
Some Document Guidelines
Including Email, Code, and Reviews

Kees Goossens

v2.3, dated August 24, 2022

Ensure that your documents, presentations, emails, and source code conform
to the following guidelines before you distribute them.

1 Professional Conduct

1. Check the spelling of your documents. Asking the reader to fix errors that
can be trivially found is a discourtesy. Spelling Latex is possible with
ispell, detex and spell, latex2html, WinEdit, and Word (which includes
grammar checking), and so on.

2. Always use page numbers in your documents (including power point). If
a paper must be submitted without page numbers, add them only in the
draft versions. In presentations, it is annoying when a listener cannot refer
to a slide number when asking questions. In papers, the order of the pages
is not always obvious to the reader, and pages may be reordered during
reading when referring to earlier or later sections.

3. For documents of more than a few pages a table of contents is very helpful
for the reader. For large documents, such as theses the following lists
should be added, where applicable: figures, terminology, abbreviations,
symbols, definitions, theorems, etc. In all cases, add the page of the
definition. An index can be very helpful, and is less work than might seem.
Latex has packages to manage acronyms (acronym) and index (makeidx).

4. Use version numbers in all your documents (Latex or otherwise). Use
filename vi.suffix or year-month-day-filename.suffix or something similar.
Make sure it sorts in the right order (i.e. older documents first) when
listing a directory. Choose file names that are meaningful to others too.

When returning an annotated document (e.g. with review comments or
corrections) to the author, give it a different name, such as
filename_vi_your-initials.suffix (for example, yearly_report_v1_KG).
Do not increase the version number in this case.

A well-organised European project defined their rules as follows:

1

<date of last modification>_<document title>_<version>_<partner>.<file extension>

<date of last modification>: YYYY-MM-DD, e.g., 2009-03-04

<document title>: Short but explicit title

<version>: Draft: v0-[x], e.g., v0-1, v0-12, Release: v1-0, v2-0, ...

<partner>: Acronym of partner [optional];

can be used to make clear who created the document /

made recent changes / added comments / etc.

<file extension>: doc, ppt, pdf, ...

Examples:

- 2009-03-04_INDEXYS_project-handbook_v1-0.pdf

- 2009-04-27_INDEXYS_deliverable-1-3_v0-3.doc

- 2009-05-12_INDEXYS_deliverable-1-3_v0-3_TTT.doc

The exact naming scheme is not too important, as long as you are consis-
tent and you deal correctly with dates and versions.

5. When distributing different versions of a document, ensure that com-
ments on previous versions have been taken into account. No-one likes
re-correcting the same mistakes multiple times. Similarly, when an error
has been pointed out in one place, check the entire document for the same
and similar mistakes. Subsequent document versions should differ signif-
icantly: people do not have the time to proof-read a document in detail
many times.

If you do not agree with comments, and do not wish to implement them,
then discuss this with the reviewer. Ignoring feedback tends to annoy
reviewers (for a good reason), with unfavourable consequences.

6. Before submitting a paper, give co-authors sufficient time to review the
paper. After submitting a paper, make sure that the git repository is up to
date with the submitted pdf in the snapshot directory. Upon acceptance
of the paper, repeat with the final version.

7. Clearly indicate when text or figures or data are reused from other doc-
uments. Without this, you commit (self)-plagiarism, which is not ac-
ceptable. Reusing text (e.g. introduction, related work, background) and
pictures from your own papers in new papers is not to be recommended,
as reviewers will spot this, and there is a high chance the paper will be
rejected for this. (Rightly so, in my opinion.) This does not hold for
extended journal versions of a paper.

8. Use email Subjects that reflect the purpose and content of the email.

9. Be polite in emails. No salutation, “hi,” “howdy,” “hey,” and so on may
be acceptable to your friends and direct colleagues. However, anything
beyond that will need at least a “Hello FirstName,” “Dear FirstName,” or
“Dear Mr./Mrs./Prof. SurName.” Use “Dear Sir/Madam” when writing
to a recipient of unknown gender. Err on the formal side when in doubt.

