts and no locality, it
uses 98% of the actual total bandwidth to offer a maximum
guaranteed (FRT) efficiency of 16%. A promising direction
for MRT controllers is to allow rows to remain open to im-
prove the best-case total (FRT + SRT/NRT) bandwidth,
while still guaranteeing sufficient FRT bandwidth.

3.6 Conclusions
SDRAM memory clients in complex MPSoCs have mixed

time-criticality, meaning that they have a mix of firm, soft
and no real-time requirements. Although there are con-
trollers for firm or soft/no real-time requirements, there are
no good solutions for mixes between these.

This presentation discusses the requirements of mixed time-
criticality systems and identifies research challenges to evolve
existing memory controller to satisfy them. We conclude
that firm real-time controllers must: 1) transition to pre-
dictable open-page policies that exploit locality, trading worst-
case memory efficiency and response times for an improve-
ment in the average-case counterparts, 2) guarantee a mini-
mum bandwidth and maximum response times to FRT clients,
regardless of the behaviors of other clients. 3) relax as-
sumptions and restrictions on memory traffic by general-
izing both controllers and performance analysis, 4) support
starting and stopping applications at run time, while pro-
viding undisrupted real-time service to remaining applica-
tions, and 5) support predictable power management strate-
gies to reduce power consumption. Conversely, an evolution
of soft/no real-time controllers requires: 1) restrictions on
the use of dynamic performance enhancing features to en-
able bounds on memory efficiency and response times to
be derived, and 2) restricting and increasing the schedul-
ing granularity to guarantee sufficient memory efficiency for
FRT memory clients.

4. HIGH-PERFORMANCEMEMORYSUB-

SYSTEMSFORCONSUMERMULTI-CORE

SOCS

(Wingard)

Consumers have demonstrated an almost insatiable desire
for devices that can produce, consume and communicate
ever higher quantities and qualities of media content. This
demand drives semiconductor providers to design MPSoC
devices that leverage the superior performance, area and
power characteristics of heterogeneous multi-core architec-
tures. The biggest challenge in these architectures is aggres-
sively optimizing the cost and performance of the off-chip
DRAM system, because the desired bandwidths grow faster
than the underlying DRAM technology and consumer price
points demand the lowest cost total system. In this presen-
tation, we show that optimizing the DRAM subsystem per-
formance requires an integrated approach that manages the
memory traffic from the interfaces of the processors, through
the interconnect network, to the DRAM scheduler and con-
troller. We describe methods for balancing conflicting QoS
requirements that exploit the increasing parallelism both
among the heterogeneous cores and in the DRAMs them-
selves.

5. 3D TECHNOLOGIES: SOME PERSPEC-

TIVES FORMEMORY INTERCONNECT

AND CONTROLLER

(Dutoit, Clermidy, and Vivet)

Due to increasing flexibility, performance, and power con-
sumption constraints, multi-core architectures have to face
many issues. MPSoC communication with a fast high-storage
memory (DRAM or SDRAM) has always been a challenge
for multi-core architectures. Such memory is off-chip due
to density versus price reasons. High resolution TV, image
processing, and augmented reality are some typical exam-
ples of applications that require drastically increasing band-
width to the working memory. Fast links have emerged for
solving this issue as well as their low-power counterparts,
such as DDR and LPDDR standards. However, these stan-
dards have extrinsic limitations when the bandwidth must
be further increased, mainly due to high frequency in a noisy
(variable) environment. Reducing this frequency is possible
if the bus width can be enlarged. Current MPSoCs cannot
afford such a solution due to limitations on the number of
pads.
This presentation explains why 3D technologies using Through

Silicon Vias (TSV) provide a unique opportunity to propose
new connection schemes and interfaces based on a wide data
bus between the MPSoC and the memory. First, a brief
overview of 3D TSV technology choices is presented in Sec-
tion 5.1. Section 5.2 then explains how the wider and slower
memory interfaces enabled by 3D technology improve band-
width and reduce power compared to existing memory in-
terfaces. Integration of wide interfaces and its impact on
multi-core architectures is then discussed in Section 5.3, be-
fore conclusions are drawn in Section 5.4.

