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The Halide DSL and compiler have enabled high performance code generation for image processing pipelines
targeting heterogeneous architectures through the separation of algorithmic description and optimization
schedule. However, automatic schedule generation is currently only possible for multi-core CPU architectures.
As a result, expert knowledge is still required when optimizing for platforms with GPU capabilities. In this
work, we extend the current Halide Autoscheduler with novel optimization passes in order to efficiently
generate schedules for CUDA-based GPU architectures. We evaluate our proposed method across a variety
of applications and show that it can achieve performance competitive with that of manually tuned Halide
schedules, or in many cases even better performance. Experimental results show that our schedules are on
average 10% faster than manual schedules and over 2x faster than previous autoscheduling attempts.
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1 Introduction

Code generation for image processing pipelines remains a challenging problem due to the increas-
ing need for high performance as well as the complexity of modern hardware platforms. Image
processing applications usually require developers to have expert knowledge of both the algorithm
that needs to be implemented, as well as the behavior of the underlying platform that will be
used. These platforms are usually of heterogeneous nature, with a multi-core CPU with SIMD
extensions acting as a host and a dedicated or onboard GPU unit acting as an accelerator. In the
context of image processing pipelines, GPUs can often be more than an order of magnitude faster
than a traditional CPU architecture [3]. As a result, developers have to spend a lot of manual effort
in order to provide efficient implementations of each pipeline and manage host and accelerator
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communication. This effort usually has to be repeated each time an algorithm gets designed or
modified or a new target platform has to be used.

Modern compilers and languages attempt to alleviate this issue by using libraries with predefined
manual optimized implementations of the most popular image processing algorithms [17], or by
allowing developers to specify their applications in a general-purpose, high-level language. Such
an example is the Julia language which uses the LLVM CUDA backend [5] to generate code for
NVIDIA GPU architectures, enabling easier offloading for applications through a general purpose
language.
Domain specific languages (DSLs) have also proven to be invaluable for efficient GPU code

generation. These languages often incorporate a syntax that allows for both quicker exploration
of the optimization space, as well as offloading parts of the application to the GPU extensions of
the platform. Most of these DSLs also employ schedulers that attempt to automatically optimize
an algorithm for the given hardware. Such schedulers usually fall into one of the following two
categories: analytical models that use heuristics and cost functions to generate a solution [12, 21]
and autotuning frameworks that iteratively try different configurations in the search space and
choose the best performing one [20, 26].

Halide [20] is one of the most prominent of these DSLs that targets image processing applications.
It enables efficient exploration of the design space by separating the algorithmic description of a
pipeline from its optimization schedule. Its compiler can generate code for the host as well as any
GPU (as well as some extensions) that may be present on the platform. The optimization schedule
of an application dictates the transformations that need to be applied on the code in order to
maximize performance. Moreover, through the use of special keywords/directives in the schedule,
parts of the pipeline may be offloaded to an accelerator without altering the original description
of the application. This distinction of functional description and schedule aims to increase code
portability, maintainability and readability.
Generating an efficient optimization schedule involves dealing with a trade-off space between

parallelism, redundant computation and locality [20]. Due to the near-infinite number of possible
optimizations, even for small pipelines, it is extremely challenging to find a point in the design
space that results in near-optimal performance. In an attempt to tackle this issue most automatic
approaches limit the search space by employing an overlapping tile analysis that attempts to
maximize parallelism at the cost of extra recomputation [13]. Furthermore, unlike CPU platforms,
GPU based architectures impose strict constraints on the schedule that make many schedules
invalid. Such constraints are the maximum number of threads per block as well as the maximum
shared memory per Streaming Multiprocessor (SM) which may vary per architecture or Compute
Capability (although usually some parameters remain constant). Developers have to keep such
constraints in mind when determining the proper tile sizes for their implementations, as they can
have a severe impact on performance.

Halide currently employs an automatic scheduler that was first proposed by Mullapudi et al [13]
and was later further updated by the community [8]. Recently, a new learned autoscheduler that
combines learning and autotuning [1] was used to broaden the search space compared to prior
work, in order to generate schedules for multi-core CPU platforms. Many other schedulers were
proposed over the years but they are focused at CPU schedule generation and are therefore unable
to use the GPU if it is available [23, 24] or exclude key optimizations from their schedule space (e.g.
no fusion being considered) [10].

In this work we make the following contributions:

(1) We extend the current autoscheduler of Halide master [8] with a new analytical cost model
that considers GPU specific parameters when generating optimization schedules.
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(2) We perform fast design space exploration by eliminating uninteresting and invalid configura-
tions without evaluating the equivalent schedules while ensuring that the final schedules
meet all constraints imposed by the platform.

