
© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 1

1

Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

Tutorial on
Predictability and Composability

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

1
programme

13.00-13.30 Composable Timing and Energy in CompSOC (Kees Goossens).
13.30-14.15 Modeling software defined radio applications with dataflow (Orlando Moreira)
14.15-14.45 Predictable MPSoC architectures – techniques (Benny Akesson)
14.45-15.15 Predictability in the CoMPSoC platform – processor tile (Anca Molnos)
15.15-15.45 Break
15.45-16.30 Hands-on session using the SDF3 dataflow analysis and mapping tool set

 (Sander Stuijk)
16.30-17.00 SDF3/CompSOC demonstration and Q&A

all tutorial material will be available to you here & online

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 2

2

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

2
the CompSOC/SDF3 team

•  Eindhoven university of technology
–  Benny Akesson
–  Martijn Koedam
–  Radu Stefan
–  Sven Goossens
–  Manil Dev Gomony
–  Shubhendu Sinha

•  Delft university of technology
–  Anca Molnos
–  Arnaldo Azevedo
–  Karthik Chandrasekar
–  Davit Mirzoyan
–  Ashkan Beyranvand Nejad
–  Andrew Nelson
–  Pavel Zaykov

•  in close collaboration with the dataflow research (SDF3) at TU/e
–  Sander Stuijk
–  Marc Geilen
–  and many others

This research is supported by
EU grants T-CTREST, Cobra

and NL grant NEST.
Parts of the platform were
developed in COMCAS,

Scalopes, TSAR, NEVA, MESA.

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

3
more information

•  CompSOC, in Multiprocessor System-on-Chip. Huebner (ed), Springer, 2010
•  Aethereal real-time NOC, DAC’10
•  Predator real-time DRAM memory controller, DATE’11
•  CompOSe RTOS, MICPRO’11
•  composable power management, SAMOS’11
•  SDF3, DAC’06 Stuijk, et al. http://www.es.ele.tue.nl/sdf3/

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 3

3

Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

Composable
Timing and Energy
in CompSOC

Kees Goossens
& the CompSOC/SDF3 team

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

5
trend: embedded systems

•  phones, game consoles, cars, refrigerators, buildings, ...
•  interaction with physical world è real-time requirements

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 4

4

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

6
trend: multiple applications on one device

•  audio, video, graphics, games, artificial intelligence, internet, ...
•  different application domains have diverse

–  requirements
–  methodologies

•  independent software vendors
•  use cases

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

7
problem: design time

•  systems are complex
•  time is short

•  it takes too long
•  getting worse

•  monolithic verification after integration
–  hardware, multiple applications

•  circular verification
–  who to blame for errors?

m
on

ey

time

start
design

start
selling

first
profit

end of
life

+

-

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 5

5

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

8
goal & approach

•  reduce SOC design effort

•  independent design, verification, and deployment per application
–  application as the unit of verification & re-use

•  composability
•  predictability

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

9
composability

•  virtual platform per application
•  space, time, energy budgets

•  design, verify, deploy in a virtual platform
•  no interference

–  when integrating or switching use cases

independent
 2N + 2N + 2N + 2N

inter-dependent
 2N x 2N x 2N x 2N è

è

1

2 3

4

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 6

6

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

10
composability

•  time-division multiplex virtual platforms
•  no interference

–  space, time, energy

inter-application scheduling:
hypervisor, RTOS, …

FRT radio virtual platform

virt.
proc.

virt.
interc.

virt.
mem.

SRT video virtual platform

virt.
proc.

virt.
interc.

virt.
mem.

processor interconnect memory processor interconnect memory

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

11
composability & predictability

•  programming model, scheduling, power management per application
•  for RT use predictable schedulers, and associated real-time formalism

FRT radio virtual platform

processor interconnect memory

intra-application scheduling
& power management

SRT video virtual platform

inter-application scheduling

processor interconnect memory

virt.
proc.

virt.
interc.

virt.
mem.

virt.
proc.

virt.
interc.

virt.
mem.

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 7

7

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

12
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

13
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

•  processors, interconnect, memories
•  applications, tasks, transactions

è

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 8

8

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

14
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM

P C S

interconnect processor SRAM DRAM

è
•  code & data fit in local memories
•  no proc. – cache – NOC – memory

dependencies, etc.
•  NOC is one resource

X X

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

15
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM

P C S

interconnect processor SRAM DRAM

•  no task migration
•  use DMA for remote memory loads

è

task

DMA
transaction
over NOC

memory
transaction

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 9

9

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

16
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

è

•  preemption
•  scheduling interval, period
•  time-division multiplexing (TDM)
•  no interference between applications

application scheduling

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

17
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

è

•  resources have different
–  service units, periods
–  cost of preemption

•  GALS, DVFS
•  small service units è

non-determinism

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 10

10

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

18
composability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

è

•  on processor only
•  separated scheduling &

power management
–  trusted system inter-app
–  untrusted user-defined intra-app
–  time, energy, and power budgets

