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Application: Radio PHY 

radios are real-time applications:  !
•   modems must meet deadlines defined by the standard!
•   throughput, latency requirements!
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extending data flow to meet the requirements

traditional data flow analysis cannot handle:
  latency requirements
  data dependent behavior

but this is required by radio applications.

eg: WLAN packet and timingText
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Variable size N x 4 µs4 µs8 µs 16 µs

Deadline for sending ACK
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Application: Radio PHY!

radios are streaming applications:!
•   receiving/sending virtually infinite data sequences  !
•   iterative schedules with overlapped execution!
•   inter-iteration dependencies!

background motivation variants results conclusion application: radio baseband

  radios are streaming applications
   receiving/sending virtually infinite data sequences

  radios are real-time applications:
  correct operation requires doing things in time
  modems must meet deadlines defined by the standard
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Hardware: Heterogeneous Multiprocessor 



Multi Radio Vision: The Radio Computer!

•  multiple radios run simultaneously on multiprocessor!
•  sharing cores, memory and communication!
•  radios developed and installed independently!
•  each radio meets hard deadlines!

what if radios could share hardware?

the radio computer vision:
 a radio is software running on the radio computer;
 user installs and runs radios just like apps on a PC;
 multiple radios run simultaneously in shared hardware;
 radios are developed in isolation, delivered independently.
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Radio Computer Operating System
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SDR Vision: Software Architecture 

•  provide power-efficient, real-time schedules!

•  support wide variety of radio combinations and transitions!
•  allow post-design updates and add-ons!

•  simplify the radio design process !

what if radios could share hardware?

the radio computer vision:
 a radio is software running on the radio computer;
 user installs and runs radios just like apps on a PC;
 multiple radios run simultaneously in shared hardware;
 radios are developed in isolation, delivered independently.
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Radio Computer Operating System
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Refining the requirements 

real-time guarantees!
•  automated analysis (no manually-derived models)!
•  no scheduling anomalies, no deadlocks, no buffer overruns !
ease of programming/testing/debugging:!
•  correct-by-construction concurrent behavior!
•  code generation for communication, synchronization!
efficiency:!
•  static scheduling whenever possible!
•  static determination of buffer sizes!
•  distributed runtime synchronization (to avoid bottlenecks)!
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Avoiding unpredictable behavior 

Platform:!
!   Resource contention!
!   Unbound time to service from resource…!
!   … or large difference between average and worst case

 provision!
!   Results in: starvation, scheduling anomalies, over-allocation

,…!

Solution: Budgeted arbitration !
!  schedulers with service guarantees in all share points!
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Avoiding unpredictable behavior 

Application:!
!   Non-deterministic functional behavior!
!   Dynamism (data-dependent behavior)!
!   Results in: deadlocks, halting problem, unbounded memory

,…  !

Solution: Restrict programming model !
!  Domain-specific: find right trade-off expressivity vs

 analyzability!



Data Flow  

Src D B C Snk 

E F 

A 

For Real-time Analysis: a composable model for analysis of 
temporal behavior 
For Software Engineering: a concurrent Component Model 
with strong formal properties (as opposed to UML) 



Data Flow 

Actors: computing stations with well-defined data-driven 
activation rules!
Arcs: FIFO channels!
Tokens: Initial data items in Arcs – imply inter-iteration 
dependencies (static DF)!
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Data Flow – Static Analysis 

•  Longest cycle bounds maximum rate. !
•  Execution in bounded buffer space.!
•  There is always a static periodic schedule that achieves 
maximum rate.!
•  Self timed execution upper bounded by static periodic 
schedule.!
•  Monotonic, Linear in timing: No scheduling anomalies. 
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A 



Data flow formalism: function + mapping+ analysis 

Src D B C Snk 

E F 

A 

Src D B C Snk 

E F 

A N1 N2 N3 N4 N5 

N6 
N7 

data flow unifies concurrent application specification & timing analysis of mapping 

                    Programming Model: Specifying Functionality per RAT 

Analysis Model: Modeling Mapping Decisions 

Modeling of buffer sizes, static 
ordering, communication overhead, 
dynamic schedulers. 



Scheduling Policy –  intra vs inter graph 

intra-graph 

•  dependencies known 

•  dependencies are static or
 quasi-static 

•  related rates of execution
 between tasks 

•  shared temporal requirements 

inter-graph!
•  no dependencies!
•  independent start, stop!
•  independent rates!

•  independent timing requirements!

•  contention for resources!
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Scheduling Policy – intra vs inter graph 

intra-graph!
inter-processor synchronization:

 self-timed & data-driven!
intra-processor: quasi-static order !

•  determined at compile time!
•  no scheduler overhead!

inter-graph!
per processor: budget scheduler!
•  guarantees per reservation!
•  isolates graph from interference!
global resource manager!

