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Abstract— Cross-Technology Interference (CTI) is a severe issue
for wireless networks operating in the license-free ISM bands. In
particular, CTI can significantly affect the performance of low-power
wireless links used in the Internet-of-Things (IoT). The IEEE 802.15.4
standard adopts a channel hopping scheme in its Time-Slotted
Channel Hopping (TSCH) mode as a means to mitigating the ad-
verse effect of CTI. However, the indiscriminate procedure by which
TSCH nodes hop over different channels can suffer from severe
interference in specific channels. Adaptive channel blacklisting is a
technique to alleviate this issue by leaving out low-quality channels
from the hopping list. To enable an effective blacklisting, especially
in highly varying networks, an accurate real-time prediction of
the quality of all available channels is of paramount importance.
Previous studies rely on the past records of the channels as an indication of their quality in near future. Evidently, such
approaches cannot extend to highly dynamic environments. This paper present a self-supervised approach for training
deep neural networks capable of predicting the future behaviour of the frequency channels. The trained models can
then substitute the quality assessment approaches in blacklisting schemas. Considering in-vehicle wireless networks
as a target application, we evaluate this idea using a real-world experimental dataset, consisting of three measurement
scenarios inside a moving vehicle. The experimental results show that using the proposed technique for TSCH blacklisting
significantly improves the reliability of networks experiencing such highly dynamic interference and performs at least as
good as the existing channel assessment methods in low-interference conditions.

Index Terms— Internet-of-Things, IEEE 802.15.4, TSCH, Channel blacklisting, Deep neural networks, Deep learning,
Channel quality prediction, Dynamic networks, In-vehicle networks

I. INTRODUCTION

The unlicensed 2.4 GHz ISM band is one of the most
widely used frequency bands for short-range wireless com-
munications. WiFi [1] routers, Bluetooth [2] devices, and
household appliance all occupy these frequencies, resulting
in crowded communication channels with Cross-Technology
Interference (CTI). Such CTI is a source of reliability issues
attached to low-power wireless communication technologies
such as the IEEE 802.15.4 standard [3]. Time-Slotted Channel
Hopping (TSCH) is one of the Medium Access Control (MAC)
operational modes of the IEEE 802.15.4 standard. TSCH is
an attempt at increasing the robustness and reliability of IEEE
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802.15.4 wireless links, with the primary goal of reducing the
effects of interference and multi-path fading.

TSCH achieves reliability by providing diversity in both
time and frequency. The protocol divides time into periods
of fixed length called timeslots, which is long enough for
exchanging a full-sized packet and its optional acknowledge-
ment. Timeslots can be exclusively dedicated to wireless nodes
by a scheduler, or they can be shared by several nodes in a
neighborhood. In the frequency domain, the standard defines
16 channels in the 2.4 GHz band, all of which can be used
by the nodes for parallel communications. The nodes in the
network indiscriminately hop over the available channels in
each timeslot. Such channel hopping technique eliminates
long-term link blockage due to high interference in a particular
channel or multi-path fading. This is done because a proper
scheduler will schedule timeslots in such a way that packet
transmissions over a particular link are performed in differ-
ent frequency channels over time; a link hopefully uses all
available frequency channels.

Although the plain channel hopping mechanism of TSCH
greatly improves communication reliability, the network may
still severely suffer from blindly using all channels for
channel hopping. In the presence of external interference,
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some channels could experience very strong interference for
varying periods of time. Transmissions done in such noisy
channels are very likely to fail leading to wasting energy
and bandwidth, and degrading the reliability of the network.
Therefore, detecting and leaving out the channels with a high
level of interference from the hopping list can substantially
increase the throughput and improve the reliability of the
TSCH network.

Several blacklisting mechanisms have been proposed in
literature to identify and exclude channels of low quality from
the hopping list in TSCH. As an instance, our earlier work [4]
presents Enhanced Time-Slotted Channel Hopping (ETSCH)
as a blacklisting mechanism for TSCH. As prerequisite, a
channel blacklisting mechanism needs to be fortified with a
precise and agile channel quality prediction method to be able
to detect the channels that are going to perform poorly for
future packet transmissions due to CTI. ETSCH monitors the
quality of all the 16 channels at run-time by exploiting the
so-called silent periods in the timeslots, periods in a timeslot
in which no radio activities within the TSCH network are ex-
pected. This channel quality estimation comes at no cost to the
throughput of the network. ETSCH then estimates the quality
of all channels using a moving average of the noise floors
on each channel. While effective and straightforward, this
approach assesses the channels based on their recent records,
which might not properly reflect their future behavior. Some
other techniques may even calculate metrics such as the Packet
Reception Rate (PRR), the Received Signal Strength Indicator
(RSSI), etc. as indicators for the quality of the channels. [5],
shows that the chosen quality assessment approach greatly
affects the performance of the blacklisting schema.

