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ABSTRACT
Systems on a Chip concurrently execute multiple applica-
tions that may start and stop at run-time, creating many
use-cases. Composability reduces the verification effort, by
making the functional and temporal behaviours of an ap-
plication independent of other applications. Existing ap-
proaches link applications to static address ranges that can-
not be reused between applications that are not simultane-
ously active, wasting resources. In this paper we propose
a composable virtual memory scheme that enables dynamic
binding and relocation of applications. Our virtual mem-
ory is also predictable, for applications with real-time con-
straints. We integrated the virtual memory on, CompSOC,
an existing composable SoC prototyped in FPGA. The im-
plementation indicates that virtual memory is in general ex-
pensive, because it incurs a performance loss around 39%
due to address translation latency. On top of this, compos-
ability adds to virtual memory an insignificant extra perfor-
mance penalty, below 1%.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; D.4.2 [Operating
Systems]: Storage Management—Virtual memory

General Terms
Design, Verification

Keywords
SoC, Composability, Predictability

1. INTRODUCTION
Modern multiprocessor systems on chip (SoC) concur-

rently execute multiple applications that can be started
and stopped independently at run-time, creating many use-
cases. Often, some of the applications have real-time con-
straints, and have hence to be predictable. Such SoCs typi-
cally comprise processor cores, peripheral hardware blocks,
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a distributed memory hierarchy, and an interconnect in-
frastructure. Each processor accesses a fast and relatively
small local memory and a set of larger and slower memo-
ries shared among the processors. Embedded systems are
cost-constrained, and resources, such as memory, must be
allocated frugally, both at design time and at run-time. Typ-
ically, each use-case is statically reserved a set of (virtual)
resources, and at run-time, when use-cases switch, the re-
served resources are bound to the physical platform.

To reduce design costs, existing, previously implemented
functional parts such as hardware blocks, application source
code, application-dependent schedulers, and power manage-
ment strategies are re-used. However, after integrating these
parts in a larger system, their behaviours have to be re-
verified [16]. This is not scalable, since a change in any sys-
tem component requires re-verification of the entire system.
To address this problem, composability [16, 23, 2] has been
proposed, to allow applications to be verified independently,
without requiring re-verification after integration in a larger
system. A system is composable if the functional and tem-
poral behaviours of an application are independent of the
behaviour of other applications that may run concurrently.

Application development involves developing source code,
optimising it, compiling it into an object file, and linking
several object files into an executable that is loaded and run
on the hardware. Current composable platforms allow appli-
cations to be developed independently only up to the source
code level, after which they are linked in a single executable.
This limits the scope of composability to loading and exe-
cuting at run-time. Furthermore, statically linking all appli-
cations that can run on a processor in one executable results
in position dependent code which prevents uses-cases to be
loaded dynamically. Hence local memory is wasted when
not all applications will ever run at the same time. As il-
lustrated in Figure 1(a), currently a single static worst-case
executable is created. This executable includes all applica-
tions that can run on the processor, leading to a waste of
memory space.

Virtual Memory (VM), implemented by a Memory Man-
agement Unit (MMU), was initially conceived to allow a task
to access a larger memory than the available one and to im-
plement memory protection. It also offers position indepen-
dent code, which in turn enables dynamic application load-
ing. VM divides the memory space in pages, which reside
on a large storage space, e.g., a disk. Frequently accessed
pages are cached in the main memory. The page-table is typ-
ically a large data structure which stores the virtual to phys-
ical address translation, and the location of a page (memory
or disk). MMUs cache the page-table in a smaller hard-
ware structure, the Translation Look-aside Buffer (TLB), to



!"#$%

&''(%

&'')%

!"#$%

&'')%

&''*%

+#$,-"#$%(% +#$,-"#$%)%

(a) Without VM.

!"#$%

&''(%

&'')%

!"#$%

&'')%

&''*%

&''*%
+#$,-"#$%(% +#$,-"#$%)%

(b) With VM.