•  reservation of resources,
 processor binding at graph startup !
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Software Architecture for SDR 

Compile-Time (Budgeting) 
For each graph 

Run-Time (Admission Control) 
For each graph start request 
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Dynamic Scheduler Modeling: TDM 

A 

TDM 

Latency-rate server data flow model 

P: Period of the TDM scheduler 
S(A): Slice allocated to A 
T(A) : Worst-case Execution time of A 

Latency rate model [Wiggers2007]: !
approximation for any starvation-free scheduler!
accuracy depends on the scheduler!

AL AR 

tAL=P-S(A) tAR=P.T(A)/S(A) 



DF Modeling: Composition of TDM arbitrations 

20 
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Latency-rate server model can be used for any starvation-
free/budget schedulers. 
It can for some cases be rather pessimistic. 
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Data flow Modeling: Problem with the LR-Model 

3 12 9 6 18 15 

4 5.. 1 3 2.. ..2 

1 3 2 

PERIOD = 6   SLICE SIZE = 3   EXEC TIME = 2 

Fig: The LR-model over-estimates the worst-case  
temporal behavior of TDM arbitration by a factor of (P/S) 

But do not fear. A model with precise worst-case is on the way! 
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Modeling TDM combined with Static Order 

AL AR 

BL BR 

We can compose a data flow analysis model for a cluster of statically-
ordered actors that share a slice on a TDM scheduler : 

Latency component does not affect local (intra-cluster) communication. 

A 

TDM 

B 



LTE PHY – Channel Estimation 

•  Graph for 4 TX - 1 RX antennas!

•  4 Coarse ChEst paths!

•  CSDF due to position of reference symbols in subframe!

•  1st, 2nd and 5th OFDM symbols!
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WLAN Packet structure and processing 

Can Static Data flow handle this? 

extending data flow to meet the requirements

traditional data flow analysis cannot handle:
  latency requirements
  data dependent behavior

but this is required by radio applications.

eg: WLAN packet and timingText
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Variable size N x 4 µs4 µs8 µs 16 µs

Deadline for sending ACK
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SDF model for WLANWLAN Packet structure and processing 

We can manually design a worst case model for analysis 

Doesn’t work for specification, compilation, or code generation. 

It is difficult, time-consuming, error prone… 

…And how do we guarantee that the model is correct? 
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The right flavor of data flow: Expressivity 
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SRDF 
(HSDF) 

MRDF 
(SDF) 

CSDF 

DDF 

BDF 

SRDF: 
•  deadlock free 
•  self-timed execution is bounded 
by static-periodic schedule with 
max rate 
•  static periodic schedule can be 
built from linear constraints 
•  linear/convex programming! 

CSDF converts to SRDF 
MRDF converts to SRDF 

DDF and BDF are Turing 
complete, impossible to check 
even for deadlock freedom in the 
general case.!

The right flavor of data flow: Analyzability 



DF model for Radio: Mode-Controlled Data-flow 

•  allows (limited) data-dependent behavior. 
•  properties somewhat similar to scenario-aware data flow (TUE) 
•  explicit control 
•  It is a restriction of integer data flow [Buck] 

switch
      1                          2                         3                    mc

drop

sync

    1              2            3
   select1

source

dem dec

sink

    1            2             3
select2

acq

DVB-T Receiver!
3 Modes: !
Sync, Decode, Drop!



Our Computation model: Mode-Controlled Data-flow 

switch
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extending data flow to meet the requirements

traditional data flow analysis cannot handle:
  latency requirements
  data dependent behavior

but this is required by radio applications.

eg: WLAN packet and timingText
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Our Computation model: Mode-Controlled Data-flow 

analysis: monotonic, strict, periodic bound per mode exists. 
bound self timed execution per mode, compute mode transition overhead 
normally limited to specific mode sequences of interest. 
scheduling: quasi-static ordering of actors possible, bounded buffers exist 
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Quasi-static ordering (extension for MCDF) 

•  order of actors inside cluster as static as possible!
•  only run-time decision is mode switching!
•  mode synchronization among clusters handled by FIFOs !
•  broadcast of mode control tokens!
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switch 

LTE PHY Mode-Controlled Data Flow (simplified) 

SRC 

CHEST 

CDEC 

MC 

DCID 

DDEC 

[1,1,0,0,1, 0,0, 
1,1,0,0,1,0,0] 

CDEC 

•  modal behavior combined with cyclo-static behavior 
•  CHEST estimates for 1st sample after processing 6th     
•  analysis can handle it, but programming starts becoming difficult 
•  and what about distributed control? 
•  still needs more syntactic sugar… 
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Demonstrator (2009)  

Collaboration ST-Ericsson, Nokia, NXP.!
All run-time components implemented, including:!
•  Predictable local schedulers;!
•  Fifo-based communication, self-timed execution!
•  Resource manager, w/ runtime task and memory mapping!
Best Paper Award SDR Forum 2009. 
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Messages 

•  data flow: real-time analysis model for concurrent streaming!
•  data flow: concurrent programming model!
•  budget scheduling: independent behavior (also analysis)!
•  automatic generation of analysis model from implementation!
•  right flavor of data flow for an application is domain-specific.!
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