An appropriate channel quality assessment technique should
have several features to be effective for channel blacklisting
in TSCH. First, channel quality estimation needs to be done
for all channels even if a channel is not being used and
thus no packet transmission is being experienced. Therefore,
existing link quality estimation techniques [6] are not directly
applicable since they are based on the record of packet
exchanges performed over a link. It is necessary to allow
the mechanism to enable the use of previously blacklisted
channels that turned to be of good quality. Also, in many
applications like in-vehicle networks, the interference sources
are highly dynamic (due to mobility of a vehicle or variation in
traffic in the interferer technology). Thus, the channel quality
assessment needs to be continuously performed and should be
agile enough to predict long-term changes in the quality of
channels.

In this paper, the application of Deep Neural Networks
(DNNs) in channel quality prediction for TSCH blacklisting
is studied. We propose a self-supervised approach for training
DNNs, with the goal of predicting the future behaviour of the
frequency channels. This approach allows us to train a DNN
using a sequences of noise floors for individual frequency
channels, and with no need for expert knowledge or manual
labeling. A DNN trained using this approach can replace
the current channel quality assessment metrics in existing
blacklisting schemas. Using a real-world experimental dataset
introduced in [7], in which the noise floors have been recorded

inside a moving vehicle in various scenarios, we train recurrent
neural networks and substitute them in the Enhanced TSCH
(ETSCH) [4] schema. This schema does not deviate far from
the original protocol, yet it manages to improve the reliability
of the network by a considerable margin. After substituting the
neural networks, the schema performs as well as it did before
in low-interference environments, but manage to improve the
reliability of the network in dynamic and high-interference
scenarios significantly.

Although the proposed DNN-based approach for channel
quality prediction is evaluated by replacing the channel quality
assessment technique of a representative centralized TSCH
blacklisting (ETSCH), its application is not limited to this
protocol only. It can be used as a service for any kind of
channel blacklisting scheme, especially those designed for
highly dynamic networks. Although the developed model is
able to predict frequent changes in the quality of channels,
the action upon any predicted quality change is a decision
that should be carefully made by the used channel blacklisting
scheme. Overheads and complications involved in distribution
of the blacklisted/whitelisted channels need to be taken into
account. While it may be feasible to frequently change the
hopping list in single-hop networks (e.g., ETSCH), reliably
changing and distrusting hopping sequence list is challenging
in multi-hop networks. Anyways, such quality predictions can
help in making packet transmissions more efficient even if the
change is considered to be transient upon which no action is
taken by the channel blacklisting mechanism.

The paper is organized as follows. The next section is a
brief introduction to the TSCH protocol and its fundamental
concepts. Section III discusses the previous solutions for
blacklisting in TSCH. Necessary background for the Deep
Learning methods used in this work is provided in Section IV.
Section V introduces our proposed solution, and the following
section presents the experiments done with the model and their
results. Section VIII concludes.

II. TIME-SLOTTED CHANNEL HOPPING

TSCH is a MAC operational mode of the IEEE 802.15.4
standard that combines time-division multiplexing and fre-
quency hopping, two techniques usually adopted individually
by other wireless networking protocols, to improve the re-
liability of communications. The standard defines 16 non-
overlapping channels over the 2.4 GHz ISM band, each with a
2 MHz bandwidth and a channel spacing of 5 MHz. Nodes in
the network operate in discrete units of time called timeslots,
which are long enough to transmit and acknowledge a single
full packet (i.e., 10ms long by default). Multiple consecutive
timeslots are grouped into slotframes, which continuously
repeat over time. The number of timeslots in a slotframe,
namely its length, is not under any strict regulations by the
protocol, and it can be used to control trade-off between the
energy consumption, latency, and duty cycle.

The TSCH mode comes with a particular frame known as
an Enhanced Beacon (EB). TSCH uses these frames for setting
up the network and synchronizing the nodes. PAN coordinators
announce their presence periodically by transmitting an EB.
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On the other hand, nodes that have not yet joined the network
can synchronize to the network and join it by intercepting an
EB packet.

When a node joins the network, it will receive the total
number of timeslots passed since the network was set up,
a parameter referred to as the Absolute Sequence Number
(ASN), and it will also be assigned an arbitrary value in range
0 to 15, which will be called its Channel Offset. At any point
in time, the node can identify its operating frequency channel
using Eqn. 1.