intra-application task scheduling

application scheduling

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

19
CompSOC

user
space

application 2

application 1

T1 T2 T1 T2 T3

task sch. PM task sch. PM

application 3

application 1

T3 T4 T5 T6

task sch. PM task sch. PM

software

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 11

11

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

20
CompSOC

user
space

system
space software

CompOSe RTOS

application scheduler (TDM)

application 2

application 1

T1 T2 T1 T2 T3

task sch. PM task sch. PM

CompOSe RTOS

application scheduler (TDM)

application 3

application 1

T3 T4 T5 T6

task sch. PM task sch. PM

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

21
CompSOC

local
memory

DMA VFCU

pc
k tck

PMU

tile

user
space

system
space software

tile memory
(controller) … …

CMI

processor

CompOSe RTOS

application scheduler (TDM)

hardware

application 2

application 1

T1 T2 T1 T2 T3

task sch. PM task sch. PM

NI

R

NI NI NI NI
R

R
R R R R

CompOSe RTOS

application scheduler (TDM)

application 3

application 1

T3 T4 T5 T6

task sch. PM task sch. PM

CMO

Aethereal
network on chip

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 12

12

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

22
predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

model the application, resources, dependencies, binding, ...

è

è

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

23
predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis

interconnect processor SRAM DRAM

P C S

interconnect processor SRAM DRAM

è

•  worst-case execution time of a
request on the unshared resource
WCET = fn(request,resource)

•  compositional

WCET = fn(request,resource)

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 13

13

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

24
predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

è

•  worst-case response time takes
resource sharing into account
WCRT =~ WCET(t,r) * period / budget

•  compositional

WCRT =~ WCET(t,r)
 * 4/2

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

25

WCRT =~ WCET(t,r)
 * 4/1
 * 4/2

predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis

interconnect processor SRAM DRAM

t

interconnect processor SRAM DRAM

è

•  WCRT takes inter-app and intra-app
resource sharing into account
WCRT =~

 WCET(t,r)
 * app_period / app_budget
 * task_period / task_budget

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 14

14

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

26
predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis è

•  use the WCRT of each actor
•  cyclo-static dataflow

–  scenario aware
•  SDF3 methods and tools

interconnect processor SRAM DRAM interconnect processor SRAM DRAM

400 100 10 15

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

27
CompSOC

local
memory

DMA VFCU

pc
k

tile

user
space

system
space software

CMI

processor

CompOSe RTOS

application scheduler (TDM)

hardware

application 2

application 1

T1 T2 T1 T2 T3

task sch. PM task sch. PM

NI

R

NI NI NI NI
R

R
R R R R

CompOSe RTOS

application scheduler (TDM)

application 3

application 1

T3 T4 T5 T6

task sch. PM task sch. PM

CMO

Aethereal
network on chip

local
memory

DMA VFCU

pc
k

tile

CMI

processor

CMO

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 15

15

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

28
CompSOC

local
memory

DMA VFCU

pc
k

tile

user
space

system
space software

CMI

processor

CompOSe RTOS

application scheduler (TDM)

hardware

application 2

application 1

T1 T2 T1 T2 T3

task sch. PM task sch. PM

NI

R

NI NI NI NI
R

R
R R R R

CompOSe RTOS

application scheduler (TDM)

application 3

application 1

T3 T4 T5 T6

task sch. PM task sch. PM

CMO

Aethereal
network on chip

local
memory

DMA VFCU

pc
k

tile

CMI

processor

CMO

10 3

10

400 100
300

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

29
predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis è

•  buffer sizes & flow control
•  latency-rate models of NOC, DRAM
•  application throughput = 1/MCM

–  MCM=max. cycle mean

400 100 10 10

task 1 task 2 DMA NOC

300 3

task 3

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 16

16

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

30
CompSOC

local
memory

DMA VFCU

pc
k

tile

user
space

system
space software

memory
(controller)

CMI

processor

CompOSe RTOS

application scheduler (TDM)

hardware

application 2

application 1

T1 T2 T1 T2 T3

task sch. PM task sch. PM

NI

R

NI NI NI NI
R

R
R R R R

CompOSe RTOS

application scheduler (TDM)

application 3

application 1

T3 T4 T5 T6

task sch. PM task sch. PM

CMO

Aethereal
network on chip

local
memory

DMA VFCU

pc
k

tile

CMI

processor
hardware

CMI/O

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

31
predictability

1.  resources & users
2.  no resource-resource dependencies
3.  taskèresource binding is a function
4.  composable sharing
5.  unaligned scheduling intervals & periods
6.  optional: 2-level scheduling
7.  formal analysis è

•  buffer sizes & flow control
•  latency-rate models of NOC, DRAM
•  application throughput = 1/MCM

400 100 10 10

task 1 task 2 DMA NOC DRAM

300 3 15 1 ...

task 3

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 17

17

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

32
design flow

•  the SDF3 dataflow framework

•  automatic generation of
–  hardware: processor tiles, NOC, memory controllers

•  for cyclo-static dataflow applications
–  configurations:

•  actor-resource binding, buffer sizes, RTOS scheduling interval,
scheduler settings (TDM slots, CCSP priorities, etc.), ...

