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a b s t r a c t 

In this paper, we address the problem of improving the performance of real-time em- 

bedded Multiprocessor System-on-Chip (MPSoC). Such MPSoCs often execute applications 

composed of multiple tasks. The tasks on each processor are scheduled by a Real-Time 

Operating System (RTOS) instance. To improve performance, we reduce the Worst Case 

Execution Time (WCET) of the RTOS by new processor-coprocessor execution models us- 

ing reconfigurable hardware. Furthermore, we integrate the proposed contributions on an 

MPSoC platform, where the processor-coprocessor execution models are applied on three 

reconfigurable coprocessors - Hardware Task-Status Manager (HWTSM), Thread Interrupt 

State Controller (TISC), and Remote Slack Manager (RSM). As a case study, we investigate 

the HWTSM, which determines the execution eligibility of tasks. The experimental results 

suggest overall system improvement up to 13.3% with the help of the HWTSM. Moreover, 

the TISC can boost further the performance and RSM can significantly reduce the energy 

consumption. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Contemporary embedded systems execute an increasing number of applications that demand high performance. Many

of these applications belong to the signal processing domain and usually require the execution of complex audio, video,

and telecommunication algorithms in real-time. Often, such applications are partitioned into multiple tasks, which are con-

currently executed on a Multiprocessor System-on-Chip (MPSoC). Furthermore, efficient task scheduling on each one of the

processors of the MPSoC is required. A widely accepted solution for this scheduling problem is to employ a Real-Time Op-

erating System (RTOS) in software. 

The temporal behaviour of real-time applications on the MPSoC must be characterizable, i.e., predictable. In turn, this

implies that the RTOS should have a worst-case bound on its execution time, i.e., a Worst Case Execution Time (WCET).

Hence, to be able to improve overall system performance, the WCET of the RTOS should be as short as possible. Last but not

least, existing RTOSs may have extra properties meant to ease application design. Composability, proposed and advocated

in several real-time systems [1,2] , is one of them. Composability means that the behaviour of an application, including its

timing, is independent of the presence or absence of any other application. This property is very important for the temporal
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verification of mixed-time criticality applications that run on the same MPSoC platform [3] . Solutions that improve RTOS

performance should preserve composability. 

We consider an MPSoC architecture in which each processor executes its own instance of the same RTOS, also known

as homogeneous Asymmetric Multiprocessing (AMP). The RTOS typically preempts, schedules, and loads user tasks. The

exact steps involved in the RTOS execution, however, are dependent on the application model of computation. One popular

model of computation suitable for streaming applications is data-flow [4] . A data-flow application consists of a set of tasks

that communicate through First-In-First-Out (FIFO) queues. A FIFO queue has one reading and one writing task. The RTOS

schedules only tasks that are eligible for execution, meaning that they have input data to operate on, i.e., input FIFOs are not

empty, and space to produce output data, i.e., output FIFOs are not full. In this paper, we investigate two data-flow models

and a model of computation similar to POSIX [5] . 

In this paper, we address the problem of improving the performance of real-time embedded MPSoCs by reducing the

WCET of the RTOS. More specifically, we map one of the most time-consuming RTOS services from software, executed on a

processor, to a dedicated hardware coprocessor. In the presented case study, this is the service responsible for checking ex-

ecution eligibility of tasks by using the FIFO-filling information. We denote the custom coprocessor responsible for checking

the task eligibility as Hardware Task-Status Manager (HWTSM) [6] . The computed task-status information is employed as an

input to the RTOS scheduler. In addition to the HWTSM, we also refer to two other coprocessors reducing the RTOS costs

– Thread Interrupt State Controller (TISC) [5] and Remote Slack Manager (RSM) [7] . The TISC is designed to minimize the

thread synchronization costs. The RSM reduces overall energy consumption of applications executed over multiple tiles in

an MPSoC. To demonstrate the overall benefits of all three coprocessors, we integrate them on a conceptual MPSoC platform.

To decide how to implement performance critical RTOS services in reconfigurable hardware and the HWTSM in particular,

we first discuss six processor–coprocessor execution models among which is the processor–coprocessor parallel non-blocking 

execution model. A coprocessor, operating in parallel non-blocking execution model, has the following characteristics: (a) it

runs continuously and it does not need to be restarted every time the processor needs the coprocessor; (b) the processor

can request a result from the coprocessor at any time; (c) independent of its current status, the response time of the copro-

cessor is always constant. Second, we outline the integration of the investigated processor-coprocessor execution models to

common models of computation. Third, we present a conceptual computing platform, which integrates three reconfigurable

coprocessors running in various processor-coprocessor execution models. 

We implement the HWTSM with the parallel non-blocking model, hence its execution overlaps with the software exe-

cution of user applications and RTOS services. The response time of the HWTSM is very short and constant, equal to five

cycles in our prototype, which leads to a significant reduction of the RTOS cost. Although the HWTSM executes concurrently

with the applications, the HWTSM does not influence the applications behaviours. The HWTSM has a constant, application-

independent response time and does not introduce additional RTOS execution variability. As a result it preserves the com-

posability of the system. We quantify three potential integrations of the HWTSM to an MPSoC system. The TISC coprocessor

operates in parallel blocking execution model, while the RSM employs the parallel non-block execution model. 

Summarizing, the main paper contributions are as follows: 

• We provide an overview of a potential integration of processor-coprocessor execution models to two data-driven models

of computation and a model of computation similar to POSIX [5] ; 

• We discuss the proposed contributions on a conceptual computing platform, where the processor-coprocessor execution 

models are applied on three reconfigurable coprocessors; 

• We compare in terms of performance and integration effort three implementations of the Hardware Task-Status Man-

ager (HWTSM) [6] to a Multiprocessor System-on-Chip (MPSoC) and detailed RTOS integration; 

• We quantify the benefits of the Hardware Task-Status Manager (HWTSM) [6] ,Thread Interrupt State Controller (TISC) [5] ,

and Remote Slack Manager (RSM) [7] on a conceptual MPSoC platform; 

To prove the applicability of the HWTSM, we experiment with two synthetic applications and two real applications, i.e.,

JPEG and H.264 decoders, respectively. All applications are executed on a CompSoC platform instance [3] , implemented on an

FPGA. With the synthetic applications, we investigate the RTOS cost reduction by varying the scheduling policies, because

they are the ones that directly affect the number of the task-status computations. The experimental results on synthetic

benchmarks suggest a reduction in the WCET of the RTOS, compared to a pure software implementation, between 1.1 and

1.8 times for static scheduling policies. For dynamic scheduling policies, this WCET reduction is between 1.1 and 3.0 times.