2

10. Include documents in your emails, rather than URLs to them. Not every-
one is online when reading your email. Disk space is cheap. Check that
you included the desired attachments.

2 Version Management (git)

Version management is desirable for many reasons:

1. You can go back to previous versions of your document or source code.

2. You can trace what changed in different versions of your document or
source code.

3. You can work on the same document or source code from different com-
puters at different locations (work, home, airplane, etc.).

4. Multiple people can work on the same document or source code. Conflict-
ing changes are detected immediately by the version management system.
This means that previous updates to code or text are not accidentally
overwritten without any notice.

5. Multiple repositories act as remote backups. (In any case you should
backup your files separately.)

6. You can make speculative changes, and either merge these with the source
code if they work out, or else return easily to the original source code.

In the Electronic Systems group we use the git version management system,
with the gitlab web front end.

1. All your source code should be version managed.

2. All your papers, technical notes, reports, and so on should be version
managed.

3. If Microsoft word is used (unavoidable for many European projects), then
use Track Changes and Comments whenever you modify the document.
In any case, these multiple versions should be stored in our local git.

4. Commit frequently. It minimises the risk of losing work. It also minimises
divergence from the main branch, where other people commit their work.
This in turn minimises the effort to merge your changes back into the
main branch (which is the end goal).

5. Commit whenever you have a new working version of your software (or
good version of your document text), even if it took only 5 minutes. If
during your software development, it stops working for an unclear reason,
you can just go back to your last commit. This is much more efficient than
repeatly using “undo” in your editor and rerunning until it works again.

3

6. Use short but useful description in version management comments. The
empty string, “fixed a bug,” and so on are not considered useful.

7. Each commit should be a self-contained change. It could be to implement
one new feature, or to fix one bug. Multiple bugs or features should
be checked in separately. This also helps with the previous bullet. It
also allows (automated) backtracking to the smallest amount of code that
caused an error.

8. Only check in source files. Do not check in generated files, unless there is
a very good reason to do so.

9. For text files such as Latex it is preferable to not have very long lines.
In particular, if a paragraph is written entirely on one line of text, then
any change in the paragraph, however minor, will result in the entire
paragraph being marked as changed. This is unhelpful to track changes.
For example, what changed in the commit below (soft-wrapped to multiple
lines to be able to make the point)?

-A data barrier is used to synchronize two tasks that have a data to

data dependency, that is, the sending task has a data-driven stop

condition and the receiving one has a data-driven start condition. The

sending task writes the output data, then updates the barrier and

blocks. The receiving task first updates the barrier and blocks

waiting for the sending task, and then reads the input data. In our

example, there are two data to data dependencies, from

t\textsubscript{3} to t\textsubscript{2} and from t\textsubscript{2}

to t\textsubscript{1} and the data barriers for them are shown in

Figure~\ref{fig:barrier} in green.

+A data barrier is used to synchronize two tasks that have a data to

data dependency, that is, the sending task has a data-driven stop

condition and the receiving one has a data-driven start condition. The

sending task writes the output data, then updates the barrier and

blocks. The receiving task first updates the barrier and blocks

waiting for the sending task, and then reads the input data. In our

example, there are two data to data dependencies, from

t\textsubscript{3} to t\textsubscript{2} and from t\textsubscript{2}

to t\textsubscript{1} and the data barriers for them are labelled

‘data’ in Figure~\ref{fig:barrier}.

Preferably, each sentence starts on a new line: a change to a sentence then
is then clearly shown as affecting only that sentence in the change log. As
an intermediate, use hard line breaks (e.g. at column 70 or 80) inside
paragraphs. This provides intermediate results. With this approach the
difference between the two texts would have been shown as:

-to t\textsubscript{1} and the data barriers for them are shown in

4

-Figure~\ref{fig:barrier} in green.

