
Predictability in the CoMPSoC platform
- processor-tile

1Challenge the future

Anca Molnos1, Andrew Nelson1, Ashkan Beyranvand Nejad1,

Sander Stuijk2, Martijn Koedam2, Kees Goossens2

1 Delft University of Technology, the Netherlands

2 Eindhoven University of Technology, the Netherlands

Overview

• application model
• predictable processor-tile architecture
• processor sharing: compOSe

– scheduling

– APIs

• conclusions

2Challenge the future

• conclusions

Recap: context

• FRT, SRT, NRT applications running concurrently on an MPSoC

• FRT application model: streaming
– tasks that communication through blocking FIFOs/circular

buffers.
– demand formal performance analysis (latency, throughput

guarantees)

3Challenge the future

guarantees)

task

task

input stream output stream

task

application

Dataflow models

• fit streaming applications
• nodes: actors
• edges: unbounded queues between actors
• dots: tokens
• actors have firing rules
• execution time from firing to completion

4Challenge the future

• execution time from firing to completion
– no blocking during execution

• any graph, cycles are allowed
• single rate, multi-rate, cyclo-static (CSDF)
• dynamic / variable-rate dataflow

Tasks and firing

while(1) {

//firing rules check

if (data&space) {

read FIFO1

read FIFO2

…

while(1) {

read FIFO1

compute1(…)

read FIFO2

write FIFO3

compute2(…)

Just an implementation Dataflow-friendly implementation

5Challenge the future

• the code within the if statement could execute without
blocking the processor, following the dataflow model

…

//actual 'task’

compute(…)

…

write FIFO3

write FIFO4 }}

compute2(…)

…

write FIFO4

…

}

Application on the architecture

• compute – on the processor, local memory, and potentially
also NoC, remote memory.

• read/write FIFO – local memory, NoC, remote memory

task1

6Challenge the future

local
memory

processor tile 1

processor

network on chip

processor
tile N

memory
tile

task2
… …

Performance analysis (requirements)

To analyze such an application end-to-end we need to bound

the time spend in read,compute,write:

1. predictable resources: bounds on execution time

2. predictable sharing: bounds on response time

7Challenge the future

• predictable arbiter

• predictable resource state between requestors.

Requests executed at resources

– task (compute) → processor
• task = set of instructions

• some instructions: load&store may result in transactions

(NoC, memory).

• WCET analysis should work

– transaction → NoC
• predictable: guaranteed maximum latency, minimum

8Challenge the future

• predictable: guaranteed maximum latency, minimum

throughput

– transaction → memory
• predictable: guaranteed maximum latency, minimum

throughput

Ideally:
• should not model each instruction entire system analysis.
• tight bounds (accurate models)

Performance analysis (extra requirement)

3. no inter-resource dependencies (decouple resources and
their analysis models).
– compute does not use multiple resources.

• WCET analysis

– read may result in NoC & memory requests

• the processor has to wait for these data

– write may result in NoC & memory requests

9Challenge the future

– write may result in NoC & memory requests

• the processor should not block for these requests (posted writes),

hence the communication should be performed in a separate thread

(also a composability request)

Processor-tile design choices

Processor architecture:
1. discard features that are not predictable, e.g., OoO,

caches with random replacement, etc. (to bound the
compute time)

Memory hierarchy:

10Challenge the future

Memory hierarchy:
2. task code and data fit in local memory

– compute utilizes only the processor

– optionally: tasks pre-fetched in and swapped out tile

3. inter-tile communication via DMAs
– no DMA interrupts: the processor polls for DMA ready
– reads are interruptible (for composability)

– DMA with “deep” request queues, so that tasks don’t block
for writes (optimization)

Processor-tile architecture (i)

• Dual-ported local memory (OK in FPGA)
– otherwise large processor slowdown expected due to arbitration

– the processor has 1 cycle access to local memory

local
memoryprocessor

11Challenge the future

memory

DMA
tile 1

processor

Aethereal
network on chip

processor
tile N

memory
tile

… …

Processor-tile architecture (ii)

• Remind: several applications, composable sharing
– composable, predictable arbitration between multiple

connections and one or more DMA.

