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Overview

• application model
• predictable processor-tile architecture
• processor sharing: compOSe

– scheduling

– APIs

• conclusions
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• conclusions



Recap: context

• FRT, SRT, NRT applications running concurrently on an MPSoC

• FRT application model: streaming 
– tasks that communication through blocking FIFOs/circular 

buffers.
– demand formal performance analysis (latency, throughput 

guarantees)
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guarantees)
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Dataflow models

• fit streaming applications 
• nodes: actors
• edges: unbounded queues between actors
• dots: tokens
• actors have firing rules
• execution time from firing to completion
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• execution time from firing to completion
– no blocking during execution

• any graph, cycles are allowed
• single rate, multi-rate, cyclo-static (CSDF)
• dynamic / variable-rate dataflow



Tasks and firing

while(1) {

//firing rules check

if (data&space) { 

read FIFO1

read FIFO2

…

while(1) {

read FIFO1

compute1(…)

read FIFO2

write FIFO3

compute2(…)

Just an implementation Dataflow-friendly implementation
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• the code within the if statement could execute without 
blocking the processor, following the dataflow model

…

//actual 'task’

compute(…)

…

write FIFO3

write FIFO4 }}

compute2(…)

…

write FIFO4

…

}



Application on the architecture

• compute – on the processor, local memory, and potentially 
also NoC, remote memory.

• read/write FIFO – local memory, NoC, remote memory 

task1
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Performance analysis (requirements)

To analyze such an application end-to-end we need to bound 

the time spend in read,compute,write:

1. predictable resources: bounds on execution time

2. predictable sharing: bounds on response time
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• predictable arbiter

• predictable resource state between requestors.



Requests executed at resources

– task (compute) → processor 
• task = set of instructions

• some instructions: load&store may result in transactions 

(NoC,  memory).

• WCET analysis should work

– transaction → NoC
• predictable: guaranteed maximum latency, minimum 
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• predictable: guaranteed maximum latency, minimum 

throughput

– transaction → memory
• predictable: guaranteed maximum latency, minimum 

throughput

Ideally:
• should not model each instruction entire system analysis.
• tight bounds (accurate models)



Performance analysis (extra requirement)

3. no inter-resource dependencies (decouple resources and 
their analysis models).
– compute does not use multiple resources.

• WCET analysis

– read may result in NoC & memory requests

• the processor has to wait for these data

– write may result in NoC & memory requests
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– write may result in NoC & memory requests

• the processor should not block for these requests (posted writes), 

hence the communication should be performed in a separate thread 

(also a composability request)



Processor-tile design choices

Processor architecture:
1. discard features that are not predictable, e.g., OoO, 

caches with random replacement, etc. (to bound the 
compute time)

Memory hierarchy:
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Memory hierarchy:
2. task code and data fit in local memory 

– compute utilizes only the processor

– optionally: tasks pre-fetched  in and swapped out tile

3. inter-tile communication via DMAs
– no DMA interrupts: the processor polls for DMA ready
– reads are interruptible (for composability)

– DMA with “deep” request queues, so that tasks don’t block 
for writes (optimization)



Processor-tile architecture (i)

• Dual-ported local memory (OK in FPGA)
– otherwise large processor slowdown expected due to arbitration

– the processor has 1 cycle access to local memory

local
memoryprocessor
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Processor-tile architecture (ii)

• Remind: several applications, composable sharing
– composable, predictable arbitration between multiple 

connections and one or more DMA.

local
memoryprocessor
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local
memory
local

memory

Processor-tile architecture (iii)

• or
– 1 local memory & 1 DMA per application

– predictable arbitration between NoC and DMA

– problem: memory fragmentation 

local
memoryprocessor
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Processor-tile architecture (iv)

• shared DMEM and IMEM for all applications/tasks on the tile
• one CMEM per application arbitrated between DMA and NoC
• still some fragmentation, but less (typically CMEMs < DMEM)

I/DMEMprocessor
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Processor-tile architecture (v)

• current local memory organization
• (at least one DMA, CMI, and CMO per application)

I/DMEMprocessor

15Challenge the future

I/DMEM

DMA
tile 1

CMI

processor

CMO

Aethereal
network on chip

processor 
tile N

memory
tile

… …



Processor sharing (i)

• compOSe (light-weight OS) on each processor
1. schedules applications on the processor
2. offers interfaces to the application

• application management, task scheduling, FIFO communication, 
energy management
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Processor sharing (ii)

• timer interrupts to trigger ComOSe and preempt applications
– bounded preemption jitter is enough for predictability
– interrupts at ‘fixed’ duration for composability
– the only interrupts currently supported

– on going work: virtualized interrupts.