With real applications, the reduction in the WCET of the RTOS with HWTSM is between 1.3 and 1.6 times, for the JPEG and

H.264 decoders, respectively. Moreover, we observe that the overall performance gain varies from 2.3% to 7.5%, when the

WCET of the RTOS is reduced, respectively. 

We conclude the experimental section with an overall result on a conceptual platform, which integrates three recon-

figurable coprocessors. We estimate that the overall system improvement is up to 19.6 times with the help of the Thread

Interrupt State Controller. The performance can be boosted up to 13.3% more with the help of the Hardware Task Status

Manager. Last but not least, the improvement of the system energy consumption can be reduced upto 51.1% over the cur-

rent state of the art with the help of inter-tile remote slack information distribution framework. 

The remainder of the paper is organized as follows. Section 2 discusses the related work. The problem is defined in

Section 3 . Section 4 presents the proposed solution. Section 5 covers the implementation details. Section 6 reports the

experimental results and Section 7 concludes the paper. 
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2. Related work 

In this section, we discuss related projects that employ hardware acceleration for RTOS. Then, we compare our approach

with hardware acceleration for data-flow models of computation. We conclude the section, by discussing the available

processor–coprocessor execution models. 

There are numerous examples of embedded systems, such as [8–10] using an RTOS to co-execute applications in software

and in hardware. Although, these approaches target coarse-grained reconfigurable embedded systems, the same ideas can be

applied with minor changes to more fabrication technologies. In these approaches, the hardware co-processors implementing

parts of the RTOS, are used for synchronization and communication between software and hardware. With the help of these

hardware co-processors, the application execution time is reduced without affecting the RTOS execution time. Compared to

those approaches, our goal is different: we aim at reducing the worst-case execution time of the RTOS, to accelerate the

applications. 

Other related approaches [11–13] execute the RTOS scheduling policy entirely in hardware. Compared to them, we leave

the scheduling policy in software. In such a way, the system programmer is not restricted to any particular scheduling policy

and can employ the most suitable one to fulfil the system specification. Nevertheless, if it is needed to have a configurable

hardware scheduler, one might integrate the current proposal with [11] . 

Some other proposals [14,15] go even further in RTOS acceleration by completely implementing the RTOS in hardware.

Due to the fact that RTOS is substituted by a complex Finite State Machine (FSM), the approach is less flexible and limited

for future improvements, e.g., substituting scheduling policy or changing the model of computation. 

To the best of our knowledge, we are the first to propose a hardware co-processor performing FIFO tracking and comput-

ing task-status for data-flow applications. Hereafter, we list the research projects that employ data-flow models of computa-

tion and transfer computationally intensive kernels in hardware. The Communication Assists (CA), by Shabbir et al. [16] and

by Kyriacou et al. [17] , are examples of hardware acceleration in the domain of embedded data-flow systems. In [16] , user

tasks are executed in non-preemptive mode without employing RTOS, where FIFO communication and FIFO management

are entirely integrated in hardware. Moreover, Shabbir et al. [16] do not consider a processor–coprocessor paradigm, i.e.,

their CA is a stand-alone hardware accelerator. Therefore, the HWTSM might be used to augment their system, if task pre-

emption is supported and RTOS is employed. The proposed CA in [17] provides only a Network on Chip (NoC) abstraction

and memory management. It is employed to decouple communication from the computation without affecting the RTOS

execution time. Both approaches [16,17] are orthogonal to ours in the sense that they accelerate different parts of the RTOS.

Tumeo et al. [18] propose a custom Direct Memory Access (DMA) controller. Similar to CA [16] , the proposed DMA

optimizes execution time of user tasks, by reducing the time cost involved in remote memory operations. The proposed

HWTSM has a similar execution behaviour to DMAs, in a sense that both are running in parallel to the software. In fact,

the DMA controller can be considered to be executed in what we refer as processor–coprocessor parallel blocking model,

described in Section 4 . Furthermore, the DMA signals back the processor by setting a flag and the DMA might have a buffer.

The DMA buffer enables temporary storage of multiple DMA invocations. Therefore, their work is different than our new

execution model, i.e., processor–coprocessor parallel non-blocking . Contrary to the DMAs, the HWTSM does not influence the

communication cost, i.e., we are not directly accelerating the applications, but rather the RTOS execution. As a result, both,

the DMAs and the HWTSM, could be employed together to improve system performance. 

In the domain of execution models for coprocessors, Rupnow et al. [19] introduce three preemption methods for hard-

ware accelerators, executed on reconfigurable logic. Contrary to our new execution model, they assumed that if a software

thread is preempted, the associated hardware accelerator should be blocked, dropped or rollbacked . A blocked hardware ac-

celerator is stalled until the corresponding software thread is activated again. The generated output of a dropped hardware

accelerator is discarded. Finally, a roll-backed hardware accelerator is restated from the software when the software thread

again becomes active. Compared to our classification of processor–coprocessor, their approach falls into what we refer as a

processor–coprocessor sequential execution model. 

Lange et al. [20] propose an embedded system running real-time Linux. Their system is composed of a single processor

combined with multiple hardware accelerators. One of the contributions is an execution model for hardware accelerators.

Seidel et al. [21] also proposed an execution model between a processor and coprocessor, which masks and processes inter-

rupts. Both execution models correspond to what we refer to as a processor–coprocessor parallel blocking model. Therefore,

their work is not related to our contributions, which consider a different processor–coprocessor execution model. 

3. Motivation and concurrent execution models 

We assume that each application is composed by a set of tasks. The tasks are scheduled by an instance of a RTOS, running

on each core in an MPSoC platform. Each task is executed in one or more constant time slots, denoted as application slots.