5.1 3D TSV technology choices
In 3D stacking technologies, TSVs are the basic build-

ing elements, providing connections between the different
stacked dies. The idea is very simple and consists of making
a hole in the silicon, which will be filled in another process
step. However, multiple technological options can be investi-
gated. In this section, we present a short overview of various
3D technologies [46].
On a top-level fabrication process, three main techniques

can be used to stack integrated circuits: Wafer-to-Wafer
(W2W), Die-to-Wafer (D2W) and Die-to-Die (D2D).
In W2W, two complete wafers are stacked together and
dies are extracted after assembly. This solution provides
a high-throughput process, although with the severe con-
straint that the dies of the different wafers must have the
same dimensions. In the D2W technique, a die from one
wafer is picked and placed on the top of another die inte-
grated in a wafer. This solution allows testing dies indi-
vidually before 3D assembly. This is commonly called the
Known-Good-Die assembly process (KGD), which provides
a better yield compared to the W2W technique. Moreover,
it removes the constraint of identical dimensions for the two
dies and enables heterogeneous technologies (distinct CMOS
nodes, analogue, memories, MEMs...) to be used. D2D is
the last solution, more costly in terms of fabrication, but
mandatory if the assembly step is done by the manufacturer
of the lower size die or by an external assembler.
Three principal manufacturing steps are usually used for

the 3D process: via drilling and filling, wafer thinning and
backside metallization. These three steps may be processed
together or separately. Depending on the position of these
steps in the global manufacturing process, three technology

Figure 3: Stacking Options: a)Face-to-Face, b)Face-
to-Back

options are possible: TSVs first, TSV middle, or TSV last.
TSV are referred to as ”firsts” if they are processed before
the front-end CMOS steps (transistors masks) [23]. The so-
called ”Via Middle” TSVs [44] are processed after the front-
end transistor process, but before metal layer fabrication.
Wafer thinning and backside metallization can be processed
during the assembly steps. Finally, ”Via Last” [15] (or post
backend TSVs) are realized after the metallization stage. In
such a case, TSVs can be processed by packaging fabrication
lines.

Different TSV integration densities are available today.
Low density TSVs have a pitch larger than 100 µm. Medium
density TSVs [16] have a pitch of about 50 µm, which repre-
sents an integration density of about 500 TSV/mm2. High
Density TSV [10] consists of really high aspect ratio TSVs
with a diameter lower than 10 µm, offering an interesting
integration density of 10 000 TSV/mm2.

Once the process is defined, different options can be used
for the assembly step. The most natural one comes from
flip-chip techniques. It consists of solder micro-balls, which
perform both electrical conductivity and mechanical links
between dies. In order to reduce existing flip-chip bump
dimensions to be compatible with TSV sizes, copper pil-
lars, also known as micro-bumps, have been developed [24].
Like BGA and flip-chip packaging techniques, copper pillars
are fabricated using a brazing (soldering) process operation.
Copper-pillar diameters have been demonstrated down to 25
µm [16]. A more advanced packaging solution consists in di-
rect copper bonding between two dies without any brazing
element by using molecular copper bonding. This type of
process is still active R&D and is not yet available due to
surface roughness constraints, but will allow higher integra-
tion density, probably less than 10 µm [19].

Finally, depending on the side of the two dies (back side
is the passive silicon, front side is the active layer), different
assembly can be realized (Figure 3). For the Face-to-Face
(F2F) connection, two dies ended by a high-level metal in-
terconnection (called ”Alu Cap”) can be assembled without a
thinning step. Nevertheless, TSV process steps are required
to interconnect the stack with the package and the thinning
process is performed on the assembled dies. For the Face-
to-Back (F2B) solution, one of the two dies must be thinned
before assembly to reach the TSVs contact. Note that this

Figure 4: System architectures and memory inter-
connects

last solution is the only one which allows stacking more than
two dies.

5.2 Improving memory bandwidth
With the increasing demand for processing power in MP-

SoCs, memory-interconnect bandwidth is becoming the per-
formance bottleneck of the overall system. Tera-scale mem-
ory bandwidth will likely be required in the coming years.