–  software drivers:
•  to load the configurations on the hardware at run time

–  end-to-end application throughput and latency analysis

•  FPGA prototype

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

33

33 “make bootable”

Compaan/LIACS

NLP (C)

CSDF + C

Architecture

Aethereal flow

SDF3

tools, tools, tools, ...

Aenoclib
Xilinxproj

VHDL Hardware & arb.
configuration (C)

Communication

WCET
Actor mem. req.

Resource req.
Analysis

Compose

Mapping

Code compilation

Binary code
Config data

Xilinx files

file

Existing
Tool

Missing
Tool

Legend Application flow

Hardware
flow

Mapping
flow

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 18

18

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

34
salient points: processor & CompOSe RTOS

•  tracking of time, progress, energy, power, & slack
•  fast DVFS, e.g. NXP [Pineda] or CEA/LETI [Vivet]
•  constant scheduling interval

wake up
@ WCET

WCET @ fmax

ET f0

halt

program
wake up

variation is removed

app1 @ f1 app2 @ f2

interrupt

ISR + OS

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

35
salient points: Aethereal NOC

•  global distributed scheduler (TDM)
–  single pipelined resource
–  fewer, smaller buffers
–  one level of scheduling

•  best cost : performance trade-off
•  latency-rate dataflow model, incl. end-to-end flow control

counter on data consumption and the maximum latency until
the credits are seen by the NI scheduler, and (2) the
maximum number of cycles without any slots reserved. The
second term, up(fc), corresponds to the time required in
the router network to return the credits to the producer NI.
With data and credits available, it only remains to bound
the time until the data are available in the consumer buffer.

Similar to the injection of credits, ud (td) ¼ ud ,NI þ dd (td),
bounds the latency experienced by a data word in the sending
NI. The latency consist of: (1) the number of cycles before a
word that is accepted by the NI is seen by the scheduler, and
(2) the worst-case latency for data. The fourth and last term is
attributable to the router network in the forward direction,
which adds a latency of up(fd).

The model in Fig. 4a is sufficient to model the NoC
channels and perform buffer sizing and application-level

performance analysis. It is, however, overly conservative as
it does not distinguish between credits and data, and
assumes a worst-case arbiter state for every data and credit
item that is sent. Note in particular that only latencies
appear in the model. The number of slots reserved, for data
as well as credits, are not taken into account.

Next, we show how it is possible to refine the model along
two different axes. First, by looking over a larger interval we
can create less conservative models. If data/credits arrive fast
enough, we only have to assume the worst-case state for the
first item. For subsequent items, we have more knowledge
about the state [37]. This leads to a model where latency
and rate is split. Secondly, by distinguishing between the
forwarding of data and return of credits, we capture the fact
that the two happen in parallel. This leads to a model
where data and credits are split. Finally, we present a
model that combines both these refinements.

Figure 4 Different channel models
a Data and credits joined
b Data and credits joined, latency and rate split
c Data and credits split
d Data and credits split, latency and rate split

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 5, pp. 398–412 405
doi: 10.1049/iet-cdt.2008.0093 & The Institution of Engineering and Technology 2009

www.ietdl.org

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 19

19

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

36
salient points: Predator DRAM controller

1.  predictable memory patterns
2.  credit-controlled static priority (CCSP)

–  decoupled latency & rate
–  decoupled allocation granularity & latency
–  no over-allocation

pattern-based
command
generator

CCSP
scheduler

1 2

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

37
salient points: Predator DRAM controller

•  predictable è composable
–  delay ET of responses to WCRT

pattern-based
command
generator

CCSP
scheduler

memory controller memory
release

@ WCRT

arrival time

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 20

20

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

38
(current) limitations

•  multiple use cases fully supported by NOC only
•  supported programming models

–  cyclo-static & variable-rate dataflow
–  Kahn process networks

•  data and code must fit in local tile memories
–  no caches, or else flush on preemption

•  no I/O virtualisation
•  no external interrupts
•  processor interrupt reserved for RTOS

–  pre-emptive intra-application task scheduling prototyped
•  no memory protection

–  time, energy, and power budgets, but no space budget
•  DVFS simulated on FPGA

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

39
conclusions

•  reduce SOC design effort

•  independent design, verification, and execution per application

–  application as the unit of verification & re-use

•  composability
•  predictability

•  application-specific scheduling & power management
–  any mix of NRT, SRT, FRT

•  design flow (SDF3, Aethereal)
•  VHDL prototype
•  used in teaching MSc embedded systems lab

© Kees Goossens <k.g.w.goossens@tue.nl>
Eindhoven University of Technology 21

21

© Kees Goossens
Electronic Systems

TU/e tutorial
2012-01-27

40
end

for further information
Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