+to t\textsubscript{1} and the data barriers for them are labelled

+‘data’ in Figure~\ref{fig:barrier}.

10. Branches are cheap. If you want to try something, but don’t know yet if
you want to keep it, then make a branch for it. Delete it if the experiment
does not work out, or else merge it in your main branch.

3 Paper Structure

This diagram shows the general structure of a paper (or technical report). Note
that the section on reviewing assumes that this structure is followed (or at least
the information is presented in a similar manner). If this is not the case, then
the paper is rejected.

4 English

Many and more of these recommendations can be found in The Elements of
Style by Strunk and White.

1. Spell-check your text.

5

2. Use either British or American English consistently throughout your doc-
ument(s).

3. It is important to write clear and unambiguous English. Because, since,
thus, causes, follows (from), therefore, hence, but, (al)though, despite,
however, while, moreover, etc. have different logical meanings. “A because
B” (B ⇒ A) is not the same as “A thus B” (A ⇒ B), or “A though B.”
Be careful when using these words.

4. In the previous bullet, note the completely illogical, but grammatically
correct, full stop (and comma and semicolon) inside the quotes.

5. Ensure that you use articles (a, an, the, every, etc.) before nouns when
required (which is most of the time).

6. Do not use “for verb-ing” but ”to verb.” For example, “for explaining
this point,” should be ”to explain this point.” The ”-ing” for denotes a
continuous action, which is almost never intended.

7. Define your terminology, and use it consistently (preferably across doc-
uments). Without it, no description or discussion can be unambiguous.
Do not use different words for the same thing or concept. Do not use the
same word for different things.

8. Take care of singular and plural forms of verbs and nouns. “Each” is
singular, “both,” “all,” and so on are plural. Consider, for example, “each
level is important, but some levels are over-rated, and all levels are boring.
Both cycle-accurate and transaction-accurate levels are described, and
none are abstract. One or more levels are useful.” Any can be used with
both singular and plural verbs, depending on the context: “Any idea is
welcome, if any of our problems are solved.”

9. Write active sentences. Sentences and paragraphs should not be very
long. Avoid the common phrases such as “the controller is orchestrating
the SOC.” It’s shorter and better to write “the controller orchestrates the
SOC.” Another example is “x is used for initialising y,” which is better
written as “x is used to initialise y,” or perhaps even “x initialises y.”

10. That and which are different. The “thing that flies” means that flying is
an integral part of it (or its definition). The “thing, which flies” is a thing
that also happens to fly. That is not preceded by a comma, whereas which
is.

11. The Oxford comma is the comma before the last and, or, and nor in a
series of three or more. “A and B and C” is different from “A and B, and
C,” “A, B and C,” and “A, B, and C.” The last one uses the Oxford comma
and is preferred, although the others may be used to indicate (subtle) sub-
grouping. Note that the comma is omitted with only two items: “A and
B.”

6

12. Either is always followed by (a single) or. Otherwise use multiple or. Same
for neither - nor.

13. Note the difference between it’s and its. The former means it is or it has,
and the latter is the possessive adjective (“Our network is great, its name
is Æthereal” or “it’s called Æthereal”).

14. “In order to” can almost always be shortened to “to.”

15. Fewer and less are not the same. Fewer refers to a number (“this solution
has fewer constraints”), less to a quantity (“this problem is less hard”).
Similar cases are higher/lower (more/less than average height, “higher
rate”) and larger/smaller (a size that is more/less than normal, “smaller
problem”).

16. When discussing items, do so in the order in which they are introduced.
See the previous item for an example.

17. Similarly, keep the legends (line type, marker type, etc.) of curves (exper-
iments) that occur in different figures the same. They should be listed in
the legend in the same order as they are discussed in the text. All axes
on graphs should have a description of the quantity and units. Keep the
ranges of the axes constant (as much as possible) over multiple graphs,
to ease comparison. Verify that graphs are legible and understandable
when printed in black and white. Graphs should not be misleading or
exaggerating results.