I/DMEMprocessor
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Parenthesis: frequency control

• in current implementation the timer is included in VFCU 
(clock and interrupts control unit)
– can scale or gate/ungate the clock of the processors at fixed 

points in time
– also manages timers

I/DMEM

p
_
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k processor
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OS slot

Appl cntxt
save

appl
sch

monitoring
budgeting

cntxt
load

Appl

g
a
te

in
t.
a
ck

u
n
g
a
te

@
ti
m
e

in
t.

se
t 
in
t.
 

@
ti
m
e

u
n
g
a
te

g
a
te

u
n
g
a
te

@
ti
m
e

u
n
g
a
te

processor

20Challenge the future

g
a
te

constant constant constant constant

jitter
boundable

in
t.
a
ck

u
n
g
a
te

@
ti
m
e

in
t.

se
t 
in
t.
 

@
ti
m
e

u
n
g
a
te

g
a
te

u
n
g
a
te

@
ti
m
e

u
n
g
a
te

VFCU

OS slot appl slotappl slot

boundable



Two levels:  
• composable arbitration inter-applications (which is a 

subset of budget-based, which in turn decouples 
application analysis). 

• predictable arbitration intra-application (task scheduling) 
in application time, or OS time (deprecated).

CompOSe scheduling
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in application time, or OS time (deprecated).
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Dataflow task and firing

while (1)

// firing rules check
if (firing_rule()) { 

read FIFO1

read FIFO2

Dataflow-friendly task
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…

// task computation

task_func(…)

write FIFO3

write FIFO4

…

}



while (1)

// firing rules check
if (firing_rule()) { 

read FIFO1

read FIFO2

Dataflow task execution

Dataflow-friendly task

Provided by application designer

Wrapper provided by CompOSe

Wrapper provided by CompOSe

In task scheduler
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…

// task computation

task_func(in, out)

write FIFO3

write FIFO4

…

}

Provided by application designer

Wrapper provided by CompOSe



CompOSe interfaces (overview)

dataflow
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dataflow application

user software

API&wrappers
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Application management API

• add/remove of applications, tasks, FIFOs.
• os_add_application(APP_ID, NBR_TASKS, NBR_FIFOS, 

(task_scheduler_callback) task_sched, param_task_sched);

• os_add_task(ID, APP_ID, ..., 

(task_callback) task_func, (firing_rule_callback) 

firing_rule, ...);

• os_add_fifo(ID, ..., LWC, LRC, RWC, RRC, PROD_BUF, DATA 
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• os_add_fifo(ID, ..., LWC, LRC, RWC, RRC, PROD_BUF, DATA 

_BUFF, ...);

• application management API called:
– statically, at application initialization (privileged code)

– dynamically, by a System Application that loads other applications at 

run-time (on going work).



FIFO API

• during application initialization / init FIFO:
– write_initial_tokens(id);

• during task execution:
– read_fifo(int id, int nbr_tokens, int* buffer);

– write_fifo(int id, int nbr_tokens, int* buffer);

– called by the dataflow task wrapper
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– called by the dataflow task wrapper



Task scheduling API

• during task scheduler:
– int get_prev_task_id()

– void reset_task(int id)

– void set_next_task(int id)

• currently cooperative task scheduling
– task wrapper calls the task scheduler after each task iteration
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– task wrapper calls the task scheduler after each task iteration

• preemptive task scheduling (work in progress)



Application slot

task
scheduler

cntxt
load

write

interruptible

read

prev_tid=get_prev_tid()

reset_task(prev_tid)

compute…

non
int. interruptible

task_func()
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Other computation models
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CompSoC/SDF3 flow

Architecture

Communication

Platform 

Application Code + 
CSDF

Application Code + 
CSDF

SDF3
Resource Req.Resource Req.

Analysis

Mapping Communication
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Conclusions

• predictable, composable architecture
• CompOSe

– implements processor time sharing

• composable between applications

• predictable within an application

– implements APIs 
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– implements APIs 

• develop dataflow, KPN, sequential C applications

• energy and power management per application

• automatic flow to generate hardware and software for 
FPGA prototype
– for FRT includes SDF3 for dataflow analysis

– for all MOCs, from user application 

• provide application, mapping, architecture, communication