Figure 1: Single executable for worst-case use-case
vs. executable per application when using Virtual
Memory (VM).

speed-up the address translation.
Traditionally, real-time embedded systems that have to

respond to events in a short, bounded period of time, do
not implement VM. The VM’s cache-like behaviour leads
to unpredictable performance. Moreover, its overhead may
be large, e.g., page faults may have a penalty of millions
of cycles, which may render the system non-responsive for
an unacceptably long time. However, the benefits of VM,
i.e., large virtual address space and memory protection, are
recognised in embedded systems that implement relatively
large applications, hence predictable VM schemes are pro-
posed. To bound the penalty of TLB misses and page faults,
these schemes use special hardware page-tables [25], fixed
page swapping points [12, 14], or page management and lock-
ing API [4]. However, an application may swap TLB entries
or pages of other applications; applications may hence inter-
fere with each-other. As a result, existing VM approaches
are not composable.

In this paper we propose a composable virtual memory
scheme that allows an application to be developed, opti-
mised, compiled, and linked into an individual executable
file. This executable file can be utilised in different use-cases,
and even on different processors (with the same instruction
set architecture) in the platform. We assume that the local
memory suffices for each individual use-case. By using our
VM the entire set of use-cases of an SoC can access a larger
local memory than the one available to a processor. Vir-
tual memory enables dynamic page allocation and virtual-
to-physical address binding to reduce the memory footprint
from a worst-case over all applications to a worst-case per
use-case (Figure 1(b)).

Our scheme utilises conventional MMU mechanisms, such
as TLB and page table, however we propose four distin-
guishing characteristics that makes the VM composable,
predictable, and low cost, as follows. First, the VM com-
prises one page-table per application, as opposed to one
page-table per task. In general, embedded applications have
a much smaller memory footprint than desktop or server ap-
plications, hence this option is acceptable, and, even more,
beneficial because it may reduce the size of the page-table.
Second, the page-table of the application that runs on a pro-
cessor at a given moment is entirely stored in hardware, to
minimise the performance penalty of a TLB miss. Third,
a light-weight Operating System updates the content of the
hardware page-table and clears the TLB, at each applica-
tion switch. After such switch, an application experiences
a number of (cold) misses that is independent of the TLB
behaviour of other applications. The penalty of these cold
misses is not large, as page tables are stored in hardware,
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Figure 2: A typical SoC architecture consisting of
processor and memory tiles.

and the access delay to these tables is hence only few cy-
cles. Thus an application cannot swap TLB entries or pages
of other applications, and cannot hence interfere with other
applications. As a result, the temporal behaviour of an ap-
plication is not dependent of other applications, i.e, the VM
scheme is composable. Lastly, no page faults can occur, as
each use-case fits in the local memory. This has two advan-
tages, namely that the large page fault overhead is avoided,
and the VM is predictable, given that the TLB behaviour of
real-time applications is predictable.

The experimental platform consists of a composable SoC
that is prototyped in FPGA [2] and includes MicroBlaze
cores. On this platform we configure the existing MMU of
a MicroBlaze core according to the scheme described above,
such that it implements a composable VM. Experiments on
a platform instance comprising multiple MicroBlaze cores
that execute a JPEG and a synthetic application indicate
composability. The MicroBlaze VM increases the instruc-
tion fetch and load/store instructions delay from 1 to 3 cy-
cles, leading to a performance penalty of 39% for the JPEG
application. Furthermore, the extra performance penalty
due to the composability implementation in the VM, i.e.,
the TLB flush at application switch, is less than 1%, thus
negligible.

The outline of this paper is as follows. Section 2 presents
the target hardware and software platform. Section 3 details
the composable VM, and Section 4 presents the implemen-
tation of this VM on a MicroBlaze core. Further, Section 5
presents the experimental results, Section 6 discusses the
related work, and Section 5 concludes the paper.

2. BACKGROUND
In this section we present the template of the targeted

multi-core platform, starting with the general hardware ar-
chitecture and followed by the software infrastructure, and
finally we discuss composability and reservation of resources.

We consider a tiled SoC that comprises a number of pro-
cessor and memory tiles interconnected via a Network-on-
Chip (NoC), as presented in Figure 2. A typical proces-
sor tile consists of a processor, a MicroBlaze core in our
case, a set of local scratch-pad memory blocks, e.g., for in-
struction (IMEM), data (DMEM), and optionally hardware
blocks to facilitate remote, outside tile data transfers, and to
enable the overlap of communication and computation, e.g.,
Direct Memory Access (DMA) modules or communication
assists [20]. The processor tile is further equipped with a
timer to generate interrupts and implement the fixed dura-
tion user slots, as introduced below. A memory tile consists
of a memory controller and a number of memory banks.