(3) We introduce a set of heuristics that enable nested fusion, extending to possible solutions
outside the traditional optimization space where computation of each group’s intermediate
stages is always placed relative to the group’s output stage and always set to the block level
of the consuming loop nest. Nested fusion reduces the shared memory requirements of the
schedule configuration, allowing previously computed values to stay in local registers.

(4) We evaluate our approach across various applications and test it on two different CUDA based
platforms. Experimental results show a significant performance improvement over previous
attempts (over 2x) at automatic GPU scheduling while our solutions remain competitive or
are even better than the manual schedules written by Halide experts (around 10% faster).

(5) We implement our method as an extension over the previous CPU autoscheduler reusing
parts of its analysis in an effort to ensure compatibility with the current Halide versions.

The rest of this work is organised as follows: Section 2 discusses relatedwork. Section 3 establishes
the search space and scope of our approach. Section 4 presents the proposed method, while Section 5
demonstrates the experimental results that were obtained. Possible future work and conclusive
remarks are discussed in Section 6.

2 Related Work

This section discusses related work on optimization strategies for image processing applications
and GPU code generation. We divide this section into three parts: a) Common loop transformations
used to optimize loop nests of image processing pipeline stages, combinations of which are often
used in automatic scheduling attempts, b) prior automatic scheduling for Halide pipelines and their
limitations for GPU schedule generation, c) other optimization strategies for efficient GPGPU code
generation in the image processing domain as well as general purpose compilers.

2.1 Loop transformations

Most scheduling approaches for image processing pipelines focus on a combination of loop trans-
formations and optimizations to exploit parallelism and avoid costly memory accesses. The most
common of these transformations are loop fusion and tiling. Loop fusion can enable other opti-
mizations by increasing locality between production and consumption of intermediate values [11].
In the context of GPU code generation, fusion can help avoid global memory accesses by merging
multiple kernels, increasing performance in memory bound applications by introducing redundant
computations and ensuring that data used across consecutive, merged stages of the pipeline remain
in the shared memory or local caches [18, 28, 29].
Loop tiling is often used alongside kernel fusion to exploit parallelism and enable both spatial

and temporal reuse across stages. Tiling has been extensively used to optimize applications in the
image processing domain targeting either CPU or GPU based architectures. Most such approaches
focus on the optimization of affine programs, using what is commonly called an overlapping
tiles analysis that executes one thread block per tile, interleaving the computation of producing
stages at the block level of the consuming loop nest and storing all pixels computed into the
shared memory [9, 22]. Tile sizes are often chosen through a cost function that attempts to model
the performance of the underlying architecture while taking into account key CPU parameters
(hardware prefetching, SIMD vector units, number of cores) or GPU specific parameters (register and
shared memory usage, achieved occupancy) [16, 24]. Our model considers even more architecture
specific parameters, such as the thread block size, the total number of global memory accesses,
active streaming multiprocessors and threads per stage while extending the kernel fusion space
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by allowing computation of producing stages to be placed at depths lower than the block level,
reducing the shared memory requirements of the schedule and allowing values to be placed in the
constant memory and registers instead.

2.2 Halide Autoscheduling

Automatic scheduling for Halide pipelines has been investigated a number of times in the past.
Halide originally used an autotuner [20] that was later replaced with a more optimized one that
uses genetic algorithms in order to find an efficient schedule [2]. However, this approach was unable
to converge to optimal solutions especially for complex large pipelines. An analytical heuristic
based model was later introduced by Mullapudi et al [13] which uses an overlapping tile analysis
along with a greedy grouping/merge algorithm, which enables fast exploration of the design space
and generation of optimization schedules. Its search space is limited to tile sizes that are powers
of two (8 to 256), stages can either be fully inlined (completely concatenating the statements of
producers and consumers), computed in a breadth-first manner, or interleaved at the innermost
inter-tile level of the group output (overlapping tiles). This method was extended by the Halide
community and after having its cost model updated it is one of the supported autoschedulers in the
Halide master [8]. While the original publication shows promising results on GPU architectures as
well, that part of the scheduler was never integrated into the Halide master. We extend the Halide
master scheduler with a new analytical model and analysis passes that enable (i) GPU schedule
generation, (ii) a larger tiling and kernel fusion solution space than prior approaches, as well as
(iii) schedule requirements that ensure that the final solution adheres to the constraints of the
underlying hardware, all without sacrificing design/compile time.