18. The correct use of hyphens is not easy. They do make a difference in the
meaning of sentences, however. Consider the example from Wikipedia:
“more-important reasons,” which means reasons that are more impor-
tant, is distinguished from “more important reasons,” meaning additional
important reasons.

The basic strategy, used by many, is to never use them. This is incorrect,
but at least predictable, and many people will not mind (or notice). Cor-
rect hyphenation is preferred but can lead to ugly constructs, which can
be avoided by rewriting the sentence. Examples:

• “Power management:” power is the adjective of management; we
manage power.

• “Power-management strategy:” power management is the adjective,
hence the strategy of how to manage power.

• “Power management-strategy:” power is the adjective of a manage-
ment strategy; presumably this means a management strategy that
is powerful. You probably do not intend this. Note that without any
hyphens, this meaning is implied.

• “Dynamic-voltage-scaling method,” meant to be parsed as ((dynamic
(voltage scaling)) method), is an example of how multiple levels of
adjectives lead to ugly hyphenation. Try to avoid these constructs.

7

Over time, hyphenated words have the tendency to lose the hyphen and
be combined in a single word, e.g. data-base to database. Data flow, or
data-flow, or dataflow: the choice is yours, as long as it is consistent, and
preferably in line with the rest of the world.

19. Sub-sentences, such as this useless one, start and end with a comma (or
other punctuation).

20. Avoid excessive use of abbreviations: it makes documents much harder
to read for the uninitiated. Always introduce abbreviations on their first
use. Preferably introduce them in the abstract, and in the introduction
and conclusion sections, such that they can be read independently. If the
use of non-obvious abbreviations is widely spaced in the document, do not
use them, or reintroduce them after a long gap. For very long documents,
such as theses, consider the use of the Latex acronym package.

21. When using an abbreviation such as SOC (System on Chip), you will often
write either “a SOC” (pronouncing SOC as “sock” or “system on chip”)
or “an SOC” (pronouncing SOC as “es-o-see”). Either is fine, as long as
it’s consistent.

22. Do not cite papers in the abstract and conclusions; it should be possible
to read them stand-alone.

23. Avoid colloquial expressions in written English, such as it’s, can’t, though,
till; use it is, cannot, although, until, and so on instead.

24. Do not use turns of phrases like “it is obvious,” “obviously,” “as is well-
known,” and so on. Not everyone will find everything obvious, or will know
certain things (even Moore’s law). And if you are wrong on something
“obvious,” you will look not very smart. A reviewer may feel stupid and
insulted and reject the paper.

25. Usually use one of “e.g.” (meaning for example) and “etc.” (meaning and
so on). They can be used together, but it is not common. Place a comma
before etc. when it is used with more than one item. Et al. is spelled as
shown. “I.e.” means id est, i.e. “that is.”

26. Use “at an abstraction level,” not “on a level.”

27. “Whereas,” “since,” and “but” are not followed by a comma. Thus
“Whereas, the other method fails.” should be “Whereas the other method
fails.”

28. Do not use ellipses (“...”), especially instead of, or together with etc. and
e.g. Do not use dashes (“–” or “—”) for parenthetical sub-sentences; use
commas instead. Do use them for ranges, especially in the bibtex pages

entry.

8

5 Latex

Use Latex to write any significant (≥ 1 page) text. Here are some common
problems that you should address before distributing your text.

1. Basic Latex hygiene. You must be able to distribute the sources of the
document as a single self-contained directory. No weird tools should be
necessary for others to compile it. Do not use TEXINCLUDE and similar
environment variables, which are system dependent. The tex files must be
readable with a normal text editor (emacs, vi, nedit, whatever). It must
compile without errors. A Latex document is a program, hence it should
be clean, like any (C, C++, etc.) program. Preferably the directory
should contain a makefile, with at least the targets clean, all. Figures
are preferably in a subdirectory. Preferably use a single Latex file for all
your text, rather than multiple \input files. This makes it easier to search
for text, e.g. when making corrections.