Each application slot is followed by an RTOS slot in which the RTOS stores the current task context, schedules, and loads

the next task. Because the system has to be predictable, the execution time of the RTOS needs to have bounds. Moreover,

if the system needs to be composable, then the size of the RTOS time slot should be constant and equal or longer than the

WCET of the RTOS [3] . Our goal in this paper is to achieve high application performance while preserving the predictability

and composability of the system. We improve the application performance by reducing the WCET of the RTOS. 
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Fig. 1. RTOS & application execution scenarios. I. RTOS in SW; II. RTOS in SW/HW with slack; III. RTOS in SW/HW with performance gain. 

Fig. 2. Processor–coprocessor execution models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Motivating example 

Fig. 1 provides a motivating example by presenting the execution profile of a predictable and composable real-time

embedded system in three scenarios. We assume that an RTOS schedules two applications - A 1 and A 2 . Application A 1 

comprises two tasks T 11 and T 12 . Application A 2 contains only one task - T 21 . In Fig. 1 .I, we present a scenario when user

applications and RTOS kernel services are executed on a single processor. The white spaces indicate processor idle periods,

denoted as slack , which occur when the RTOS finishes earlier than in its WCET. Fig. 1 .II illustrates a case when at least one of

the RTOS services, which has a highly variable in execution time, is transferred to hardware for acceleration. As a result, the

WCET of the RTOS is minimized, which preserves predictability and composability, and improves performance. In Fig. 1 .III,

the RTOS time slot is made smaller due to the new reduced WCET of the RTOS. As a result of the short RTOS time slot, the

overall system performance is improved. Note, that in all three scenarios, the size of the application slots is left unchanged.

We aim at minimizing the WCET of the RTOS. Two main procedures execute during the RTOS time slot: 1. context

switching and 2. scheduling. The minimization of the context switching time is already solved in fine-grained simultaneous

multithreading architectures, by having a dedicated register file for each one of the hardware contexts [22] . Thus we aim to

improve only the RTOS scheduling procedure running on each of the cores of an MPSoC platform. The scheduling procedure

is composed of two parts - computing the status of application tasks and the scheduling policy itself. In this paper, we aim

to accelerate the computing task-status procedure in hardware, and preserve the flexibility to implement any scheduling

policy in software. 

3.2. Concurrent execution models 

Once the functionality of the coprocessor is identified, the next step is to choose the synchronization model between the

processor and the coprocessors as well as the execution model of the coprocessor. We split processor–coprocessor execution

models in six categories based on the employed synchronization mechanism, as visible in Fig. 2 . For the sake of the example

we consider four computationally intensive kernels, represented as A, B, C, and D. In the discussion that follows, we assume

that only B and C are accelerated on coprocessors. Below, we describe each processor–coprocessor execution model: 
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I Processor only , as presented in Fig. 2 .I, is used as reference. In Fig. 2 .I, the B starts at instance 1 © and C finishes at

instance 2 ©. 

II Processor–coprocessor sequential , as depicted in Fig. 2 .II, is commonly used to accelerate various computation intensive

kernels in a coprocessor. To preserve the functional consistency, a software application is blocked after its coprocessor

has started. In Fig. 2 .II, at instance 3 ©, the coprocessor is executed on a hardware Custom Computing Unit ( C C U B + C ).
When C C U B + C finishes execution, it returns the program control to the processor, illustrated in Fig. 2 .II, at instance 4 ©.

Depending on the duration of the coprocessor execution and the system requirements, C C U B + C can generate an interrupt

or can raise a flag on which the application waits or polls. 

III Processor–coprocessor parallel blocking , as presented in Fig. 2 .III, allows concurrent execution of a processor (software)

and a coprocessor (hardware). With the help of hardware synchronization blocks, like those described in [5] , the CCU C is

started at instance 5 © and synchronized with processor at instance 6 ©. In Fig. 2 . III, the software functionality, denoted as

B , finishes earlier than CCU C . To preserve the application consistency, the software remains blocked until CCU C completes

its execution. Alternatively, B can finish later than CCU C . 

IV Processor–multicoprocessor parallel blocking , as presented in Fig. 2 .IV, is an extension of the model in Fig. 2 .III, with mul-

tiple coprocessors executed in parallel. With the help of processor-multiprocessor parallel blocking, we gain performance

from hardware acceleration and parallelism. In Fig. 2 .IV, at instance 7 ©, the coprocessors are started. At instance 8 ©,

only after all coprocessors are finished, the software execution is resumed. Cases II and IV in Fig. 2 are in essence the

task-sequential and task-parallel modes in [5] , respectively. 

V Processor–coprocessor parallel non-blocking , as introduced in Fig. 2 .V, is one of the contributions in this paper. To our

best knowledge, we are the first to apply this execution model in the processor–coprocessor context. Compared to the

processor–coprocessor sequential and parallel blocking models, the software execution in the parallel non-blocking model

is never blocked during the coprocessor execution. Note that once C C U B + C is started, it finishes only at the request of

the processor, i.e., the processor does not need to restart C C U B + C every-time its results are needed. Therefore, in parallel

non-blocking execution model, the cost to restart the CCU is entirely avoided. In Fig. 2 .V, at instance 9 ©, after C C U B + C is

started from the processor, C C U B + C needs several cycles until the newly computed result is available at instance 10 © in

Fig. 2 . Later, at instances 11 © and 12 © in Fig. 2 .V, the processor reads back the C C U B + C result. The C C U B + C response time

remains constant due to two reasons: (a) the coprocessor and the processor execute concurrently and (b) the coprocessor

result is conservative. By conservative, we understand that even if the software reads back an old result, the application

output is still correct. The only way to terminate C C U B + C , is by an explicit software Application Programming Interface

(API) call. Examples of modules capable to be executed in the parallel non-blocking model could be potentially any of

the services in a real-time system, which tolerates slightly out-of-date information such as status sampling or delaying

makable interrupts. 