local
memoryprocessor

12Challenge the future

DMADMA

memory

DMA
tile 1

processor

Aethereal
network on chip

processor
tile N

memory
tile

… …

local
memory
local

memory

Processor-tile architecture (iii)

• or
– 1 local memory & 1 DMA per application

– predictable arbitration between NoC and DMA

– problem: memory fragmentation

local
memoryprocessor

13Challenge the future

memorymemory

DMADMA

memory

DMA
tile 1

processor

Aethereal
network on chip

processor
tile N

memory
tile

… …

Processor-tile architecture (iv)

• shared DMEM and IMEM for all applications/tasks on the tile
• one CMEM per application arbitrated between DMA and NoC
• still some fragmentation, but less (typically CMEMs < DMEM)

I/DMEMprocessor

14Challenge the future

I/DMEM

Aethereal
network on chip

DMADMADMA
tile 1

processor

Aethereal
network on chip

CMEM
CMEM
CMEM

processor
tile N

memory
tile

… …

Processor-tile architecture (v)

• current local memory organization
• (at least one DMA, CMI, and CMO per application)

I/DMEMprocessor

15Challenge the future

I/DMEM

DMA
tile 1

CMI

processor

CMO

Aethereal
network on chip

processor
tile N

memory
tile

… …

Processor sharing (i)

• compOSe (light-weight OS) on each processor
1. schedules applications on the processor
2. offers interfaces to the application

• application management, task scheduling, FIFO communication,
energy management

17Challenge the future

OS Application1

timer interrupt

OS Application2

timer interrupt timer interrupt

… …

constant constant constant constant

Processor sharing (ii)

• timer interrupts to trigger ComOSe and preempt applications
– bounded preemption jitter is enough for predictability
– interrupts at ‘fixed’ duration for composability
– the only interrupts currently supported

– on going work: virtualized interrupts.

I/DMEMprocessor

18Challenge the future

I/DMEM

DMA

timer

tile 1

CMI

processor

CMO

Aethereal
network on chip

processor
tile N

memory
tile

… …

Parenthesis: frequency control

• in current implementation the timer is included in VFCU
(clock and interrupts control unit)
– can scale or gate/ungate the clock of the processors at fixed

points in time
– also manages timers

I/DMEM

p
_
cl
k processor

19Challenge the future

I/DMEM

DMA

VFCU

p
_
cl
k

t_clk
PU

tile 1

CMI

processor

CMO

Aethereal
network on chip

processor
tile N

memory
tile

… …

OS slot

Appl cntxt
save

appl
sch

monitoring
budgeting

cntxt
load

Appl

g
a
te

in
t.
a
ck

u
n
g
a
te

@
ti
m
e

in
t.

se
t
in
t.

@
ti
m
e

u
n
g
a
te

g
a
te

u
n
g
a
te

@
ti
m
e

u
n
g
a
te

processor

20Challenge the future

g
a
te

constant constant constant constant

jitter
boundable

in
t.
a
ck

u
n
g
a
te

@
ti
m
e

in
t.

se
t
in
t.

@
ti
m
e

u
n
g
a
te

g
a
te

u
n
g
a
te

@
ti
m
e

u
n
g
a
te

VFCU

OS slot appl slotappl slot

boundable

Two levels:
• composable arbitration inter-applications (which is a

subset of budget-based, which in turn decouples
application analysis).

• predictable arbitration intra-application (task scheduling)
in application time, or OS time (deprecated).

CompOSe scheduling

22Challenge the future

in application time, or OS time (deprecated).

t3OS t1

timer interrupt

OS t1

timer interrupt timer interrupt

… …

appl1 appl2

t2

Dataflow task and firing

while (1)

// firing rules check
if (firing_rule()) {

read FIFO1

read FIFO2

Dataflow-friendly task

23Challenge the future

…

// task computation

task_func(…)

write FIFO3

write FIFO4

…

}

while (1)