CH = HSL [ (ASN + CH Off) mod |HSL| ] (1)

where CH represents the channel number from a Hopping
Sequence List (HSL). HSL is a especially ordered subset
of maximum 16 frequency channels in the 2.4 GHz ISM
frequency band, and |HSL| denotes the number of channels in
HSL. Absolute Sequence Number (ASN) is a global variable
synchronized in the whole TSCH network, which counts the
timeslots. TSCH provides the possibility of parallel com-
munication in the network by using different channel offset
(CH Off). The TSCH standard allows for HSL to only include
a subset of the 16 available channels. [8] shows that limiting
the HSL to a subset of the channels with the best qualities can
increase the reliability of the network.

The TSCH standard protocol provide an appropriate ma-
chinery for implementing a Time-Division Multiple Access
(TDMA) contention-free MAC mechanism by exclusively
assigning the timeslots to wireless nodes in a neighborhood.
However, the standard itself does not provide a scheduling
scheme for timeslot and frequency (channel offset) assign-
ment; it is left for the upper layers in the protocol stack.

III. RELATED WORK

Single-channel communication protocols tend to experience
long-term continuous link failure due to various phenomenons
such as narrow-band interference and multipath fading [9].
The channel hopping technique can mitigate these effects by
providing a wide selection of channels for nodes to transmit
in. TSCH is not the only protocol to adopt this technique;
Bluetooth, WirelessHART [10], and ISA 100.11a [11] all
employ the same technique in order to improve the reliability
and robustness of the network. Realizing the fact that all
the channels on the frequency bands are not of the same
quality, the specification of these protocols allow for user-
configured white/black-listing. When setting up the networks,
users can specify a static list of channels that the network can
use in a predefined hopping sequence pattern. ISA 100.11a,
which is a commercial option, provides an automatic technique
that uses the history of the communications to whitelist the
channels. Another example would be the Bluetooth Low
Energy (BLE) technology, which is fortified with an adaptive
blacklisting mechanism to exclude low-quality channels during
the network operation. It is worth mentioning that adaptive
blacklisting in BLE is centralized and performed by the master
node in the network due to its star topology. However, in
multi-hop large scale networks, the interference level of on
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Fig. 1. General illustration of the operation of the NICE technique for
channel noise probes.

different channels in various parts of the network may be
quite different, making a decentralized or distributed channel
blacklisting technique necessary.

Most channel blacklisting techniques are suitable for static
environments where the wireless conditions do not often
change. Dynamic environments, however, require a more
robust approach that can adapt to the varying conditions.
Adaptive Time-Slotted Channel Hopping (ATSCH) [12] is
one of the earliest attempts to improve the performance of
TSCH networks by analyzing the quality of the channels
and blacklisting the ones with the poorest conditions. This
technique reserves two timeslots in each slotframe in which
none of the nodes are allowed to transmit. The coordinator
takes this time to perform energy detection (ED) samples on
two channels. The sampling results are then used to assess the
quality of the channels, which is then used to select a fixed-size
subset of them as HSL. These values are processed using an
exponential smoothing operator as an estimate of the quality
of the channels. ATSCH is criticized for the throughput cost
of the reserved timeslots, as well as the low sampling rate of
the interference levels on the channels.

ETSCH [13] proposes a new method for measuring the
interference power levels on the channels called Non-Intrusive
Channel Quality Estimation (NICE) [4]. This mechanism rec-
ognizes a silent period within each TSCH timeslot in which no
packet transmission is expected within the TSCH network. The
mechanism then uses this period in each timeslot to perform
ED on two frequency channels. Fig. 1 illustrates the high-level
operation of this technique. Having sixteen channels in total, it
always takes eight timeslots for NICE to provide one sample
of the noise or interference level of each channel (frequent
sampling at a fixed rate with uniform distribution over time).
Since no timeslot is reserved for the sake of energy detection
for channel assessment, this technique does not impose any
throughput overhead.

More recent studies take the analysis a step further and
employ well-known metrics as a measure of quality for the
channels. In [5], the authors compare several metrics, includ-
ing RSSI, PRR, also known as Packet Delivery Ratio (PDR),
and Packet Error Rate (PER). In [14], nodes occasionally
transmit probe packets in the blacklisted channels to be able
to estimate the PDR over those channels. Based on that, a
channel may go from blacklist to the whitelist or vive versa.
[15] proposes a mechanism to develop whitelists per timeslot
to avoid internal collisions in the TSCH network. The used
channel quality metric in this work is again the PDR of the
links. [16] is another metric study, which adds Expected Trans-
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mission Count (ETX)-based metrics to the analysis, as well
as propose a novel blacklisting-aware transmission scheduling
schema. These studies show that the metric of choice has a
significant impact on the performance of the schemas.