VI Processor–multicoprocessor parallel non-blocking in Fig. 2 .VI is an extension to case IV from Fig. 2 . In Fig. 2 .VI, we at-

tach multiple coprocessors to the processor, where each coprocessor runs in parallel non-blocking execution model. At

instance 13 ©, both CCUs, CCU B and CCU C , are started. The CCUs need several cycles until the newly computed result is

ready, marked by instances 14 © and 15 ©. Later, at instances 16 © and 17 ©, the processor fetches the CCUs status. 

4. RTOS acceleration: a HWTSM case study 

In this section, we outline a potential usage of the processor–coprocessor execution models in various models of com-

putation. We present as a case-study the HWTSM execution profile that follows the new processor-coprocessor execution

model. Lastly, we demonstrate the processor-coprocessor execution models though multiple reconfigurable coprocessors in-

tegrated on a conceptual computing system. 

4.1. Integration of the proposed processor-coprocessor execution models to models of computation 

The “killer” performance applications for the contemporary real-time embedded devices such as mobile phones and

smart TVs are encoding and decoding of various audio and video formats. Such applications are often referred to as stream-

ing applications [23] . Recently, it becomes a common practice to implement streaming applications with data-driven pro-

gramming paradigm [24] . In the data-driven programming paradigm, program statements describe the data to be matched

and the processing required rather than defining a sequence of steps to be taken [25] . Furthermore, in data-driven pro-

gramming, a streaming application, written in high-level abstraction language, is presented as a set of autonomous code

segments. 

In the domain of streaming applications, the real-time embedded system is often required to deliver predefined per-

formance, i.e., to guarantee worst-case execution time (WCET). Therefore, researchers apply different set of restrictions on

their data-driven programming models in order to improve the execution time analysis. Two popular data-driven models

of computation are Kahn Process Network (KPN) [26] and data-flow [4] . In these models of computation, the autonomous

computational code regions are referred to as processes (KPN) or actors (data-flow). Both entities have clearly defined in-

put and output communication channels. Each communication channel is presented by a First In First Out (FIFO) queue. The

synchronization is achieved by exchanging atomic data elements, called tokens , passed through the communication channels.
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Fig. 3. Processor-coprocessor execution models in KPN, CSDF, and [5] models of computation. 

Fig. 4. HWTSM execution profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 3 , we present the mapping of the processor-coprocessor execution models to the Kahn Process Networks (KPN),

Cycle-Static Data-Flow (CSDF), and a POSIX-like model of computation [5] . A KPN process intersperses computation and

synchronization sections, where computation sections are with a variable size. Therefore, a process can have one or multiple

tasks . The mapping between process and task is 1:N. The basic entity of the CDSF is the actor . An actor always have read,

compute, and write sections, i.e., actor has one task for a specific input tokens and firing rule setup. Since an actor has one

task , we define the mapping between an actor and a task to be 1:1. Zaykov and Kuzmanov in [5] propose that threads are

composed of one or multiple tasks. Furthermore, thread communication and synchronization is not limited to FIFO channels

only. For example, it could be done through complex data structures using semaphores and mutexes. Moreover, multiple

tasks within a thread can be executed in parallel, exploiting the intra-thread parallelism. Therefore, we identify that the

mapping between thread and task can either be 1:1 or 1:N. 

Independently from the applied level of thread parallelism, a task can be executed on one of the two types of computing

resources – either on the processor, or on one of the reconfigurable coprocessors. If a task is executed on the processor,

then we refer to it as to a software function. If it is executed on a coprocessor, i.e., an reconfigurable logic, then we refer to

it as to a CCU task. 

4.2. Proposed execution model for the HWTSM 

In Fig. 4 , we detail the execution profile of the proposed HWTSM for one processor core. At instance 1 ©, the HWTSM

receives the FIFO configuration parameters, during the RTOS Initialization phase. Since the parallel non-blocking processor–

coprocessor model is employed, tracking and computing the status of tasks is performed in parallel to the software execu-

tion. In our example, at instances 2 © and 3 ©, tasks read/write from/into their input/output FIFOs. This indirectly triggers the

calculation of a new task-status by the HWTSM, as indicated by arrows in Fig. 4 . The HWTSM computational intervals are

marked by update status , and are overlapped with the execution of the user tasks. The status update may also be triggered

by remote read/write into a FIFO from a task mapped on another core, as exemplified at instance 4 ©. Later, at instance 5 ©,

the RTOS scheduler fetches the task-status from HWTSM. As a result, HWTSM can be viewed as a high-level status register.

The status returned by the HWTSM leads always to correct application execution, i.e., task-status update is conservative.

It is not possible that the RTOS sees a task as eligible whereas in fact the task is ineligible for execution, for the following

reasons. Producer and consumer tasks can make each other eligible for execution. For example, when a producer task writes

data into a FIFO (the FIFO free space is reduced), a consumer task becomes eligible for execution. Furthermore, when a

consumer task reads data from a FIFO, it creates free space for the producer task to write into. When a task is eligible for

execution, no other task can change its eligibility. A task can only change its status from eligible to ineligible by consuming

or/and producing data. And this can only be done when the task is executed on a processor. Thus the only corner case that
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Fig. 5. Conceptual computing system extended with our contributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

may lead to incorrect execution is when a task was eligible, it changes to ineligible, but the HWTSM does not detect that

fast enough. Such a case is application safe, because a different task may be scheduled, and the ‘eligible’ status will be read

in the next RTOS slot. 

4.3. Computing system extension with HWTSM 

In Fig. 5 , we introduce hardware and software of a conceptual computing system extended with our contributions. As an

example of the conceptual computing system, we choose a Multiprocessor System-on-Chip (MPSoC). The exemplary MPSoC

is composed of tiles, connected through a Network on Chip (NoC). Each tile has a processor (e.g. RISC core), instruction and

data memory, and two types of coprocessors - fixed (e.g. DMA controller) and reconfigurable (e.g. HWTSM). 

From a software perspective, we consider multiple user applications to be executed on the conceptual MPSoC. Further-

more, we assume that the computing resources in the tile processor can be shared in time among multiple applications. We

deliver the temporal management through an instance of a Real-Time Operating System (RTOS). 