2. Fix errors in the bibliography and/or the bibtex file. This includes forc-
ing the correct capitalisation (e.g. SOC instead of soc) in titles. Use
"Left and Right {SOCs}" or {Put a {SOC} in it}. Preferably use a
common bibtex file for all your papers. Note: and then either copy it in
the source directory (Kees’s solution), or include the bibtex directory in
the repository (Benny’s solution). It may be smart to use a good bibtex
key naming scheme, such as AuthorYearConference or similar, sort the
bibtex entries in the bibtex file by key, and save the pdf of the paper using
the same key, e.g. AuthorYearConference.pdf.

3. Citations have a space before them. Use the unbreakable space: silly~\cite{key}
such that the citation is never detached from its preceding text. (Sub)sentences
are separated by spaces too. Punctuation marks have no space before
them, and one space after them. For example, “Hello , there” is incorrect,
as is “Hello ,there.” Latex introduces a (longer) inter-sentence space after
“E.g.,” “etc.,” and “i.e.,” which can be avoided by using a forced space
after them: e.g.\ This is not required when etc. occurs at the end of a
sentence.

4. Use bold face very sparingly, and use italics with moderation. Never
underline. When using italics in text, use \emph{text} or {\it text}

or similar. The former is preferred, as it uses normal text when the text
body is italic (such as often in the abstract). Do not use off: this looks
horrible, as Latex will typeset the text in mathmode: off rather than off.

5. Similarly, in mathmode, when using text (i.e. two or more letters and dig-
its) use \textit{}. For example, for ZAPeff, use $\textit{ZAP}_\textit{eff}$,

and not ${ZAP}_{eff}$, which is typeset as ZAP eff .

6. It may be smart to use the \newcommand{} command for recurring expres-
sions like this. This also makes it easier to change notation. For example,

9

\newcommand{\aethereal}{{\AE{}thereal}}, which should be used as
text \aethereal{} text. The point of this example is the {}, which
inserts a space after Æthereal only when needed. Note the double curly
brackets, they make the command more robust (it still fails in mathmode,
though: see the previous example).

7. Units, such as nm, are preceded by a space (preferably unbreakable:
10~nm) and are not italic.

8. Unbreakable spaces should be used also in conjunction with section, figure,
table, and page number references: as shown in Figure~\ref{fig:tradeoff}.
Note also the use of Latex labels that make sense, such as \label{fig:tradeoff},
\label{sec:introduction}, or \label{item:abstraction}.

9. Every figure must be referred to in the text. Explain a figure: why is it
included, what does it intend to show, what should the reader learn from
it, what conclusions can be drawn from it, etc.

10. Figures often save space in a document by first showing a reader what
you mean, and then explaining the figure with some text. Describing with
text a concept, design, architecture, application, graph, or other concept
usually takes more space, and runs the risk that the user forms a different
mental picture. A (technical) document with only text is harder to read
(perhaps increasing the risk of rejection, in case of a paper).

11. When referring to figures, sections, tables, etc., with a number the word
figure (etc.) must be capitalised, otherwise not. Page references are an
exception. For example: “Figure 3 in Section 3.2 on page 6.” Do not
refer to figures (etc.) as “the figure below/above” and so on, but use
number instead. Note that sub(sub)sections are referred to as sections,
not subsections.

12. Figure captions are below the figure; table captions above the table. In
Latex take care that your \label{fig:text} and \label{tab:text} are
always below the \caption.

13. There is a difference between ‘ ’ " ‘‘ and ’’. Always use ‘‘these quotes’’

to quote text “like this.” Avoid single quotes, which usually indicates that
the author cannot find the appropriate word (and might have benefited
from the use of a thesaurus).