Another family of studies address channel selection as a
Multi-Armed Bandit (MAB) problem, a famous and well-
studies problem in Reinforcement Learning. Essentially, a
successful transmission on a channel is a reward and we aim
to maximize our overall reward, by identifying the best chan-
nels. The authors of [17] propose MABO-TSCH, a complete
framework for utilizing algorithms designed for the MAB
problem in TSCH scheduling. [18] expands upon this work
by comparing the performance of different MAB algorithms
in various communication scenarios. However, this approach
requires the nodes physically close to one another to be
assigned disjoint HSLs to avoid internal interference.

All these studies have one thing in common; they look at the
recent quality of the channels as an assessment for their be-
haviour in future. This can be a major drawback, especially in
dynamic environments. For instance, in an in-vehicle network
deployed in a moving vehicle, a burst of WiFi frames will
cause a substantial drop in quality of several adjacent IEEE
802.15.4 channels resulting in around three channels to be
labeled as bad. When the vehicle moves out of the interference
range of the WiFi access point, the three blacklisted channels
become good again. The averaging metrics will take some time
to recover and rise again, leaving perfectly usable channels
unnecessarily blacklisted for a longer time than necessary.
Moreover, a not-well-tuned MAB algorithm would either react
too harshly to such changes or too slow to be effective. We
believe that a model capable of recognizing behavioural and
transmission patterns is better able to react to such changes.
To test this hypothesis, we design and train a DNN using
publicly available experimental data sets. Then the channel
quality assessment approach of a blacklisting technique (i.e.,
ETSCH) is replaced with the trained model to evaluate and
investigate its effectiveness in highly dynamic networks and
environments.

Reliable distribution of new HSL after any change in the set
of blacklisted channels is challenging and imposes overhead,
which partially depends on the network topology and scale.
ETSCH, for instance, embeds HSLs into the enhanced beacon
packets and then uses a small set of strongest frequency
channels to more reliably transmit such beacons. This tech-
nique together with the single-hop topology considered in this
mechanism help it to be able to frequently change HSL. An
in-vehicle TSCH network can be a representative application
as we consider in this work. MABO-TSCH, on the other hand,
considers multi-hop TSCH networks for which HSL distribu-
tion is more complicated. Given the network specifications,
the corresponding blacklisting mechanism needs to develop a
suitable strategy for taking action based on the results of the
channel quality prediction model.

IV. DEEP NEURAL NETWORKS

DNNs unparalleled ability in capturing complex statistical
patterns within data has turned them into a standard tool for

Fig. 2. The inner structure of a GRU neuron. The gates of the neuron,
denoted as r and z, are adjusted in order to recognize the statistical
patterns within the data that is fed to the layer.

addressing numerous problems across various fields. A DNN
consists of several typical building blocks, often refereed to as
layers, arranged in a specific manner. Layers are then followed
by a scaler activation function, introducing non-linearity to the
network. Each layer has a set of adjustable parameters, also
known as weights, which are tuned during training to produce
the desired results.

If we denote the function represented by a neural network as
F (x) and the collective set of its parameters as W , training
the network can be formulated as an optimization problem,
shown in Eqn. 2. In this equation, J represents a loss function,
a measure for how far off the outputs produced by the DNN
are from the target values, y.

min
W

J (ŷ, y) = J (F (x) , y) (2)

Evidently, in cases where the data consists of x and y
pairs, solving this problem is relatively straightforward and
can be done using various gradient-based optimization al-
gorithms. We refer to this method as a supervised training
approach. However, acquiring the target values is an expensive
process, requiring human intervention and expert knowledge
to calculate. Self-supervised training is another approach that
does away with target values. In a self-supervised setting,
a supervisory signal is automatically generated (based on
inputs), by baking (often problem-specific) constructs into the
loss function, or the layers of the DNN itself.

Making predictions using a trained neural network, or as
it is often called, inference through the network, requires far
less resources than is needed for training it. With the typical
resources accessible to low-end coordinators (edge devices),
inference through small pre-trained networks that are loaded
onto the module would be slow but possible. Training a net-
work, however, cannot be expected from a typical coordinator
and continuous training and refinement of a network would
require custom hardware [19].

The most basic neural networks consist of fully-connected
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layers, better known as feed-forward layers. Each neuron in a
feed-forward layer returns a shifted (biased) linear combina-
tion of the output values of all the neurons in its preceding
layer. The weights of this linear combination and the bias
value can be learned from the data. This output is then passed
through a smooth non-linear function, which is called the
activation function of the layer. Activation functions enable
ANNs to capture non-linear relations within the data.