In Fig. 5 , we illustrate our contributions in shaded blocks. We introduce a set of (micro-)architectural extensions (see 1 ©)

to support the various processor-coprocessor execution models. As a result of our approach, reconfigurable coprocessors are

shared among RTOS services and user applications. Furthermore, we introduce parts of the RTOS in hardware (see 2 ©),

i.e, Hardware Task-Status Manager (HWTSM) [6] , Thread Interrupt State Controller (TISC) [5] , and Remote Slack Man-

ager (RSM) [7] , and the corresponding RTOS interface (see 3 ©). The TISC operates in processor–multicoprocessor parallel

blocking model, while HWTSM CCU and RSM CCU operate in parallel non-blocking. These RTOS reconfigurable coproces-

sors are accessible through RTOS drivers and application interface (see 4 ©). At application level, we provide support for

processor-coprocessor execution models in various models of computation (see 5 ©). 

5. Base hardware platform and system implementation 

In this section, we describe the baseline tiled-platform, the sequence of steps in data-flow model of computation, and

HWTSM implementation details. 

5.1. Background - baseline platform 

We employ the tiled CompSoC platform [3] as a baseline template for our multiprocessor design. More specifically, we

employ the organization of the tiles presented in [27] . Each tile contains one processor core and multiple local memory

modules. In Fig. 6 , we present a simplified top-view of the CompSoC platform. In this particular implementation, the system

is configured with two tiles connected through an dAElite NoC [28] . The local data memory in each of the tiles is organized

in three blocks. The first one is Dmem which is employed for local data storage only. The second and the third ones, Cmem.In

and Cmem.Out respectively, are dual-port memories, used for inter-tile communication. The Imem is used for storing the

applications and RTOS executable binaries. All these memories are accessible by the processor [27] . 

Each user application is partitioned into tasks, following a data-flow [4] application model. The data-flow graph is

mapped on an MPSoC, thus multiple tasks might be running and communicating to each other in parallel. The commu-

nication between the tasks is performed through FIFO circular-queues that are memory-mapped and implemented in soft-

ware using the C-HEAP protocol [29] . Reading and writing in a circular FIFO is implemented with a read counter ( rc ) and a
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Fig. 6. Baseline CompSoC architecture. 

Fig. 7. Producer–consumer implementation of data-flow model of computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

write counter ( wc ). Thus the amount of data in the queue, hence the task status, is determined by the values of these two

counters. The CompSoC platform is designed to be predictable and composable. These characteristics are delivered by the

hardware and the light-weighted RTOS called CompOSe [30] . The RTOS provides two-level scheduling, intra-application and

inter-application , on each core. 

In Fig. 7 , we list the sequence of steps during the communication of two data-flow tasks through a FIFO. A producer

is a task, which writes tokens to a FIFO and a consumer is a task, which reads those tokens. Furthermore, the FIFO is

implemented by read and write counters, and a circular queue. In Fig. 7 at instance 1 ©, the producer task checks for its

firing rules (i.e, whether there is sufficient space in the FIFO) by: queue_size – ( wc –rc ) ≥ req_space, where req_space

is the requested space for the tokens to be written. If the requested space is available, the producer task proceeds to the

computation operation. At instance 2 ©, producer task completes its computation and writes token(s) and updates wc to the

FIFO. Later, at instance 3 ©, the consumer task checks for its firing rules (i.e., whether there is data available) by: wc –rc ≥
req_size, where req_size is the required size (e.g. number of tokens) for a single task iteration. If the condition is satisfied,

the consumer task proceeds to the compute operation. At instance 4 ©, during produce operation, the consumer updates the

rc to the FIFO. 

In this work, we augment the CompSoC platform with hardware modules using a Molen-style processor–coprocessor

design [31] . More specifically, we employ the microarchitecture from [5] employed to solve a different, yet related problem,

namely management of multiple threads on reconfigurable hardware. We chose the Molen paradigm, because it provides

architectural means to efficiently accommodate any software computationally intensive kernel in hardware. Each kernel 

might be accelerated by one or multiple Molen-style CCUs. In the current paper, the HWTSM is implemented as a single

Molen-style CCU. The CCU is controlled through a fixed set of additional instructions [32] . The data transfers to and from

the coprocessor are performed through dedicated exchange registers (XREGs). 

5.2. System implementation overview 

In Fig. 8 , we present a conceptual CompSoC platform extended with one HWTSM per processor tile. The applications

executed on the platform in Fig. 8 , are those considered in the example of Fig. 1 . Application A 1 is mapped on both tiles,

while A 2 is mapped on the second tile only. We implement each one of the task-status units, denoted as T 11 , T 12 , and T 21 as

separate hardware blocks. These blocks are responsible for computing and updating the status of the assigned software tasks.

As a result of this design choice the HWTSM preserves the composability and predictability of the platform, as explained in

what follows. 

First, the hardware task-status units do not need to exchange information among each other, thus are completely inde-

pendent. Plus concurrent computation of the task statuses is possible. These tasks may even belong to different applications.

Thus, the HWTSM does not create inter-application interference, hence it preserves composability. 

Second, the RTOS fetches the task-status by simply reading the registers of the HWTSM. Hence the RTOS perceives the

response time of the HWTSM as constant. Moreover, this time is shorter than in a software implementation that would

involve a sequential calculation of the available data/space in each FIFO, in turn. Thus the predictability of the RTOS is

preserved, and its WCET is reduced when compared to a software solution. Furthermore, the response time of the HWTSM
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Fig. 8. Conceptual MPSoC with HWTSM. 

Fig. 9. HWTSM integration to CompSoC – option A. 

Fig. 10. HWTSM integration to CompSoC – options B, C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is independent of the task-status and of the number tasks. Therefore, we can scale the number of the hardware task-status

units, while the WCET of the RTOS remains constant, which means that the worst-case bounds on the RTOS are lower than

in a software implementation. In addition, it is worth to mention that the HWTSM does not require any modifications to

the existing NoC. 