// firing rules check
if (firing_rule()) {

read FIFO1

read FIFO2

Dataflow task execution

Dataflow-friendly task

Provided by application designer

Wrapper provided by CompOSe

Wrapper provided by CompOSe

In task scheduler

24Challenge the future

…

// task computation

task_func(in, out)

write FIFO3

write FIFO4

…

}

Provided by application designer

Wrapper provided by CompOSe

CompOSe interfaces (overview)

dataflow

task
sched

energy
manag

task functiontask functiontask function
firing rulefiring rulefiring rule

init FIFOinit FIFOinit FIFO

dataflow application

user software

API&wrappers

25Challenge the future

Task
scheduling API

Power
management API

FIFO (CHEAP)
API

Timer driver Freq. driverDMA driver

Application
data structures

dataflow
task wrapper

Application
management API

MMIOMMIO MMIO

VFCUDMA VFCU

CompOSe

hardware

Application
scheduler

API&wrappers

Application management API

• add/remove of applications, tasks, FIFOs.
• os_add_application(APP_ID, NBR_TASKS, NBR_FIFOS,

(task_scheduler_callback) task_sched, param_task_sched);

• os_add_task(ID, APP_ID, ...,

(task_callback) task_func, (firing_rule_callback)

firing_rule, ...);

• os_add_fifo(ID, ..., LWC, LRC, RWC, RRC, PROD_BUF, DATA

26Challenge the future

• os_add_fifo(ID, ..., LWC, LRC, RWC, RRC, PROD_BUF, DATA

_BUFF, ...);

• application management API called:
– statically, at application initialization (privileged code)

– dynamically, by a System Application that loads other applications at

run-time (on going work).

FIFO API

• during application initialization / init FIFO:
– write_initial_tokens(id);

• during task execution:
– read_fifo(int id, int nbr_tokens, int* buffer);

– write_fifo(int id, int nbr_tokens, int* buffer);

– called by the dataflow task wrapper

27Challenge the future

– called by the dataflow task wrapper

Task scheduling API

• during task scheduler:
– int get_prev_task_id()

– void reset_task(int id)

– void set_next_task(int id)

• currently cooperative task scheduling
– task wrapper calls the task scheduler after each task iteration

28Challenge the future

– task wrapper calls the task scheduler after each task iteration

• preemptive task scheduling (work in progress)

Application slot

task
scheduler

cntxt
load

write

interruptible

read

prev_tid=get_prev_tid()

reset_task(prev_tid)

compute…

non
int. interruptible

task_func()

29Challenge the future

reset_task(prev_tid)

set_next_task(next_tid)

read_fifo(…) write_fifo(…)

user codeuser code dataflow
task

wrapper

dataflow
task

wrapper

dataflow
task

wrapper

scheduling_policy()

firing_rule()

task_func()

Other computation models

dataflow

task
sched

energy
manag

task functiontask functiontask function
firing rulefiring rulefiring rule

init FIFOinit FIFOinit FIFO

dataflow application

user software

API&wrappers

task
sched

energy
manag

init FIFOinit FIFO

task functiontask functiontask function

init FIFO

KPN application

30Challenge the future

Task
scheduling API

Power
management API

FIFO (CHEAP)
API

Timer driver Freq. driverDMA driver

Application
data structures

dataflow
task wrapper

Application
management API

MMIOMMIO MMIO

VFCUDMA VFCU

CompOSe

hardware

Application
scheduler

API&wrappers

CompSoC/SDF3 flow

Architecture

Communication

Platform

Application Code +
CSDF

Application Code +
CSDF

SDF3
Resource Req.Resource Req.

Analysis

Mapping Communication

31Challenge the future

Platform
Instantiation

Xilinx files

VHDL

NoC
Configuration (C)

Platform bit
file

Platform bit
file

Compose

Tile Code

Mapping Communication

Genapp

Make run

Conclusions

• predictable, composable architecture
• CompOSe

– implements processor time sharing

• composable between applications

• predictable within an application

– implements APIs

32Challenge the future

– implements APIs

• develop dataflow, KPN, sequential C applications

• energy and power management per application

• automatic flow to generate hardware and software for
FPGA prototype
– for FRT includes SDF3 for dataflow analysis

– for all MOCs, from user application

• provide application, mapping, architecture, communication