The logistic function, also known as sigmoid, is a popular
activation function, which is frequently used in the output layer
of neural networks that are supposed to output a probability
value. The definition of this function is given by Eqn. 3. The
hyperbolic tangent function is another popular choice, but it
is mostly used for the hidden layers of the network, i.e., the
layers preceding the output layer.

σ(z) =
1

1 + e−z
(3)

The caveat to feed-forward layers is that a feed-forward
layer can only be applied to an input vector of some fixed
length. Our problem does not fit this criteria, since our goal
is to predict the future behavior of the wireless links, using a
sequence of vectors, describing the behaviour of the channels
in the past. The model needs to be able to reason with regard
to the changes in the channels’ quality over time. Recurrent
layers are a family of ANN layers that are specifically de-
signed for working with sequential data. In recurrent layers, a
feedback connection is added to each neuron, which allows it
to access its output value for the data points that have come
before when processing a new one.

Vanilla recurrent layers, the most basic type of recurrent
layers, use multiplication for combining the results of the con-
secutive data points. This method can lead to uncontrollable
fluctuations in the values in longer sequences, resulting in
gradient signals that approach zero or gradient signals that rise
to large numbers. Both cases are disastrous, and the optimizer
fails to reach a solution if either of them is present.

Long Short-Term Memory (LSTM) [20] was one of the
earliest and most successful attempts at tackling this issue.
LSTM neurons use addition and several learnable gates over
the data flow, which can mitigate the stated gradient problems.
However, an LSTM layer is far more complicated than a
vanilla recurrent layer and therefore requires much more
computational resources for both training and inference. Gated
Recurrent Units (GRUs) [21] are a simplified version of
LSTMs that have fewer learnable weights. The structure of
a GRU neuron is illustrated in Fig. 2.

In Fig. 2, r denotes the reset gate of the neuron, which is
trained to drop any information they find useless in deriving
the desired outputs and stopping them from flowing from
previous data points into the next. z, on the other hand, is
the update gate of the neuron, which specifies the amount
of information the previous and current data points contribute
to the output of the neuron. The exact formulations of these
gates are given in Eqn. 4 [21]. In these equations, � denotes
the Hadamad product of the matrices. h and y can be used
interchangeably, as they both represent the output value of the
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Fig. 3. The performed procedure during training and inference. x
denotes the input matrix of the model, containing the interference power
levels for the past tp seconds. p and e denote two 16-D vectors,
representing the outputs of the network and the supervisory signal,
respectively.

neuron. W , U , and b are all adjustable weights that will be
learned from the data.

zt = σ(Wzx
t + Uzh

t−1 + bz)

rt = σ(Wrx
t + Urh

t−1 + br)

ĥt = tanh(Whx
t + Uh(r

t � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� ĥt

(4)

It is important to note that any arrangement of layers and
neurons cannot result in a working model. The structure of
an ANN, which is often referred to as its architecture, must
provide the model with the right amount of freedom to capture
the patterns within the data. The process of finding the optimal
architecture for a dataset and a problem is essentially a fine-
tuning process; trial and error, and instinctive decisions.

V. SELF-SUPERVISED MODEL FOR CHANNEL QUALITY
PREDICTION

Our goal here is to train an ANN that can predict the
channels’ future behavior using measurements made prior
to that moment. Fig. 3 illustrates the data flow through the
model in training and inference. The model’s input, x, is a
sequence of interference power levels measured by the NICE
mechanism, and its output, which we will denote as p, is a 16-
D vector. The elements of this vector correspond to the TSCH
channels. This design choice allows us to employ different
blacklisting strategies. In scenarios where a certain quality of
transmission is to be ensured, bad channels can be identified
with respect to some threshold. On the other hand, if a certain
number of channels need to be available at all times, the top
channels can be chosen based on their scores.

To specify the length of x, we introduce a new parame-
ter denoted as tp. At time t0, the x passed to the model
contains the interference power levels recorded during the
[t0 − tp, t0] interval. Larger values for tp allow the model
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to look further into the past. This might not be a desirable
behaviour, especially in highly dynamic environments with
rapid changes. Furthermore, the interference power levels need
to be stored so that they can be processed by the network, and
hence, increasing tp increases the memory consumption of
the system. Considering the sample rate of NICE (10 Hz), we
found 5 seconds to be a suitable value for tp.

Let e denote a 16-D vector, the supervisory signal for
training the model. The elements of this vector are an indicator
for the quality of their corresponding channels in near future.
We introduce another timing parameter, to control how far
into the future we look when calculating e. We denote this
parameter as tf , so that the interval would be [t0, t0 + tf ]. This
parameter sets an upper bound for how long an HSL suggested
by the network can be expected to be valid. Increasing tf
forces the network to make broad predictions corresponding
to longer periods of time. This would reduce the frequency
of HSL updates, which can be worth the reduced energy
consumption depending on how dynamic the environment is.
We found 5 seconds to also be a reasonable value for tf in
vehicular environments.