An application consists of a set of tasks, each of which ex-
ecuting sequentially on a processor. The tasks may be stat-



ically partitioned across multiple processor tiles to enable
parallel processing. A light-weight Operating System (OS)
executes on each core, provides applications with services,
such as drivers to SoC resources, and schedules applications
and their tasks. Our VM approach supports use-cases com-
prising best-effort and real-time applications, executing con-
currently on the SoC platform. In what follows we proceed
by presenting the models of these two application types.

The task forming a best-effort application communicate
using distributed shared memory. Any programming model
is supported, under the assumption that the applications
must not employ any kind of resource locking of slaves
shared between applications. A locked shared resource can
be monopolised by an application, which affects the tempo-
ral behaviour of another application that attempts to access
this resource, hence violates composability.

Tasks of real-time applications operate in a more restric-
tive fashion to ensure that their temporal behaviour can be
bounded. As many applications in the firm real-time do-
main belong to the signal processing class, we choose a pro-
gramming model that naturally fits the domain of stream-
ing applications. In this model, each real-time task executes
continuously, iteratively. Inter-task communication and syn-
chronisation is implemented using logical FIFOs, with block-
ing read and write operations. This model enables overlap-
ping computation with communication via a DMA engine,
as presented below. It furthermore allows modelling an ap-
plication as a data-flow graph, which enables efficient tim-
ing analysis. Note that best-effort applications may be im-
plemented utilising a more relaxed version of this model in
which the temporal behaviour of the tasks and the inter-task
communication do not have to be bounded.

To reduce cost, many of the SoC resources may be shared.
Composability requires strict reservations for each resource
shared between applications [2]. For example, [11] proposes
to realise a composable processor by Time Division Multi-
plexing the applications at the granularity of user time slots.
A user time slot is a basic quantum of fixed duration that
the OS allocates to an application. In between two user
time slots, the OS schedules a new application task in a so-
called OS time slot. The OS time slot should also have a
fixed, application-independent duration to be composable.
Resources used exclusively by a single application may have
to be arbitrated between the application’s tasks, but pose no
problem to composability (no inter-application interference
can occur). We denote such resources as not shared between
applications, or shortly not shared.

3. COMPOSABLE VM CONCEPTS
The introduction briefly explains how a composable VM

extends the scope of composability to independent appli-
cation development, optimisation, compilation, and linking
into an individual executable file, and enables dynamic load-
ing of use-cases. Figure 3 illustrates the virtualisation range
inside a processor tile. All processor’s load/store operations
and instructions fetch use virtual memory addresses that are
translated by a Translation Look-aside Buffer (TLB). Misses
in the TLB are served by a hardware page-table (PT). In
this section we present this VM, our composable memory
reservation, and the dynamic application set-up.

3.1 Composable MMU
The processor time is shared among concurrent applica-

tions, therefore conventional MMUs raise two problems with

respect to composability. First, at the very start of a user
slot, the content of the TLB is determined by the previous
user slot, which can belong to the same application or to
another one. Therefore, an unknown number of TLB misses
will occur, which stall the execution for a number of cycles.
Second, an application may swap-out pages of another ap-
plication from the memory to the disk, causing future page
faults to the second application. The TLB miss and page
fault penalty depend on previously executed applications,
therefore, the timing of the current application is no longer
independent.
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Figure 3: Memory virtualisation inside a tile.

To address the first problem, we assign each application
a page-table, and, at any given moment, the page-table of
the application running on the processor is entirely stored
in a hardware table. The OS performs two actions before
entering a user slot: (i) it invalidates the TLB entries, and
(ii) it loads the page-table of the next application in the
hardware table. The TLB still has a cache-like behaviour,
but it is composable since cold misses will always occur after
context switch, regardless of the application that executed
before. Furthermore, the TLB misses are quickly resolved in
hardware and do not raise an exception or interrupt; their
penalty is hence significantly reduced when compared to a
conventional VM.