5.3. Tile microarchitecture modifications 

The shaded blocks in Figs. 9 and 10 present Molen-style coprocessors attached to the baseline CompSoC multicore plat-

form. Based on the platform characteristics, we distinguish three possible options for the HWTSM integration. In the first

option, denoted by A in Fig. 9 , the HWTSM is attached through a dedicated memory port to each one of the three data

memory types, i.e., HWTSM reads memories without affecting the processor. As a result, the dual-port Dmem, Cmem.In , and

Cmem.Out need to be substituted by three-port memories. We do not consider this option as a viable solution in our de-

sign, because multiport memories are expensive in terms of hardware resources. By multiport memories, we denoted those

with more than two ports. In the second option, denoted by B in Fig. 10 , the HWTSM is attached to the data memory and

to the NoC input buses. Such configuration enables the HWTSM to be executed in the parallel non-blocking model, which

allows it to track FIFO updates (i.e., snoop the communication) at the exact moment they occur on the corresponding buses.

Therefore, the integration of the HWTSM in the existing CompSoC platform is accomplished with a minimum number of

modifications. The third option, denoted by C in Fig. 10 , combines all HWTSMs into one dedicated tile. We ignore option C,
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Fig. 11. HWTSM internal organization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

because updating and obtaining the task-status over the NoC causes immense delays amounting to hundreds of cycles. These

delays can substantially increase the execution of the RTOS. 

Summarizing, we attach the HWTSM to the CompoSoC multicore platform following option B in Fig. 10 . 

5.4. Hardware task-status manager design 

In Fig. 11 , we present the internal organization of the HWTSM for the example of Fig. 1 . For the operation of the HWTSM,

three basic types of FSMs are involved: FSM T ∗, FSM I/O , and FSM Setup . The FSM T ∗ contains the core functionality of the

HWTSM. By FSM T ∗, we refer to any of the FSM T 11 , FSM T 12 , and FSM T 21 in Fig. 11 . Each of the FSM T ∗ computes and stores

the task-status information of T 11 , T 12 , and T 21 , respectively. The FSM T ∗ has a tiny internal memory which preserves the

rc / wc memory addresses, the size of the FIFOs and the number of data elements (tokens) per FIFO. The FSM I/O translates the

external bus protocols, such as NoC interface, to internal buses shared among all Molen-style CCUs. In case of more complex

compute architecture, we might have multiple interfaces, where each interface will be handled by a separate FSM I/O . We

group all FSM I/O in one block called control unit. The FSM setup , is responsible for starting and terminating the execution

of FSM T ∗. 

At run-time, the following events occur in order, as presented in Fig. 11 : 

1. A new configuration is transmitted to the XREGs ; 

2. The processor emits the Molen exec instruction [32] , initiated by the start_op signal, indicating that there is a new CCU

setup available in XREG ; 

3. The FSM setup redirects the start_op signal to the corresponding FSM T ∗ or FSM I/O . The configuration for the FSM I/O

contains memory address locations of task’s FIFOs. Once each FSM T ∗ is started, it continuously tracks the changes to all

FIFOs connected to a task; 

4. The FSM I/O snoops on NoC interface and local memory bus and detects write operations to the dedicated rc / wc memory

ranges. The FSM I/O is a slave on the bus and it does not affect bus access timings; 

5. If there is a write operation to the tracked memory ranges, then the FSM I/O generates a strobe signal and transmits the

address and data values to the internal bus; 

6. The updated task-status by FSM T ∗ is preserved in XREG ; 

7. During the RTOS time slot, the RTOS task scheduler fetches task-status information from the XREG ; 

5.5. RTOS extensions 

In Fig. 12 , we present the integration of the HWTSM to the CompOSe RTOS [30] . The HWTSM management is performed

through a tiny driver that virtualizes the low-level interface. The following stages occur during the execution of the RTOS.

In stage 1, during system initialization, all coprocessors are initialized and user applications are created. After this stage, the

processor starts the first application time slot. In stage 2, the context of the scheduled task is loaded. The task reads input

data from input FIFOs, performs some computations and writes back the results to the output FIFOs. In case an application

is partitioned and distributed on multiple tiles, a DMA module could be used to send data and FIFO information over the

NoC to the remote tile memory. When a FIFO is updated, the HWTSM instantly detects the rc and wc changes and updates

task-status. The HWTSM operates identically for intra- and inter-tile communication. If a user task finishes earlier than its

slot, the processor goes to an idle state. After an interrupt from the hardware timer is raised, in stage 3, the processor starts

the RTOS time slot. The context of the running task is saved. The RTOS scheduler gets task-status information from the

HWTSM. Based on it, the RTOS scheduler chooses one of the ready tasks according to its task scheduling policy. Note that

stages 2 and 3 are repetitive. 
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Fig. 12. CompOSe – application and RTOS time slots. 

Fig. 13. Synthetic application for the StS policy scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Experimental results 

We perform all experiments with a dual-tile CompSoC platform employing Xilinx Microblazes as a processor cores in

the tiles. The design is synthesized using Xilinx Platform Studio 12.2 and verified on a Xilinx Virtex 5 ML510 (XC5VFX130T)

evaluation board. We exercise with two synthetic and two popular applications in the embedded systems domain – an JPEG

decoder and an H.264/AVC decoder. However, our results can be generalized for any arbitrary number of tiles, because the

execution time of the RTOS in one processor tile depends only in the number of tasks executed locally on that tile and the

number of FIFOs in those tasks. 

We develop two synthetic applications to evaluate the HWTSM with two basic types of intra-application scheduling

policies: Static Scheduling (StS) and Dynamic Scheduling (DyS). We explicitly investigate different scheduling policy types,

because they are the ones which dictate the number of HWTSM calls. We generate our synthetic benchmark by varying

the number of FIFOs per task and the total number of tasks, both in the range from 1 to 10. All FIFOs are configured to

accommodate up to two tokens. For each one of the synthetic and real applications, we measure the WCET of the RTOS

with and without the HWTSM included. 

6.1. HWTSM performance with static scheduling policy 

In the StS policies, such as Time Division Multiplexing (TDM), the next scheduled task is always the next one in a static

table. In case the task is not ready, the corresponding application time slot is left idle. In Fig. 13 , we present an inter-task

communication pattern of the synthetic application that we use in a combination with StS policy. Let us assume that the

currently executed task is T 1 and the next one to be scheduled is T 2 . As a result, during the RTOS time slot, the StS policy

only checks FIFOs associated with T 2 . This why we create the StS scenarios by scaling the number of FIFOs associated with

T 2 . 