In order to calculate the vector e using the raw interfer-
ence power levels, we resort to a differentiable simulation
framework introduced in [7]. This would allow the optimiza-
tion algorithm to interact with the simulation framework,
and hopefully, better understand the dynamics involved in
channel selection. Let us denote the transmission power for
the communication as Ptx, and the interference power on the
communication channel at time t as P tint. Like in [7], the
path-loss model for short-range communications is used for
estimating the strength of the transmitted signal at the location
of the receivers. The Signal-to-Noise Ratio (SNR) for the given
IEEE 802.15.4 link at time t can be formulated as in Eqn. 5.

SNRt[dB] = Ptx[dBm]− α (20.1 + 10 log d)− P tint[dBm]
(5)

In Eqn. 5, d is the distance between the nodes, and Ptx is
the transmission power of the transmitter node. The parameter
α is the path-loss exponent, related to the environment the
link is operating in. In free space, the value of the path-loss
exponent is α = 2, while it gets some higher values for other
environments. For intra-vehicular environments, in which the
experiments are conducted and the dataset is collected, α
has been reported to be around 3.5 [22]. We use this value in
our calculations. We then need to estimate the Bit Error Rate
(BER) of links, for which the notion of Eb/N0 is used. For
some given SNR, the Eb/N0 of the transmission is calculated
using Eqn. 6.

Eb/N0
t
[dB] = SNRt[dB]− 10 log

fb
B

(6)

where, fb and B are bit-rate (in bit per second) and the
bandwidth of the channel (in Hertz). Given this ratio, in the
case of a QPSK modulation and AWGN channel, the BER at
time t can be estimated using Eqn. 7.

BERt =
1

2
erfc

(√
Eb/N0

t

)
(7)

In Eqn. 7, erfc denotes the complementary error function.
If the transmission of a packet of length L (in bytes) starts
at time t, we can calculate the Packet Reception Probability
(PRP) using the formula in Eqn. 8.

PRPt =
8L−1∏
k=0

(
1− BERt+4k[µs]

)
(8)

With the BERs of the link for the [t0, t0 + tf ] time window,
we can calculate a 16-D vector containing either the maxi-
mum or the average BER experienced when each channel was
being used. Using the maximum values pushes the network to-
wards predicting the worst possible behaviors of the channels,
while an average encourages it to take the general behavior of
the channel into perspective. If we denote the output vector
of the neural network as p, the loss function for training the
model can now be formulated as in Eqn. 9.

min
W

H ( (1− p)� e , 0) + λ

16∑
i=1

pi (9)

The bivariate function H presented in Eqn. 9 is known as
Binary Cross-Entropy (BCE) which would rise in its value
as its arguments diverge in theirs. The first argument of this
function is expected to be a vector of probabilistic values,
limited to the [0, 1] range, while its second argument are often
discrete labels, either 0 or 1. The mathematical definition of
this function is provided in Eqn. 10.

H(p, y) =

n∑
i=1

yi log(pi) + (1− yi) log(1− pi) (10)

In Eqn. 9, the first term of the loss function encourages the
model to output higher scores for channels with bad qualities,
to ensure that the dot-product approaches 0. However, the
neural network can blindly output a vector of 1s as p for
any given input to minimize the first term, meaning that the
network would not actually learn to predict channels’ behavior.
Consequently, the second term of the loss function is added
to penalize the network when it outputs high scores for too
many channels. This penalty can be adjusted using a scalar
coefficient, denoted as λ in Eqn. 9. With this penalty, the neu-
ral network is forced to output solutions that strike a balance
between the number of channels that will be blacklisted, which
would limit the number of parallel communications we can
have, and the quality of the remaining channels, which would
affect the probabilities of successful transmissions.

With this formulation, we can train a neural network with
the criteria established earlier in this section. The neural
network architecture consists of recurrent layers, for analyzing
the temporal nature of the input sequences and extracting
useful features from them, followed by feed-forward layers,
which then have to map the extracted features into our desired
scores. The details of the architecture might vary slightly from
one case to another, e.g., when the environment’s dynamics are
more chaotic than usual and if the computation resources are
available.
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The model can be trained using any dataset that contains
noise floor measurements on all 16 channels of TSCH. How-
ever, the exact amount of data required for training the model
is hard to specify, as it depends on the data itself, as well
as the architecture of the network, and the optimizer used for
training it. As we previously stated, we downsample these
measurements before feeding them to the network during
training, to match the sample rate of NICE. However, we
use the original measurements when calculating e for better
precision. The trained model can be loaded onto the edge
nodes in the TSCH network (coordinators) and may be invoked
every tf (or less) seconds. When invoked, it will receive the
noise floors for the past tp seconds, and return a 16-D vector,
predicting how poor each channel is expected to perform. The
blacklisting schema can use these scores to work out the new
HSL.