The second problem does not exist in our system because
we assume that each use-case fits in the local memory. This
is a realistic assumption in embedded systems, which typi-
cally execute small applications. For performance reasons,
each application is designed to have fast access to its private
data and code, which are hence stored within the tile. As
a result, we can ensure that all pages are permanently resi-
dent, i.e., pages are not swapped to off-tile memory during
application execution. This avoids the large performance
penalty (in the order of magnitude of millions of cycles) of
page faults. The page management mostly involves alloca-
tion and de-allocation of physical pages and it is performed
during OS boot and application set-up, i.e., use-case switch,
thus during application execution no inter-application page
swaps may occur. Furthermore, our approach may reduce
the size of the page-table when compared to the more con-
ventional approach of having one page table per task. The
total local memory footprint of the tasks of an application
that execute on a tile is smaller of equal than the phys-
ical local memory in that tile. Different tasks of the same
application use different parts of a single range of virtual ad-
dresses, and a task needs hence only the page table entries
to access its subset of this range.

Moreover, the address translation is predictable as the la-
tency of a TLB hit is typically constant, i.e., 3 cycles for
the utilised MicroBlaze core, and the maximum latency of a



TLB miss is bounded, i.e., it equals the latency of accessing
the hardware page-table. Furthermore, page faults never oc-
cur, as mentioned before. Hence, the scheme is predictable,
given that the TLB behaviour of a real-time application is
predictable.

3.2 Composable Memory Reservation
This section presents the memory reservation mechanisms

utilised for the OS services and for the user applications.

3.2.1 OS memory reservation
The drivers and OS code are denoted as the base code.

The usage of OS services incurs overhead due to virtual
memory. On one hand, without virtual memory, the lo-
cation of these services is known at compile time and can
therefore be statically linked. With virtual memory, on the
other hand, such services are generally provided by system
calls or dynamically linked libraries. In embedded systems
both options are far too costly in terms of execution time.
The first requires costly context switching and system call
handling. The latter incurs dynamic overhead, such as sym-
bol resolution and dynamic binding. Instead, we require an
approach that not only incurs low overhead, but also has an
application-independent latency, in order to be composable.
The OS services are used during the application’s time slot
and thus the processor runs in virtual mode. Any overhead
can be avoided if these services are called as statically linked
functions. Our approach is to implement this by assigning
these services a fixed position in the virtual address space
as shown in Figure 4.

Base code

App1

Base code

App2

1 to 1

Base Code

App2

Base Code

App1

App2

physical
virtual

App2

Figure 4: Memory reservation; the base code has a
fixed position in memory.

3.2.2 User memory reservation
The user memory reservation follows a two-level strategy;

the first level, inter-application, is page allocation, and the
second level, intra-application, is dynamic memory alloca-
tion, as shown in Figure 5. As reference, the figure also
shows the approach used in the original case where appli-
cations are compiled together. The two-level strategy is in
line with the approaches used for reserving other composable
resources as advocated by [11].

The pages required by an application are allocated at
its set-up stage, at run-time, for both instructions and
data (first level). The dynamically allocated memory space
(heap) and the stack, however, can grow during application
execution and therefore may require additional pages. In
a composable system such a situation should not occur for
two reasons. First, the time it takes for the OS to allocate a

.text .data heapheap st.bst.b st.1st.1 st.2st.2

b b 1 2 2 1 execution time

OS startup time

dynamic memory allocation

(a) Original, mixed allocations of applications.

(b) Two-level approach, allocation per application.

Figure 5: Memory allocation approaches.

physical page depends on previous page allocations of other
applications. Hence, the system would not be composable.
Second, if applications can consume more memory than it
was allocated at set-up, the memory request of one applica-
tion can potentially not be satisfied because another applica-
tion consumed all available memory. In that case, the system
would also not be composable. To prevent these and ensure
composability, page allocation is performed once, at appli-
cation set-up. Thus applications request their worst-case
needed memory size at once. This is not a strong limitation
in embedded systems where resource-bound (worst-case) de-
sign is common practice.

As a result of the composable page allocation, each appli-
cation may use its own dynamic memory allocator (second
level). The dynamic memory allocation during execution
time (by a malloc()), is performed within, and bounded to,
the allocated application pages. Therefore, there is no in-
teraction between malloc() and the system memory man-
agement. The two are strictly separated, and as a conse-
quence the latency of a call to malloc() is independent of
any other application running on the system and therefore
composability is maintained.