The WCET of the RTOS with StS policy without using HWTSM is W CET sts _ sw 

: 

W CET sts _ sw 

= T (n f ) + Const sched + Const cntx , (1)

where n f is the number of FIFOs associated with a task. T ( n f ) is the time to read the FIFOs rc and wc and compute the

status of the task. The Const sched is the constant time for the scheduling policy. The Const cntx is the context switching time.

As typically T ( n f ) is linear in n f , W CET sts _ sw 

is a linear function, depending only on n f . 
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Fig. 14. Synthetic application for the DyS policy scenarios. 

Fig. 15. ACET of the RTOS with StS policy for 10 tasks. 

Fig. 16. WCET of the RTOS with StS policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The WCET of the RTOS using the HWTSM and the StS policy is W CET sts _ hw 

: 

W CET sts _ hw 

= Const ′ sched + Const cntx , (2) 

where Const ′ sched is the constant time necessary to fetch the task-status from the HWTSM. Since the FIFO checking and task-

status computing are performed in hardware, overlapped with the execution of the software, then the RTOS execution time

is always constant. 

In Fig. 15 , we present the actual case execution time (ACET) of the pure software RTOS for an application that has 10 tasks

and 9 FIFOs in total. The variations in the ACETs of the RTOS are due to the number of FIFOs in the task to be scheduled. A

task with low number of FIFOs (such as T 1 ) requires less time to determine the task status than a task with high number

of FIFOs (such as T 2 ). In Fig. 15 , the RTOS actual case execution times mostly varies around 500 clock cycles, because the

StS policy suggest to schedule a task with low number of FIFOs, which is not eligible for execution. Therefore, the RTOS

StS policy loads the idle task. The WCET of the RTOS is equal to 846 clock cycles for the synthetic application presented in

Fig. 13 . Our analysis suggest that the WCET of the RTOS is experienced when T 2 is checked for execution eligibility, because

T 2 is the task with the highest number of FIFOs in the application. As explained in [3] , the composability of the system is

ensured by leaving the processor idle for the time difference between the ACET of the RTOS and its WCET. In Fig. 15 , the

shortest execution time of the RTOS is equal to 266 clock cycles. Therefore, the idle period is equal to 620 clock cycles. Our

goal is to reduce the WCET of the RTOS, as well as RTOS execution time variations, such that the idle period is minimized. 

In Fig. 16 , we present the WCET of the RTOS for the StS policy as a function of the number of tasks and FIFOs. The

results are obtained with and without the HWTSM for the synthetic application from Fig. 13 . As the analytical model

for StS suggests, the variations of the WCET of the RTOS are close to linear, with respect to the number of FIFOs. The
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Fig. 17. ACET of the RTOS with DyS for 10 tasks and 10 FIFOs per task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

non-linear behaviour at two FIFOs is caused by the software implementation, because the processing of the input/output

FIFOs is different. 

As the analytical model for StS suggests, the WCET of the RTOS with HWTSM is always constant, equal to 461 clock

cycles. The constant execution time is due to the StS execution profile and the proposed parallel non-blocking execution

model. Based on the timings, we compute reduction in the WCET of the RTOS as a ratio between the pure software and

HWTSM implementations. For StS policy, the results suggest reduction in the WCET of the RTOS between 1.1 and 1.8 times.

6.2. HWTSM performance with dynamic scheduling policy 

In Fig. 14 , we present the second synthetic application using DyS policy. In our experiments, we experiment the Round-

Robin (RR) scheduling algorithm as an example of the DyS policies. Contrary to StS, the DyS policy might check multiple

tasks until an eligible for execution one is found. Assuming that there is always at least one task eligible for execution, the

WCET of the RTOS for a DyS policy occurs when all tasks belonging to the current application are checked and the next

scheduled task is again the currently running one. Therefore, we construct the synthetic application for the DyS policy by

varying the number of tasks and their FIFOs. 

The WCET of the RTOS with DyS policy for pure software implementation is W CET dys _ sw 

: 

W CET dys _ sw 

= T (n f , m t ) + T sched (m t ) + Const cntx , (3)

where T ( n f , m t ) is the time to read the rc and wc for each of the FIFOs ( n f ) associated with each task ( m t ) and compute each

task status. The Tsched ( m t ) and Const cntx are the scheduling time for DyS policy and the context switching time. 

The WCET of the RTOS using HWTSM and the DyS policy is W CET dys _ hw 

: 

W CET dys _ hw 

= T ′ sched hw 

(m t ) + Const cntx , (4)

where T ′ sched hw 

( m t ) is time for the employed DyS policy when a HWTSM is used. Since the time for the FIFO management

is omitted, the variations of the W CET dys _ hw 

are only due to T ′ sched hw 

( m t ). Therefore, if the DyS policy has linear complexity,

the WCET of the RTOS also grows linearly. 

In Fig. 17 , similarly to the StS, we present the ACET of the RTOS of an application with 10 tasks and 10 FIFOs per task.

Consequently, there will be a total of 100 FIFOs in the application. As it is visible in Fig. 17 , the ACET varies from 10 0 0

up to 60 0 0 cycles. The ACET variations of the RTOS are due to the number of tasks checked until an eligible for execution

one is found. 

In Fig. 18 , we present the WCET of the RTOS with DyS policy for a synthetic and two real applications. For the DyS policy

scenario, we present the WCET of the RTOS as a function of the number of tasks and their FIFOs. The experimental results

are obtained for six different scenarios with the number of FIFOs per task equal to 2, 4, 6, 8, and 10. As the analytical

study for DyS suggests, the WCET of the RTOS for the pure software implementation grows in two dimensions defined

by the number of tasks and FIFOs. For the DyS scenario with HWTSM, denoted as RTOS+HWTSM in Fig. 18 , the WCET of

the RTOS does not change when the number of FIFOs per task is increased. Furthermore, the execution time of the RTOS

for RTOS+HWTSM is the same throughout all scenarios. It is because the HWTSM computes in parallel the tasks-status, which

depends on the number of FIFOs per task. For the synthetic application with DyS policy, the reduction in the RTOS WCET is

between 1.1 and 3.0 times. 