VI. TRAINING THE MODEL

In our experiments, we used the publicly available real-
world experimental dataset that we presented in [7]. The
dataset is collected inside a moving vehicle in four different
scenarios; while the vehicle was passing near some apartments,
along an office area downtown, in a suburb area, and on a
highway with no buildings around. The noise floors have been
measured for 300 seconds, at a fixed sample rate of 2000 Hz,
on all the 16 channels of TSCH in the 2.4 GHz band. The
measurement setup consists of two stationary IEEE 802.15.4
nodes placed 3 meters apart. These diverse measurement
scenarios can expose the strengths and weaknesses of our
proposed technique in different environments. We train and
evaluate three individual networks, one for each measurement
scenario, to analyze our proposed approach against varying
levels of interference and dynamic behavior.

In order to assess the generalization of the trained models
to unseen data, the networks are trained using 80% of the
measurement signals, corresponding to the first 240 seconds
of each. The remaining 20% is left for the evaluation phase.
We do not use the measurements made while driving on the
highway due to a lack of sufficient interference that can have
any significant adverse effect on the performance of TSCH.
The interference signals are linearly downsampled to 10 Hz to
match the sampling rate of the NICE mechanism. Furthermore,
the values fed into the neural network were re-scaled so that
the mean and the standard deviation of them approaches 0
and 1, respectively. This practice, which is better known as
standardization, is often necessary for stable training. Having
the input values distributed in a small neighborhood of zero
results in better gradient signals, especially in the presence
of activation functions such as the logistic sigmoid or the
hyperbolic tangent [23].

We use the same architecture for all the measurement sce-
narios; two GRU layers, each containing 50 neurons, stacked
on top of one another. They are then followed by a sigmoid-
activated feed-forward layer with 16 neurons as the output
of the network. The models are trained using the RMSprop
optimizer [24], a special variant of gradient descent that speeds
up the training process. The optimizer is set up with a learning

rate of 10−4, a smoothing constant of 0.99, and no momentum.
We also experimented with the Adam optimizer [25], which is
a famous enhancement of the gradient descent algorithm, but
RMSprop proved to be more stable for our cases, compared
to Adam. For models trained with mean BERs as e, λ = 0.05
properly balanced the two terms of the loss function. However,
when using the maximum BERs of the channels as e, the
BCE loss rose to signifacntly higher values. Consequently, we
had to increase λ to 0.55. The models are trained for 1000
iterations, with a batch size of 32 samples. In the calculation
of the BER values of the link, we assumed a low transmission
power of -10 dBm, in order to study the performance of the
protocol in low-power scenarios. All of our experiments were
implemented in Python, using the open-source PyTorch library.
The neural networks were trained on an NVIDIA GTX 1660Ti
GPU (with 6GB of VRAM).

VII. EVALUATION AND PERFORMANCE RESULTS

To investigate the performance of our deep learning-based
channel blacklisting, we test it in various network setups.
Fig. 4 shows the performance of TSCH, ETSCH, and our
method, Intelligent TSCH (ITSCH) over time, trained using
both variations of the loss function discussed in Section V.
Using the data recorded under the three measurement scenar-
ios, we calculate the PRPs of the channels established by the
four techniques, strictly in the last 20% of each recording. This
period of time, which we refer to as the testing period, has not
been observed by the neural networks during their training,
and therefore, the networks’ performance in this period is
a good indicator of their generalization to unseen data. We
further summarize these results in Fig. 5, where we provide
the average PRP of the channels, a metric often referred to as
the PRR of the channel.

In arguably the most dynamic measurement scenario in
the dataset, downtown, both variations of ITSCH outperform
standard TSCH and the ETSCH technique, improving the PRR
of the channels by at most 21% and 8%, respectively. The
same can be said for the suburb, although the fluctuations
in this environment do not quite resemble those in downtown.
The ”bad” periods in the suburb measurements, periods of time
where the performance of TSCH plummets, do not last as long
as they do in downtown. Interestingly, unlike the downtown
environment where the ”mean” variate of the loss function
performed the best, in the suburb, it is the ”maximum” variate
that achieves the highest PRR, 5% and 3% more than standard
TSCH and ETSCH, respectively. Finally, in the apartments
measurements where wild fluctuations in performance are far
less common, ITSCH does not surpass ETSCH in PRR, falling
short by 0.16%. However, the PRR of the channel is still 10%
more than the one established by standard TSCH.