Recent analytical models [23, 24] tried to extend the search space considered while attempting to
model cache and hardware prefetching behaviors. The analytical model proposed by Sioutas et al
[24] attempts to quickly generate efficient schedules through the use of heuristics while maintaining
a larger search space (sliding window optimizations) compared to the one explored by both the
Mullapudi et al [13] and Halide master [8] autoschedulers. However, both above models [23, 24]
along with the associated heuristics were tuned to CPU behavior with large caches, and due to
favoring sliding window optimizations, they are incapable of exploiting the massive parallelism
available on GPU architectures without sacrificing performance to thread synchronization overhead.
Finally, Adams et al [1] investigated a learned model that used random pipelines as training

data in order to train a hybrid model for x86 multi-core CPUs. Its search space is much larger
than prior non-autotuning attempts, but retraining and changes to the search space are needed
for more efficient GPU-valid schedules. The authors report preliminary results compared to the
Li et al scheduler [10] (29 to 33% faster) in CUDA based platforms but without yet retraining for
GPUs. The latter [10] is the only functional autoscheduler for GPUs where tiling is applied to stages
independently while stages themselves are either set to root (breadth-first implementations) or
inline. While this can serve as a good baseline for an optimization schedule, stage/kernel fusion is
not considered at all and solutions are often far from optimal or inferior to the manually tuned ones.
This paper extends the current CPU scheduler present in Halide master [8] with new heuristics
and an updated analytical model that considers a broader space along with GPU parameters when
generating optimization schedules for Halide pipelines.

2.3 Other DSLs and approaches

Besides Halide, there have been several other DSLs with GPU offloading support. Hipacc [12] is
similar to Halide, as it can generate code for both multi-core CPUs as well as GPUs, while employing
an autoscheduling framework in order to optimize the final code. This framework was recently
extended in [19] with a novel kernel fusion model that tries to interleave computation of stages
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within the pipeline, but unlike our approach, loop tiling and interchange is not considered in the
model.

Forma [21] is another DSL that behaves similar to Halide and offers an integrated autoscheduler
as well. It supports CUDA (PTX) code generation and can cover a large set of image processing
applications. However, its primary optimization strategy is to generate code in such a form that the
back-end compiler (nvcc) will be able to efficiently optimize.

PolyMage [14] is a DSL comparable to Halide that relies on the polyhedral framework and also
targets image processing pipelines. It combines autotuning with heuristics in order to automatically
generate schedules. However unlike our approach, tile sizes are limited to powers of two and stages
are always fused at the innermost inter-tile level of their consumers (overlapping tiles analysis).
Many other DSLs focus on optimizing tensor operations and only a subset of the algorithms

found in traditional image processing applications. Such are for example TVM [6] and Tensor
Comprehensions [26]. TVM focuses on local optimizations for single operators in the context
of deep learning. Developers define an optimization space and the compiler can automatically
determine which optimizations should be applied. Tensor Comprehensions uses a front-end that
is similar to the one used by Halide and its intermediate representation, but it replaces Halide’s
interval analysis with a polyhedral representation. Automatic optimization is enabled through
autotuning across various possible schedules. Our method uses an analytical model and heuristics
and does not require autotuning to generate efficient schedules, thus enabling faster design time
and cross-compilation.

Outside the scope of DSLs, polyhedral compilers are often used to optimize image processing and
tensor or stencil operations in GPUs [4, 16, 27]. These compilers employ polyhedral transformations
in order to optimize affine programs. They aim to maximize parallelism through proper tile size
selection but their application is limited to small-scale algorithms (i.e. GEMM based kernels) and
they are unable to express many of the trade-offs explored in the above non-polyhedral DSLs like
introducing redundant computations in an attempt to further increase locality.

3 Problem Statement

Halide pipelines can be described as DAGswhere each node of the graph represents a Halide function
(Func), or stage of the pipeline. Each stage can be defined as a rectangular n-dimensional array, the
allocation and size of which is determined/inferred by the compiler based on the dependencies
with its consuming stages and the schedule. Each stage can have multiple dependencies on input
images/buffers or other preceding stages.
As an example consider the graph shown in Figure 1a which represents an arbitrary pipeline

consisting of 11 nodes or functional stages. In a naive implementation where the granularity of all
stages is set to root each producer would be evaluated once and stored into a buffer to be consumed
later. A naive implementation of this pipeline would require a separate CUDA kernel to be launched
for each stage, storing all computed pixels necessary for the following stages in large buffers/arrays.
In GPU terms that would result in multiple accesses to the global memory and the local caches
(depending on the size of the buffers, as well as the dependencies between the stages). In other
words, each edge would represent a number of global memory accesses equal to the allocation of
the preceding node (buffer).
An example of such an implementation for part of the pipeline can be seen in Figure 2. The