Note that using quotes means that the text is literally cited, or a precise
text, where every word counts and which must be read with extra care.
Use quotes carefully therefore. Colloquial use, such as all items on “sale,”
is confusing: why is the sale special, are the items really on sale, or is
someone being sarcastic?

14. All your graphics should be scalable, and high resolution.

10

15. To save space in a paper, use a smaller itemsep (in itemised lists, including
the bibliography). Use compactenum rather than enum, or inline the
bullets by replacing by them by “a)” or “(1) or similar, in the text. Short
bullets may be combined in a single sentence using a semicolon (;) between
them. Otherwise use separate sentences.

16. Embed fonts in your pdfs.

17. Regarding presentation: use a consistent style, in terms of fonts, placement
of text, headers and footers, colours, arrow types, and so on. This can be
easily implemented by using a template. If you use OpenOffice or similar,
distribute your presentations in the Powerpoint format. This allows easier
re-use by others.

6 General Source Code

1. The main constraint on source code is maintainability. Write clean, struc-
tured code; e.g. use consistent indentation, capitalisation, commenting.
Source code has a long life time, and will be read and modified by many
people. You may not be available to explain it or fix it. Write simple code
that is easy to understand, and hence easy to maintain.

2. No program is finished until it has been comprehensively tested. You are
not allowed to utter phrases such as “it works, I only have to test it.”
Testing means demonstrating that the program works correctly for all
inputs, not that there exists a single input for which the program seems
to exhibit a correct output.

3. Compile with the strictest options, e.g. -Wall -ansi for C/C++.

4. All warnings must be resolved, for the simple reason that a) users when
they compile your (generated) code do not look at warnings, and b) if
they do, it is not clear what they should do (ignore it or fix it). Code
should compile without a warning, or not compile, or fail with a run-time
assertion.

5. Whenever you can, insert assertions to check properties that should hold.
In C/C++ this can be at the start and end of functions, in VHDL this can
be in the entity declaration (e.g. on static constraints between generics)
or architectures (e.g. on dynamic constraints on signals and variables).

6. Use descriptive English names for variables, functions, methods, classes,
files etc. even when it’s not your native language.

7. Use makefiles where possible: a) to document the compilation parameters,
and b) to ease the installation and reproduction of results for others.

11

7 Reviewing documents

Learn these three ways to read and review a paper:

1. 3-5 minutes

• read only the title, abstract, and conclusions; look at the
references

• good, structured English? do know what the paper is about? what’s
the problem? is it relevant? has it been solved? is relevant work
cited?

• reject the paper if not meeting any of these

• most people will read your paper like this. Make sure that you con-
vince them!

2. 10-15 minutes

• also look at the figures in the high-level approach / solution,
and (the figures & graphs in) the results section

• as above + do you have a high-level understanding of the solution?
do the experiments make sense? have the claims been proven?

• reject the paper if not meeting any of these

3. 1+ hour

• read everything, understand everything

• almost no-one will do this

• reject the paper if you find real faults

The reasons for doing this are:

1. this “fail-fast” strategy saves you time

• you can reject bad papers very quickly

• no need to read bad papers in detail

• you can spend more time on the interesting papers

• or, if you’re reviewing to accept or reject a paper, then your time
should be spend on making the right decision for the borderline pa-
pers, not the bad or good ones (which are both easy to decide)

2. a paper that looks messy, or has bad English most likely has equally bad
claims, solutions, and experiments; If the writers didn’t bother with the
details you can’t trust the solution either. Details matter!

3. try to look at your own papers in the same way

Here is a list of basic things to check when reviewing a document:

12

• Do title, abstract, introduction, and conclusions match?

• Are the claims in the abstract & introduction justified, i.e. are they
proven? This can usually be checked very quickly by reading the con-
clusions or the final parts of the results section.