5.2.1 The memory-link bottleneck
A typical computer architecture [45], shown in Figure 4,

consists of a microprocessor (CPU), a chipset and the main
memories connected through the system bus (interconnect).
The system and processing memories are split to provide the
required bandwidth.
On the contrary, architectures targeting mobile applica-

tions must fulfill hard area and power consumption con-
straints. As a consequence, modern systems are integrating
the chipset (memory controller, graphic component) as IP
blocks with the CPU and the modem processor in a single
MPSoC. Such organization puts more pressure on the mem-
ory bus as all the data and control traffic is merged on the
same physical bus.

5.2.2 Bandwidth and power consumption requirements
Peak memory bandwidth is defined as the product of the

number of data bits in the memory bus and the speed of
a single bit [45]. A typical value reached by the current
generation of MPSoCs used for handheld devices is a 32 bit
wide bus with a JEDEC standard LPDDR2 with a frequency
of 533 MHz. Consequently, the memory bandwidth is:
4 Bytes × 533 MHz × 2 (Double Data Rate) = 4.264 GB/s
The power consumption of such an interface is propor-

tional to the interconnect technology capacitance, the in-
terconnect activity (linked to the frequency of the memory
bus), and the square of the voltage excursion.
In a typical MPSoC, many operators are requesting data

from the same shared memory: the CPU, the multimedia
processors and the modem processor. Complex use cases

could occur in such a computing scheme and lead to a heavy
demand on memory bandwidth. It is foreseen that the
terabyte-per-second [20] memory bandwidth will soon be
reached. The following section will see the impact on ac-
tual memory interfaces and their evolutions.

5.2.3 High-bandwidth memory interfaces overview
In computer architecture, a widely used memory inter-

connect is the DDR3 protocol. It is a parallel dual clock
edge (DDR) synchronous protocol. The maximum frequency
is 1066 MHz and the IO-voltage is 1.5 V. This interface
achieves approximately 10 GB/s bandwidth for 32 bit mem-
ory with a power consumption evaluated at 30 mW per
Gb/s. The devices (processor and memories) are placed in
different packages on a PCB. The package and PCB tech-
nologies used in computers permit a good transmission line
quality to ensure the required signal integrity for 1.5 V-range
signaling level at 1 GHz.

In mobile computing MPSoCs, the cost-driven PCB does
not allow the required signal integrity for such signaling level
and frequency. A dedicated protocol has been standardized
by JEDEC to address mobile computing specific environ-
ment targeting lower cost and lower consumption than com-
puter architecture. The most widely used memory intercon-
nect is the LPDDR2 interface. It is derived from the DDR3
protocol and keeps the main features, such as the parallel
dual clock edge (DDR) synchronous protocol. The main dif-
ferences are coming from the signaling voltage (1.2 V) and
the lower frequency (533 MHz). These differences aim at re-
ducing power consumption at the expense of lower memory
bandwidth.

5.2.4 Memory-interface evolution
As previously noted, the next generations of memory in-

terfaces have to cope with increasing memory-bandwidth
demands, while keeping the power consumption at a rea-
sonable limit. The memory bandwidth definition expressed
above shows two solutions to improve the bandwidth: in-
crease the number of data bits or increase the frequency.
The power consumption can be reduced in three ways: by
limiting the interconnect capacitance, by limiting the sig-
nal voltage range (quadratic impact), or by limiting the fre-
quency. Finally, each memory interface evolution has to
keep the latency stable for performance reasons. With these
simple equations in mind, an evolutionary trend is emerging
for high bandwidth: wide data memory interface.

5.2.5 Wide data interface
For this interface proposal, the bandwidth improvement

is achieved through an unprecedented extension of the bus
width between the MPSoC and the memory up to 512 bits.
This evolution has been made possible with the introduction
of 3D-stacked memories [35]. This 3D technology provides
a much higher connection density that makes the overall
silicon cost (area) of the wide data memory interface in the
same range as the typical LPDDR2 interface located in the
MPSoC pad ring.