3.3 Dynamic Application Set-up
In this section we detail the steps involved in application

set-up at run-time and its benefits. Figure 6 shows the pro-
cess of setting-up an application using our virtual memory
approach. In the first step the required resources, marked
with ‘* ’ in Figure 6(a), are allocated. These resources in-
clude memory pages, and other tile resources, such as DMAs.
In the instruction and data memory, the physical location
of the allocated page is irrelevant. Moreover, the pages do
not have to be in a single consecutive address range.

The second step of a set-up process (Figure 6(b)) is the
virtual-to-physical address binding. The physical memory
regions are bound onto the virtual memory pages. For each
page an entry in the page-table is created. The drivers and
OS code, i.e., the base code, are also bound into the vir-
tual address space of the application, in a fixed position, as
detailed in Section 3.2.1. The location of the application
code in the virtual address space is determined at compile
time and is not fixed. The location of each of the sections
is stored in the executable (elf) header. This information is
used to bind physical pages to the proper virtual addresses.

In the third step the application sections are actually
loaded. Because all sections are placed at the virtual ad-
dress determined by the compiler, all links to the base code
are maintained. Moreover, the instruction and data sections
do not have to be relocatable, hence are not restricted to rel-



D
M
E

I
M
E

P
* *

PT

DMADMA

TLBTLB

DMA

*
(a) Allocation

PT

basebase basebaseD
M
E

I
M
E

P

virtualvirtual

DMADMA

TLBTLB

DMA

(b) Binding

PT

D
M
E

I
M
E

P
basebase

ELF
.text .data

basebase

DMADMA

TLBTLB

DMA

virtualvirtual

(c) Loading

Figure 6: The process of setting-up an application.

ative addressing.
Without virtual memory, all applications are compiled to-

gether and their data sections have a fixed position in the
physical address range. With virtual memory and separate
executables per application, dynamic binding is possible and
local memory can be used more efficiently. When using vir-
tual memory, the system can reuse local memory as it can
dynamically allocate sections in the physical address space.
This not only provides a benefit for the data memory, but
also for the instruction memory.

4. COMPOSABLE VM ON MICROBLAZE
We demonstrate the proposed VM utilising Microblaze

processor cores that already embed MMUs. This section
describes the configuration of this MMU that implements a
composable, predictable virtual memory.

The MicroBlaze core that we use in our platform provides
a MMU with a two-level TLB, as presented in Figure 7.
The Instruction and Data TLB (ITLB and DTLB), which
can be configured to contain 1, 2, 4, or 8 entries are on the
first level. The ITLB and DTLB are hardware managed.
Any memory access goes either through the ITLB or the
DTLB. If the corresponding page-table entry is found, the
virtual address is translated into the physical address and
the memory access is passed on to the bus interface. If
the page-table entry is not found in the ITLB or DTLB,
that entry is loaded from the second-level TLB, the Unified
TLB (UTLB). The UTLB has 64 entries and it is software
controlled. Its entries can be written by addressing a few
special purpose registers.

Special 
Purpose 
Registers

Program 
Counter

ALU

Shift

Multiplier

Divider
Bus
IF Bus

Memory Management Unit (MMU)

UTLB DTLBITLB

Instruction 
Decode

Instructio
n Buffer

Register File

Figure 7: The MicroBlaze architecture.

As explained in Subsection 3.1, we propose to utilise a
page-table that fully resides in the hardware, to achieve
composability. The two-levels MicroBlaze TLB is config-
ured such that the ITLB and DTLB to work as TLBs and
the UTLB to work as the hardware page-table. The OS
loads the UTLB and invalidates the ITLB and DTLB at ev-
ery task switch. Page management is performed during OS
boot and application set-up. Our implementation of page
management is based on the Linux buddy system, as de-
tailed in what follows.

The principle of the buddy system is that a larger page
can be split into two smaller pages (buddies). Using the
right combination of larger and smaller pages, a region of
memory can be allocated which closely fits the requested
size. Whenever a memory region is freed and the two bud-
dies are both free, they can be combined to form the larger
page again. The smallest page size is of order 0, the next of
order 1, etc.