definitions of stages K, H, W and Z along with an example schedule that launches a separate CUDA
kernel for each of them is seen in Figure 2a. The compute_root scheduling directive tells the compiler
to fully compute a stage before moving to the next one. When paired with the gpu_tile command,
the loop nest that corresponds to the surrounding stage will be tiled and the inner intra-tile loops
will be mapped to CUDA threads, while the outer inter-tile dimensions will be mapped to CUDA
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(a) Initial DAG: Each node rep-
resents a functional stage of the
pipeline, each edge represents
a number of global memory ac-
cesses. A different CUDA ker-
nel is launched for each stage.
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(b) Transformed DAG: Trivial
stages are inlined into their
consumers by concatenating
their definitions. The number
of global memory accesses can
be reduced at the cost of redun-
dant computation.
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(c) Optimized DAG: The
pipeline is split into segments
in order to increase locality.
Each group/segment corre-
sponds to a different CUDA
kernel.

Input/Output

Func/Stage

Inlined Stage

Group

Global access

Shared access

Fig. 1. Generic Pipeline Example: Trivial stages are inlined into their consumers before splitting the pipeline into
smaller groups of stages which are assigned an optimization schedule.

blocks. As a consequence, the loop nest of stage H gets tiled such that the intra-tile loops x_i and
y_i have sizes 8 and 6 iterations respectively or a threadblock of size 8x6. The equivalent CUDA
pseudo-code can be found in Figure 2b. A separate CUDA kernel is launched for each stage and all
pixels computed are stored in the global memory. Finally, Figure 2c shows a visual representation
of the schedule, where the green pixels correspond to the tile applied to each loop nest, which
is equal to the dimensions of the CUDA thread block. All pixels need to be loaded back from the
global memory before they can be used in the consuming stages.
However, global memory accesses are often costly compared to ones in the cache or shared

memory since DRAM bandwidth is often much lower than the one achieved by shared memory. A
more efficient implementation would then require splitting the pipeline into groups of stages where
each group corresponds to a different CUDA kernel and therefore global accesses only happen
between groups, while all intra-group communication happens either through registers or the
shared memory. However, such communication introduces extra synchronization between threads
and therefore may limit the amount of parallelism that can be exploited.

As a consequence, optimizing a pipeline as a whole involves generating schedules that affect both
the intra-group as well as inter-group granularity [1, 24]. Inter-group scheduling focuses on the
segmentation of the pipeline into groups of stages as well as inlining stages into their consumers
such that maximum producer/consumer locality can be achieved. Scheduling stages within a group
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1 //function definitions for stages K,W,H,Z
2 K(x, y, c) = E(x, y) + E(x+1, y) + E(x+2, y)
3 H(x, y) = E(x, y) * 4
4 W(x, y) = K(x, y, 0) + K(x, y , 1) + K(x, y , 2) + 2 * H(x, y)
5 Z(x, y) = W(x, y-2) + W(x, y-1) + W(x, y) + W(x, y+1) + W(x, y+2)

7 //GPU schedule
8 //tile the loops
9 Z.compute_root()
10 .gpu_tile(x, y, x_o, y_o, x_i, y_i, 4, 4);

12 W.compute_root()
13 .gpu_tile(x, y, x_o, y_o, x_i, y_i, 6, 8)

15 H.compute_root()
16 .gpu_tile(x, y, x_o, y_o, x_i, y_i, 8, 6);

18 K.compute_root()
19 .gpu_tile(x, y, x_o, y_o, x_i, y_i, 8, 4);

(a) Definitions and Example GPU Schedule of KHWZ stages: Com-
pute granularity of all stages is set to root. Each stage is fully
computed and stored in the global memory before moving to the
next one. All memory transactions occur through the global mem-
ory and/or the local caches. A single kernel is generated for each
stage.

1 //produce each stage in a separate kernel
2 allocate __global__ K[3*12*8]
3 <CUDA>gpu_block K.y_o
4 <CUDA>gpu_block K.x_o
5 <CUDA>gpu_thread K.y_i
6 <CUDA>gpu_thread K.x_i
7 for K.c
8 K(..) = ...
9 allocate __global__ H[12*8]
10 <CUDA>gpu_block H.y_o
11 <CUDA>gpu_block H.x_o
12 <CUDA>gpu_thread H.y_i
13 <CUDA>gpu_thread H.x_i
14 H(..) = ...
15 allocate __global__ W[12*8]
16 for <CUDA>gpu_block W.y_o
17 for <CUDA>gpu_block W.x_o
18 for <CUDA>gpu_thread W.y_i
19 for <CUDA>gpu_thread W.x_i
20 W(..) = ...
21 allocate __global__ Z[8*8]
22 <CUDA>gpu_block Z.y_o
23 <CUDA>gpu_block Z.x_o
24 <CUDA>gpu_thread Z.y_i
25 <CUDA>gpu_thread Z.x_i
26 Z(..) = ...