Lower power consumption is mainly achieved through the
lower capacitance of the TSV interconnect. In conjunction
with wider data bit width, a Single-Data Rate (SDR) is used
and the frequency reduced from 533 MHz for the LPDDR2
interface down to 200 MHz. The lower bit rate significantly
simplifies the design of the pad interface. Signal-integrity
issues are singularly minimized with SDR signals at 200 MHz
through TSVs between dies. On the whole, the bandwidth
improvement provided by the wider data bus interface (16
times higher than LPDDR2) compensates and exceeds the

Figure 5: Main features of different high-bandwidth
memory interfaces

performance loss coming from the lower bit rate (5.33 times
lower than LPDDR2). The resulting wide data interface
throughput is three times that of the LPDDR2.

5.2.6 Memory-interface performance comparison
Figure 5 gives a summary of the three different memory

interfaces described in this section for the 1 TB/s target.
It clearly proves the need to go to large bit-width interfaces
for power consumption reasons. In this context, 3D stacking
has a clear advantage compared to other interface solutions.
DRAM memory on processor vertical integration with wide
data interconnects through TSV is seen as the driving 3D
technology for improving the multi-core computing perfor-
mances.

5.3 Wide data interface design integration

5.3.1 Wide I/O memory architectural specification
Memory vendors are currently adopting the wide data in-

terface (also called Wide I/O) for their memory devices [29].
The chip architecture of a Wide I/O DRAM is made up of
four independent memory partitions with their own 128-bit
wide interface. The key distinctive features versus a conven-
tional SDRAM are the following:

• 4-channel SDRAM x 128 b, 200 MHz type interface,
12.8 GB/s peak bandwidth, around 500 mW power

• Maximum number of stacked dies is 4 (1, 2, or 4)

• Wide I/O interface channel pitch of 50 µm x 40 µm

• TSV diameter of ∼10 µm

• around 1200 micro-bump connections between chips

• 4-channel micro-bump and TSV arrays located at the
center of the chip to ensure electrical connectivity as
well as mechanical stability, all channels are symmetric
with respect to the chip center

• Boundary scan test mode to detect bump connection
failure between chips

5.3.2 Package integration
Figure 6 is showing an example of a 2 layer stack with one

processor SoC and one Wide I/O memory using the techno-
logical assumptions summarized in Table 2. The processor
SoC is packaged with a flip-chip technology to improve the
power integrity and consequently allows high-performance
operating conditions. The memory is stacked on top of the

Figure 6: Proposed stacked integrated circuits for
Wide I/O

processor SoC in a Face-to-Back configuration. The inter-
connect, located in the center area of the memory die, con-
sists of an array of micro-bumps whose pitch is in the range
of 40 µm to 50 µm. With such a configuration, TSVs are
required within the processor SoC. Some of them are ded-
icated to Wide I/O memory supply distribution from the
package balls up to the memory. The other TSVs are used
for the interconnect signals.

Table 2: Technology assumptions

Assembly W2D, D2D

Stacking F2B
TSV process Via Middle
TSV density 10 µm diameter
TSV xy pitch 50 µm x 40 µm
Copper Pillars 25 µm diameter

5.3.3 MPSoC architecture impact
Today, we see a trend towards MPSoCs with a throughput-

oriented memory hierarchy. As a result, an MPSoC platform
is a highly heterogeneous system. It integrates a general-
purpose multi-core CPU, and a number of domain-specific
many-core subsystems. In such an architecture, the main
memory is shared between all sub-systems and is physically
located outside the SoC. All instruction and data transfers
between the local memories and the external memory device
have to go through a centralized memory controller which
deals with several roles:

1. It arbitrates between the different initiators and acts
as an arbiter or a scheduler

2. It converts the transaction initiated by the sub-systems
into a protocol compatible with the memory device

3. It converts the digital protocol into precise timed sig-
nals relative to the memory clock edges. It handles
all timing delay variability through the physical path
made of the SoC package, the board and the memory
package. This role is called ”PHYsical or PHY inter-
face”

The Wide I/O memory interconnect scheme impacts the
memory controller architecture and its integration into the
processor SoC versus conventional architectures. To address
the four independent partitions of the memory, the arbiter
could be either centralized and considered as a unique re-
source shared among the sub-systems or split into four inde-
pendent controllers, managing parallel traffic streams to the
memory partitions, thus reducing the congestion in the SoC
interconnect. A memory controller and a PHY interface are

required for each Wide I/O partition and have to be phys-
ically placed close to the channels for signal integrity and
power integrity reasons. This deeply impacts the floorplan
of the processor SoC.