In the Linux buddy system, page sizes are powers of two.
The MicroBlaze hardware only supports pages of powers of
four, from 1KB upward to 16MB. To simplify the page man-
agement, our buddy system only supports these native page
sizes. Therefore, in our implementation a page is split into
four pages instead of two, as shown in Figure 8(a). All free
pages are maintained in a linked list per order (see Fig-
ure 8(b)). Thus, to obtain a page of a certain size the corre-
sponding list is accessed. The system starts with maximum
sized pages. To obtain smaller pages, a larger page is split
into four buddies, which are added to the proper list. A
page that is allocated is removed from the list. When a
page is freed it is added to the list of the correct order. If
four buddies are found in the list, they are combined and
the resulting page is added to the list of one order higher.

(a)

0

1

2

(b)

Figure 8: The buddy system: (a) a page can be split
in four smaller pages (buddies), (b) free pages are
maintained in a linked list per order.

A potential trade-off exists between memory utilisation
and TLB utilisation. Both memory and TLB are of limited
size. The buddy system is designed to allocate the small-
est memory region that fits the requested size, by using a



combination of pages. For example a region of 17KB would
consist of a page of 16KB and one of 1KB, which is more
memory efficient than allocating one page of 32KB. By using
one additional page-table entry, 15KB of memory is saved.
On the other hand, if a request for 15KB would be made,
the buddy system returns six pages. Thus, five page-table
entries are used to save one 1KB of memory. This trade-off
is made at system integration time by specifying the mem-
ory reservation sizes that are passed on to the application
loader program.

5. EVALUATION
The experimental platform consists of a CompSOC in-

stance with two worker processor tiles, a monitor tile, and a
memory tile, all communicating via an on-chip interconnect.
The monitor tile gathers information about the execution on
the worker tiles and sends it to a host PC. Each processor
tile and the monitor tile include a Microblaze core with sepa-
rate instruction, data, and communication memories. DMA
modules are responsible for remote, outside-tile data trans-
fers. This platform is implemented on a Virtex 6 FPGA; all
the resources run at clock frequency of 50 MHz. Note that
we utilise a cycle accurate FPGA prototype of the entire
SOC, hence our results are more realistic than most existing
SOC simulators.

Each MicroBlaze executes a composable OS similar to the
one in [11]. The workload consists of a JPEG decoder, and a
simple synthetic application (A1 ). Each of these two appli-
cations consists of a set of communicating tasks. The JPEG
include three tasks: a variable-length decoder (vld), an idct,
and a colour conversion (cc). The vld is mapped on the one
tile and the idct and cc are mapped on the other tile. The
synthetic application consists of five tasks, communicating
data from one-another, in a pipeline. The first, third and
fifth tasks are mapped on the same tile as the vld, and the
second and forth tasks are mapped on the other tile with
the idct and cc. In the rest of this section we present exper-
imental results indicating VM composability and we discuss
the costs involved in implementing it.

5.1 Composability
The entire platform is carefully designed to be composable

by construction, meaning than applications do not interfere,
even with one clock cycle. To experimentally illustrate the
composability of our VM approach we first run JPEG alone
[J] and then we run JPEG with a synthetic application con-
currently [JS]. We measure the execution time of all three
JPEG tasks in both cases using a hardware timer. We also
register the exact start and stop times of the tasks. Compar-
ison of the two traces indicates no difference for the JPEG
application when running alone and with the synthetic ap-
plication. To illustrate this, Figure 9 shows, for each vld
task iteration, the difference between the two use-cases [J]
and [JS], which is a flat line at value 0. For comparison
reasons, we also include a line that shows non-composable
behaviour. It compares the same two use-cases, with a non-
composable MMU, i.e., using a single page-table for all ap-
plications stored in the UTLB. Furthermore, although not
shown in this paper due to lack of space, the start and end
times of the tasks are completely equal. For the other two
tasks of JPEG we obtain the same results. In summary we
can conclude that the synthetic application creates no func-
tional or temporal interference on the execution of JPEG.

We claim that the order in which applications are loaded

Figure 9: Difference in execution time of the vld
task of JPEG for different use-cases.

does not influence composability. To prove that, we com-
pared two use-cases those both consists of JPEG and a syn-
thetic application, but have a different loading order, [JS]
and [SJ], respectively. Figure 9 also compares these two use-
cases. The difference is again a flat line at value 0. From
these results we conclude that composability is obtained.