Overall, it can be concluded that in highly stochastic en-
vironments with high levels of interference, ITSCH is able
to surpass ETSCH by a considerable margin. In scenarios
where the fluctuations in channel qualities are relatively low,
ITSCH manages to perform at least as well as ETSCH, and
both of them far exceed the standard TSCH (no blacklisting).
To further compare the three techniques, we estimate their
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Fig. 4. The PRP values of the links established by each protocol over
time. The schemas powered by a DNN manage to generally perform
as well or better than TSCH and ETSCH. These values are further
summarized in Fig. 5.

energy consumption, an important factor when we consider
the networks in which TSCH is primarily used. In this regard,
ITSCH seems to be at a disadvantage, having to carry out
the calculations needed for a neural network. However, the
coordinator of the network is the only node that has to deal
with the model, and coordinators are often not under the
same constraints as the other low-power wireless sensor nodes.
The architectures used in this study are small enough so that
the calculations can take place with the limited resources a
coordinator has access to. As such, we can omit the im-
pact of the neural network in our calculations, leaving only

Fig. 5. The performance of standard TSCH, ETSCH, and ITSCH, using
both variations of the loss function, under different simulation scenarios.
Each box-plot displays the average PRP value, along with the quartiles
of the values. The average PRP of the links is often refereed to as the
PRR or the PDR of the link.

the transceivers in the nodes. We can estimate the energy
consumed by a transceiver during a single slotframe using
Eqn. 11 [13].

E =
[
IEDNEDTED +

1

PRR
[
(IRxNRxTTx)+ (ITxNTxTTx)

]]
×Vcc

(11)
In this equation, the first term in the brackets corresponds

to the energy consumption related to the ED measurements,
which are done for the sake of channel quality estimation.
IED, NED, and TED denote the current drawn by the
transceiver during an ED, the number of EDs performed in
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Fig. 6. The energy consumption of TSCH, ETSCH, and our work
(labeled ITSCH), both using mean BERs and maximum BERs in the
loss function, under various simulation scenarios.

a slotframe, and the duration of time it takes to perform an
ED, respectively. The second term in the brackets estimates the
energy consumed by both ends of a transmission, using similar
notations (IRx and ITx stands for current consumption in the
receive and transmit modes, NRx and NTx are the number of
received and transmitted packets in a slotframe, and TTx is
the transmission time of a packet). Evidently, channels with
lower PRRs consume more energy due to the re-transmissions.
The term VCC denotes the operating voltage of the transceiver.
We use the same values for the currents, time durations and
voltages as in [13]. The results are presented in Fig. 6.

Since, standard TSCH does not perform EDs, NED is set to
zero for it. However, both ETSCH and ITSCH, which perform
EDs regularly with the same setting, consume less energy than
TSCH, showing that the extra energy consumption is more
than made up for by the boost to channel PRR. As a matter of
fact, the only different variable when calculating the energy
consumption of ETSCH and ITSCH variants is the PRR of
the link, meaning that the differences in energy consumption
between the two follow the same trend as their reception rates.
Consequently, in downtown and suburb, where ITSCH variants
outperform ETSCH with regard to average PRP, the energy
consumption of the technique is lower as well. A similar
argument can be made for the third scenario, apartments, for
which ITSCH performs as good as ETSCH, and hits the same
energy consumption levels as ETSCH, as expected.

VIII. CONCLUSION

In this paper, we present a self-supervised learning approach
for training a Deep Neural Network (DNN) that can replace
traditional channel quality assessment metrics used in adap-
tive channel blacklisting techniques for IEEE 802.15.4 Time-
Slotted Channel Hopping (TSCH) networks. To predict the
future behavior of wireless frequency channels, deep neural
networks are designed and trained. The presented approach
allows one to train a DNN for any environment using raw
recordings of interference power levels on all 16 channels of
TSCH on the 2.4GHz ISM band. Using the neural network

predictions, the coordinator can periodically select a subset of
the channels for the hopping mechanism.

We substituted the quality assessment metric used in En-
hanced TSCH (ETSCH), an improvement to TSCH that stays
close to the original protocol and still manages to signifi-
cantly improve the reliability of the network, with a DNN.
We then train and evaluate the modified blacklisting schema
using real-world experimental data collected in three different
environments. The schema performs as well as ETSCH in
the environments with lower average interference levels, but
improves the reliability of the network by 8% and 21%
over ETSCH and TSCH, respectively, in a highly dynamic
environment.
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