5.4 Conclusions
3D stacking of multi-core heterogeneous system opens a

new era of architecture exploration with new partitioning
of the overall System-on-Chip. After a description of the
3D stacking technologies, this presentation reviews the ex-
isting memory interfaces and demonstrates that they need
to evolve to new protocols in order to achieve the terabyte-
per-second bandwidth with reasonable power consumption.
3D integration is a unique opportunity enabling memory-
interconnect evolution to higher bandwidth. DRAM mem-
ory on processor vertical integration with wide data inter-
connects through TSVs is probably the most advanced scheme
for providing high throughput memory connection.

6. REFERENCES

[1] B. Akesson and K. Goossens. Architectures and modeling of
predictable memory controllers for improved system integration.
In Proc. DATE, 2011.

[2] B. Akesson et al. Classification and Analysis of Predictable
Memory Patterns. In Proc. RTCSA, 2010.

[3] B. Akesson et al., “Real-Time Scheduling Using
Credit-Controlled Static-Priority Arbitration,” in Proc. RTCSA,
2008.

[4] B. Amir. US Patent 5937425: Flash file system optimized for
page-mode flash technologies. 1999.

[5] S. Bayliss and G. Constantinides. Methodology for designing
statically scheduled application-specific SDRAM controllers
using constrained local search. In Proc. FPT, 2009.

[6] C. van Berkel. Multi-core for Mobile Phones. In Proc. DATE,
2009.

[7] E. R. Berlekamp. Algebraic Coding Theory, Revised Edition.
Aegean Park Press, 1984.

[8] R. C. Bose and D. K. R. Chaudhuri. On a class of error
correcting binary group codes. Information and Control, 3,
1960.

[9] A. Burchard et al. A real-time streaming memory controller. In
Proc. DATE, 2005.

[10] L. Cadix et al. Integration and frequency dependent electrical
modeling of Through Silicon Vias (TSV) for high density 3DICs.
In Proc. IITC, 2010.

[11] L.-P. Chang and T.-W. Kuo. An adaptive striping architecture
for flash memory storage systems of embedded systems. In Proc.
RTAS, 2002.

[12] L.-P. Chang et al. Real-time garbage collection for
flash-memory storage systems of real-time embedded systems.
ACM Trans. Embed. Comp. Syst., 3, 2004.

[13] Y.-H. Chang et al. Improving flash wear-leveling by proactively
moving static data. Comp., IEEE Trans. on, 59(1), 2010.

[14] Y.-H. Chang and T.-W. Kuo. A commitment-based
management strategy for the performance and reliability
enhancement of flash-memory storage systems. In Proc. DAC,
2009.

[15] J. Charbonnier et al. Wafer level packaging technology
development for CMOS image sensors using Through Silicon
Vias. In Proc. ESTC, 2008.

[16] P. Chausse et al. Polymer filling of medium density through
silicon via for 3D-packaging. In Proc. EPTC, 2009.

[17] M.-L. Chiang and R.-C. Chang. Cleaning policies in mobile
computers using flash memory. J. Syst. Softw., 48, 1999.

[18] S. Choudhuri and T. Givargis. Deterministic service guarantees
for NAND flash using partial block cleaning. In Proc.
CODES+ISSS, 2008.

[19] L. Di Cioccioa et al. Enabling 3D Interconnects with Metal
Direct Bonding. In Proc. ICICDT, 2007.

[20] P. Franzon. Creating 3D-Specific Systems-Architecture, Design,
CAD. In Proc. DATE, 2010.

[21] A. Gupta et al. DFTL: a flash translation layer employing
demand-based selective caching of page-level address mappings.
In Proc. ASPLOS, 2009.

[22] S. Heithecker and R. Ernst. Traffic shaping for an FPGA based
SDRAM controller with complex QoS requirements. In Proc.
DAC, 2005.