• Is the problem defined well?

• Are the solution (and its concepts) defined well? Are the limitations and
constraints defined clearly and up front?

• Is the paper well-structured in terms of sections, layout, figures, English?
Is it understandable?

• Is there a related work section? Is it correct and fair to the other papers?
Are all related papers that you know cited? Selective or biased citing is
not allowed. Does it compare the cited research to the paper (and not just
a description of what the related work does)?

• Are the experiments defined in sufficient detail (could you reproduce them
based on the paper & the references)?

• Are the experiments presented well (graphs, etc. understandable)?

• Are the conclusions that are drawn from the experiments justified?

• What is the novelty of the paper? Give bonus points to cool ideas. Has
it been done a million times before? Does it add anything to existing
papers? If not, reject.

• Regarding expertise level: if you’re doing your thesis on the topic, you’re
an expert. Otherwise you should probably fill in a lower level.

• You can write the review as a list of bullets (my style, less nice), or as
running text (most other people’s style, recommended, nicer). In the exec-
utive summary (e.g. comments to the Technical Programme Committee)
write a short summary (at most 5 lines/bullets) with your recommenda-
tion and reasons for it.

More general guidelines:

1. Do not abuse your anonymity: be polite, and do not offend the authors.
Imagine that it is your own paper that you are reviewing, and that you
will receive the review.

2. A review is a document. Hence all of the above rules apply. Complaining
about English or bad structure in a badly structured review with spelling
errors is disrespectful.

13

3. Make the review as impersonal as possible: do not write “I do not under-
stand this,” “I would recommend,” but e.g. “the text in paragraph I.B is
difficult to understand,” “please add more information on ...,” “consider
adding ...” and so on. If possible, give suggestions for improvement.

4. Review always to the same standard. It makes no difference whether you
review for a top journal or a work-in-progress session of a workshop. It is
up to the technical programme committee to decide what the minimum
score is for paper acceptance.

5. When you submit a revised version of a document for a new review, include
a cover letter that a) thanks the reviewers and editor for the good work,
b) responds to each and every comment in detail. Try to make sure that
each response results in visible changes in the document.

6. Apply a fail-fast methodology to reviewing. When a paper is really bad,
then this is easy to write down in a short review. Do not read the details
when it is clear that the paper makes no sense at a high level. Really bad
documents are the easiest and quickest to review. Really good documents
will generally take longer, because you do have to read the details, but
writing the review will generally be easy. When reviewing multiple papers
expect and aim to spend most of your time on decide on middle-quality
papers: should they be accepted or not. Deciding this, and writing a good
review takes time.

7. Reviewing papers should be useful for you: a) technically (the content of
the paper, they way the problem is defined, approached, solved, etc.), and
b) help you improve writing your own papers by understanding the review
process.

8 Deciphering Kees’s Written Feedback

Some symbols and abbreviations that you may find in the review of your papers:

• X: ok

• ?: unclear; the larger the question mark, the bigger the problem

• ×, n, etc.: not ok; the larger the cross, the bigger the problem

• : inconsistent, incorrect

• ~: ok-ish

• large ~ between two words or part of sentence: swap these two parts

• \\: break into two paragraphs or into two lines (e.g. in title)

• ^: join two parts (paragraphs, sentences)

14

• ⇒: implies

• 6⇒: non sequitur: does not follow

• ∴ therefore

• ∵ because

• ~, ,1 , ,2 , etc.: this text or remark is referred to later/elsewhere in the
review

• o/w: otherwise

• w/o: without

• w/: with

• p: page, pp: pages

• def: definition, (un)def’d: (un)defined

• emph, it: emphasise, italicise

• ip, op: input, output

• (dis)cts: (dis)continuous

• reqs: request(s) / requirement(s), resps: response(s)

• trans: transaction

• beh: behaviour

• eqn: equation

• etc.

15