5.2 Cost Analysis and Limitations
First, we analyse the area cost caused by introducing vir-

tual memory. The two Microblaze worker cores have been
extended with an MMU, which requires FPGA resources.
From the synthesis report we derived the values of Table 1.
The first row contains the resource utilisation of a single Mi-
croblaze core, consisting of the components as indicated in
Figure 7. The table shows that the Microblaze core requires
about 80% more flip flops and LUTs, which is a significant
increase. The Microblaze is a very small and simple core
compared to modern embedded processors, which explains
the large relative increase in size. In absolute terms, the
increase is of normal proportion. This is confirmed by the
fact the for the total SoC the increase in utilisation of flip
flops and LUTs is only 3.2% and 5.3%, respectively.

Considering the current platform, the BRAM utilisation
is most relevant as BRAM blocks are the scarcest resource,
limiting the number of tiles we can implement. The table
shows that an MMU requires 1 BRAM block. By equipping
two tiles with virtual memory, the BRAM utilisation of the
SoC increases by 0.7% only.

Second, we discuss and analyse the performance impact
due to virtual memory. In all VM implementations, compos-
able or not, the address should be translated by the TLB,
which incurs an extra delay that affects each load/store and
the instruction fetch. For example, the local memory latency
on the MicroBlaze increases from 1 to 3 cycles when VM is
enabled. Furthermore, at task switch and OS service calls
the address space is also switched, which may involve an
overhead. All these overheads are determined by the MMU
design and should be as small as possible.

To assess the impact of this increased memory access la-
tency on the performance of applications, we measure the
execution time of the first 100 JPEG task iterations. We
used very large task slots to avoid task preemption from al-
tering the results. Figure 10 shows the cumulative execution



Table 1: Increase in FPGA resource utilisation due to MMU hardware.
Flip Flops LUTs BRAMs

Original VM Increase Original VM Increase Original VM Increase
Microblaze Core 1304 2338 1034 1536 2748 1212 0 1 1

79.3% 78.9%
Total SoC 65224 67292 2068 45455 47879 2424 270 272 2

3.2% 5.3% 0.7%

time for both the original case and for using virtual memory.
The total execution time of these 100 iterations increased by
39%. Misses in the ITLB and DTLB are hardly of influence
on this number. Both contain 8 entries, which is sufficient
for JPEG. Therefore, only at the start of the application slot
a few misses occur.
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Figure 10: The cumulative execution time of the
first 100 task iterations of JPEG.

In addition to this unavoidable VM overhead, in our sys-
tem the hardware page-table is updated and the TLB is
cleared at each task switch. However, the page-table up-
date takes at most a few hundred cycles, and the TLB misses
penalty is small. On our MicroBlaze core, the task switch
would cause a maximum 8 misses, each of which taking 32
cycles to be resolved. Moreover, task switches do not occur
frequently. The OS execution takes approximatively a thou-
sand cycles, and a user slot is at least 50 thousand cycles,
which, represents one milliseconds at a clock frequency of
50MHz. This time values ensure a proper response time for
a typical real-time OS. Hence, the VM-related task switch
overhead is under 1% and it can thus be considered minor.

Other two sources of large performance penalty in con-
ventional MMUs are page faults and TLB misses that may
cause events or interrupts that have to be treated by the
OS. The ITLB and DTLB miss penalty on the MicroBlaze
is maximum 32 cycles, and it is resolved in hardware, hence
costly events or interrupts do not occur. Furthermore, the
composable VM has no page faults. Therefore the penalty
due to these two sources is much smaller than the one in a
conventional MMU.

Moreover, we measure the increase of the application set-
up time due to VM. Our experiments indicate that the set-
up time of JPEG increase with 5.3%. This set-up time, how-
ever, depends on the state of the buddy system and the re-
quested size. The best-case condition is when the requested
region is a single page, a page of the order is available, and
the order is the maximum value. Artificially creating this
best-case condition, the set-up time of JPEG increased by

3.0% compared to running without virtual memory. The
worst-case condition is when the memory is completely frag-
mented into the smallest possible pages, case in which the
set-up time increases by 44.7%.