[23] D. Henry et al. Via First Technology Development Based on
High Aspect Ratio Trenches Filled with Doped Polysilicon. In
Proc. ECTC, 2007.

[24] D. Henry et al. 3D integration technology for set-top box
application. In Proc. 3DIC, 2009.

[25] P.-H. Hsu et al. A version-based strategy for reliability
enhancement of flash file systems. In Proc. DAC, 2011.

[26] Intel Corporation. Understanding the flash translation layer
(FTL) specification. 1998.

[27] International Technology Roadmap for Semiconductors (ITRS),
2009.

[28] JEDEC Solid State Technology Association. DDR3 SDRAM
Specification, JESD79-3E edition, 2010.

[29] Jung-Sik Kim et al. A 1.2V 12.8GB/s 2Gb Mobile Wide-I/O
DRAM with 4x128 I/Os Using TSV-Based Stacking. In Proc.
ISSCC, 2011.

[30] P. Kollig et al. Heterogeneous Multi-Core Platform for
Consumer Multimedia Applications. In Proc. DATE, 2009.

[31] T.-W. Kuo et al. An efficient fault detection algorithm for nand
flash memory. SIGAPP Appl. Comp. Rev., 11, 2011.

[32] O. Kwon et al. An efficient garbage collection policy for flash
memory based swap systems. In Proc. ICCSA, 2007.

[33] S.-W. Lee et al. FAST: An efficient flash translation layer for
flash memory. In Lect. Notes in Comp. Sci., volume 4097, 2006.

[34] K. Lee et al. An efficient quality-aware memory controller for
multimedia platform SoC. IEEE Trans. Circuits Syst. Video
Technol., 15(5), 2005.

[35] G. H. Loh. 3D-Stacked Memory Architectures for Multi-Core
Processors. In Proc. ISCA, 2008.

[36] C. Macian et al. Beyond performance: Secure and fair memory
management for multiple systems on a chip. In Proc. FPT, 2003.

[37] Micron Technology.
FNNB74A NAND Flash Memory Datasheet, 2010.

[38] Micron Technology.
MT29F16G08ABACA NAND Flash Memory Datasheet, 2010.

[39] Micron Technology.
MT29F64G08CBAAA NAND Flash Memory Datasheet, 2010.

[40] O. Moreira et al. Scheduling multiple independent
hard-real-time jobs on a heterogeneous multiprocessor. In Proc.
EMSOFT, 2007.

[41] M. Murugan and D. Du. Rejuvenator: A static wear leveling
algorithm for nand flash memory with minimal overhead. In
Proc. MSST, 2011.

[42] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch
Scheduling: Enabling High-Performance and Fair Shared
Memory Controllers. IEEE Micro, 29(1), 2009.

[43] M. Paolieri et al. An Analyzable Memory Controller for Hard
Real-Time CMPs. Embedded Systems Letters, IEEE, 1(4), 2009.

[44] G. Pares et al. Mid-process through silicon vias technology
using tungsten metallization: Process optimization and
electrical results. In Proc. EPTC, 2009.

[45] L. A. Polka et al. Package Technology to Address the Memory
Bandwidth Challenge for Tera-scale Computing. Intel
Technology Journal, vol. 11, no. 3, 2007.

[46] G. Poupon et al. 3D Integration : a technological toolbox. In
Proc. IMPACT, 2008.

[47] S. Rixner et al. Memory access scheduling. In Proc. ISCA,
2000.

[48] J. Shao and B. Davis. A burst scheduling access reordering
mechanism. In Proc. HPCA, 2007.

[49] L. Steffens et al. Real-Time Analysis for Memory Access in
Media Processing SoCs: A Practical Approach. Proc. ECRTS,
2008.

[50] P. van der Wolf and J. Geuzebroek. SoC Infrastructures for
Predictable System Integration. In Proc. DATE, 2011.

[51] W.-D. Weber. Efficient Shared DRAM Subsystems for SOCs.
Sonics, Inc, 2001.

[52] C.-H. Wu et al. An adaptive flash translation layer for
high-performance storage systems. Trans. Comp.-Aided Des.
Integ. Cir. Sys., 29, 2010.