We follow the implementation approach from [33] to partition and map the JPEG and the H.264 decoders on the base-

line CompSoC platform. The application inter-task communication pattern of the JPEG decoder is presented in Fig. 19 . We

partition the JPEG decoder into three tasks. One of the tasks is mapped on one processor tile and the other two are running

on the other processor tile. The application inter-task communication pattern of the H.264 decoder is depicted in Fig. 20 .

We partition the H.264 decoder into six tasks. Each of the processor tiles executes three of the tasks. 

In Fig. 18 , we also present the WCET of the RTOS in each one of the tiles for the JPEG and H.264 decoders with and with-

out the HWTSM. Clearly, the WCET of the RTOS+HWTSM , illustrated with the solid ladder in Fig. 18 , is lower than all cases

of software only executions. For the JPEG decoder, the reduction of the WCET of the RTOS with HWTSM is up to 1.3 times.

Although the H.264 decoder has an equal number of tasks in each tile, we observe small variations in the measurements,

caused by the different number of the input/output FIFOs of the mapped tasks. The reason for the high WCET reduction
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Fig. 18. WCET of the RTOS with DyS policy. 

Fig. 19. JPEG decoder. 

Fig. 20. H.264 decoder. 

Table 1 

HWTSM system performance improvement. 

RTOS slot : application slot ratio 

10%: 90% 20%: 80% 

StS policy 0 . 9% − 4 . 5% 1 . 8% − 8 . 9% 

DyS policy 0 . 9% − 6 . 6% 1 . 8% − 13 . 3% 

JPEG 2 .3% 4 .6% 

H.264 3 .8% 7 .5% 

 

 

 

 

 

of the RTOS even with low number of tasks is due to the parallel non-blocking execution model which leads to a constant,

short in our case, response time of the HWTSM equal to five cycles. 

In summary, the reduction in the WCET of the RTOS with HWTSM is up to 1.6 times. 

6.3. HWTSM performance improvement 

Table 1 presents the overall system performance when the WCET reduction of the RTOS is employed to speedup the

application. We investigate two cases, when the ratio of RTOS to application slot size is 10%:90% and 20%:80%, respectively.

As the reduction in the WCET of the RTOS slot varies between 1.1 to 3.0 times and the RTOS slot size is 10% of the total

execution, the overall system performance improvement is between 0.9%-6.6%. If the RTOS slot size is 20% of the total



P.G. Zaykov et al. / Computers and Electrical Engineering 53 (2016) 89–105 103 

Fig. 21. Conceptual MPSoC extended with three Molen-style CCUs – TISC, HWTSM, and RSM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

execution time, then the overall system performance improvement is between 1.8% and 13.3%. If the number of tasks and

FIFOs is further increased, we expect even higher improvement than the listed results. 

Once the WCET of the RTOS is reduced, we might consider to: (a) improve the overall performance, (b) increase system

responsiveness by increasing the rate of RTOS invocations, (c) a combination of the previous two. 

6.4. Extended discussion 

In this section, we discuss a conceptual architecture, which illustrates that all three previously discussed reconfigurable

coprocessors, namely: TISC [5] , HWTSM [6] , and RSM [7] can be combined together. As depicted in Fig. 21 , we connect

the three reconfigurable coprocessors with buses. Local Data Coprocessor (LDCOP) is bus employed for the communication

between the processor and reconfigurable coprocessors. Local Data (LD) bus is employed for communication between the

processor and the local data memory. Remote Data Send (RDS) and Remote Data Receive (RDR) bus are employed for inter-

tile communication, i.e., for receiving data from other tiles through the NoC. ρInstr is the fixed set of additional instructions

[32] issued by the processor. Since we run HWTSM and RSM in processor–coprocessor parallel non-blocking execution model,

their termination signals (denoted as end_op) are employed only during their explicit termination from the software and

not during their normal operation. 

Based on the available experimental results, we estimate that the improvement in the system speedup can be up to 19.6

times with the help of the TISC [5] . Furthermore, we reduce RTOS cost with the help of the HWTSM, which results in addi-

tional application acceleration of up to 13.3% [6] . Last but not least, the improvement of the system energy consumption can

be up to 56.7% over current state of the art with the help of inter-tile remote slack information distribution framework [7] .

Overall, with the help of three coprocessors, the system performance is improved, the predictability and composability are

preserved, all with reduced energy consumption. 

7. Conclusions 

In this paper, we proposed an implementation of time-consuming RTOS parts in hardware as reconfigurable coproces-

sors. These coprocessors are executed in a set of processor-coprocessor execution models. We provided an overview of a

potential integration of processor–coprocessor execution models to two data-driven models of computation and a model of

computation similar to POSIX. Furthermore, we discussed the proposed contributions on a conceptual computing platform,

where the processor-coprocessor execution models are applied on three reconfigurable coprocessors – Hardware Task-Status

Manager (HWTSM), Thread Interrupt State Controller (TISC), and Remote Slack Manager (RSM). For the HWTSM, we ap-

plied processor–coprocessor parallel non-blocking execution model, which allows overlapping of the coprocessor operation

with the processor operation. As a result, we achieved shorter WCET of the RTOS while preserving the predictability and

composability of the original MPSoC. Our proposal is integrated into the existing CompSoC MPSoC platform and this entire

system is prototyped on FPGA chip. For the TISC, we employed processor–coprocessor parallel blocking execution model,

which minimize the thread synchronization costs. The RSM operated in processor–coprocessor parallel non-blocking exe-

cution model. With the help of the execution model, the RSM distributed the slack information between the tiles in an

MPSoC while preserving the predictability and composability. The experimental results are obtained with synthetic and real
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applications. Based on the experimental results, we can conclude that implementing time-critical RTOS parts on reconfig-

urable coprocessors by using the proposed processor-coprocessor execution models can substantially improve the overall

system performance. Furthermore, the presented approach preserves system predictability and composability. Finally, there 

is evidence of a lower energy profile of the MPSoC, which needs to be investigated further. 
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