Third, another cost associated with using virtual memory
is the increased size of the OS and thus its memory utilisa-
tion. The elf file of the OS increased from 15KB to 23KB,
which is mostly increase in instruction memory utilisation.
Further, memory management uses some additional heap
space, but this depends on the number of applications that
are running. Relatively, the OS size increase is significant
but one has to consider that the original OS is extremely
light-weight. In absolute terms, the elf file increased 8KB
which is modest.

Finally, the limited page-table size is not a major restric-
tion because, as our approach is tile based, only the memory
mapped resources inside the tile have to be translated. As
these are limited in size (typical local memory sizes vary
from 16 KB to 256 KB) each application requires only a few
translation entries. Including the entries for the base code,
applications typically require 10 to 20 page-table entries.

6. RELATED WORK
The related work falls into three categories, namely com-

posable SoCs, memory management for dynamic use-case
switching, and virtual memory for embedded systems.

Predictability is a conventional requirement for embed-
ded systems, and it is realised in many multi-core SoC plat-
forms [3, 20, 19, 15, 22]. Next to predictability, recently
composability has been advocated [16, 23, 2] and demon-
strated for SoC resources: memory controllers [1], network-
on-chip [9], operating system [11], and entire platforms [17,
2]. Moreover, for an interconnect multiple undisrupted use
cases were demonstrated in [10].

To minimise the memory usage when applications have
highly variable memory demands or when the use-case
changes, existing approaches typically take two steps. First,
the application is thoroughly analysed and the memory hi-
erarchy is synthesised at design-time [13]. Second, data are
explicitly copied from a memory block to the other, when
reconfiguration is necessary, at run-time [6, 8, 24]. The main
restrictions of these approaches are that (i) the application
code needs to be modified, i.e., API calls to manage data
copying have to be inserted, and (ii) applications should
consist of a set of affine indexed loops. These are not strong
limitation for hard/firm real-time applications which have
to be highly analysable, but they are not common in soft
real-time and best-effort applications. In contrast, virtual
memory enables execution of already compiled and linked
applications, with no restrictions on the application code.

Several approaches to virtual memory for real-time em-
bedded systems exist in the literature. Some have pro-
posed novel MMU architectures or page allocation strate-
gies and mainly target improved predictability and energy
efficiency [25, 18, 14, 12]. Other works include the software
management part of virtual memory. The approach in [5]
provides predictable VM for safety-critical systems, by only



allowing best-effort applications to use the MMU. In [21] a
memory management method, including an MMU architec-
ture, is proposed that provides deterministic allocation of
global memory on a SoC. In [4] the scratch-pad memory is
virtualised, and the applications may call VM API to create,
allocate, swap, or destroy virtual pages. For systems that
lack an MMU, in [7] a software VM approach is proposed.

While all these approaches provide interesting ideas in the
field, to the best of our knowledge, we are the first to propose
a composable and predictable virtual memory scheme.

7. CONCLUSIONS
In this paper we introduced a composable, predictable vir-

tual local memory scheme for a tiled multi-core SoC exe-
cuting multiple applications. As a result each application
can be independently developed, coded, and linked into an
individual executable file, and loaded on the SoC at run-
time. Run-time application loading reduces the required
memory footprint from a worst-case use-case containing all
possible applications that run on the processor, to only those
that actually run concurrently. A two-level memory reserva-
tion scheme allocates static, per-application virtual-memory
budgets, and allows each application to perform its own dy-
namic memory allocation, within its budget. At run-time
the virtual addresses are dynamically translated to physical
addresses in a composable and predictable way.

We implemented this virtual memory on a MicroBlaze
core with a built-in Memory Management Unit. We experi-
mentally demonstrated composability in an SoC modelled in
FPGA, comprising two MicroBlaze cores and executing an
JPEG decoder and a synthetic application. On this platform
we also found that the area required by the default MMU
is relatively small (3.2%, 5.3%, and 0.7% of the total FPGA
flip flops, LUTs and BRAM blocks, respectively), the oper-
ating system code required to program the MMU increased
with 8 KB. Furthermore, we found that VM in general is
expensive; using the MicroBlaze’s built-in MMU incurs a
performance loss around 39% due to address translation la-
tency. In addition, the implementation of composability on
this VM avoids the large penalty of page faults, minimises
the penalty of TLB misses and has a negligible overhead,
below 1%, due to loading the page-table and invalidating
the TLBs at each application switch.
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