(b) Equivalent pseudo-CUDA loop nest for
stages K,H,W,Z: Allocation for each stage
is moved to the global memory. A differ-
ent kernel with variable grid dimensions
is launched for each stage. The grid dimen-
sions are controlled through the schedul-
ing directives.

Z
K WH

(c) Visual representation of the previous (compute_root) schedule: Each stage will launch a different CUDA kernel. The
green pixels correspond to thread block dimensions of the CUDA grid that will be launched for each kernel controlled by
the gpu_tile directive. Each stage is fully computed and all pixels are stored into the global memory before moving to the
next one.

Fig. 2. A naive implementation fully computes each stage in a different CUDA kernel and stores all data into
the global memory.

(intra-group) includes optimizations such as tiling, unrolling, selecting the variables that should be
assigned as threads/blocks as well as determining the level of the consuming loop nest at which
the computation of each producer should be placed. Figure 1b shows the new DAG after stages D
and H have been inlined into their consumers (J and W respectively). Stage inlining is equivalent to
replacing all occurrences of a producing stage inside the functional definition of the consuming
stage with all necessary computations of said producer. The same pipeline after being partitioned
into 4 groups (red dashed line) with stages G, E, J and Z as the output functions of each group is
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1 //function definitions for KWZ group = 1 kernel
2 K(x, y, c) = E(x, y) + E(x+1, y) + E(x+2, y)
3 H(x, y) = E(x, y) * 4
4 W(x, y) = K(x, y, 0) + K(x, y , 1) + K(x, y , 2) + 2 * H(x, y)
5 Z(x, y) = W(x, y-2) + W(x, y-1) + W(x, y) + W(x, y+1) + W(x, y+2)

7 //group schedule
8 //start with the output of the group
9 Z.compute_root()
10 .gpu_tile(x, y, x_o, y_o, x_i, y_i, 4, 4);
11 W.compute_at(Z,x_o)
12 .gpu_threads(x, y);
13 K.compute_at(Z,x_o)
14 .gpu_threads(x, y);

(a) Definitions and Example GPU Schedule of Group KWZ: Compu-
tation of K and W has been moved at the block (innermost inter-tile
level) of the output Z. A single kernel is launched for the whole
group.

1 //produce Z
2 <CUDA>gpu_block Z.y_o
3 <CUDA>gpu_block Z.x_o
4 allocate __shared__ K[3*4*8]
5 //produce K
6 <CUDA>gpu_thread K.y_i
7 <CUDA>gpu_thread K.x_i
8 for K.c
9 K(...) = ...
10 //produce W
11 //consume K
12 allocate __shared__ W[4*8]
13 <CUDA>gpu_thread W.y_i
14 <CUDA>gpu_thread W.x_i
15 W(..) = ...
16 //consume W
17 <CUDA>gpu_thread Z.y_i
18 <CUDA>gpu_thread Z.x_i
19 Z(..) = ...

(b) Equivalent pseudo-CUDA loop nest
for segment KWZ: Allocation for stages
K and W is moved to the shared mem-
ory. Grid dimensions are controlled
by the tiling of the output Z loop and
its dependencies with the producing
stages.

(c) Visual representation of the dependencies and the previous schedule: The blue and green pixels of the producing stages
correspond to the pixels that will be computed before each intra-tile iteration and stored in the shared memory in order to
produce the red pixels in the output. The green pixels indicate how the dependencies propagate in order to generate the
pixels for one x_i iteration, while the orange arrows show the single pixel dependencies between stages.

Fig. 3. An overlapping tiles schedule computes all pixels needed for one intra-tile iteration (or thread block)
and stores them in the shared memory.

seen in Figure 1c. As seen in the new graph, the number of edges that correspond to global memory
accesses has reduced in an effort to maximize producer/consumer locality.
An example of what is usually called an "overlapping tiles" schedule can be seen in Figure 3,

where all non-inlined stages are computed as needed per intra-tile iteration (or per thread block)
of the output stage. Inlining stage H is equivalent to replacing its occurrence in the definition of
W with 2 * E(x, y) * 4. Kernel fusion is achieved through the compute_at, level scheduling
directive which tells the compiler to compute all pixels of a stage necessary for one iteration of
level by the consumer. As a consequence, computation of stages K and W gets interleaved on a
per-tile basis of the consumer Z and all pixels are stored in the shared memory. Contrary to the
previous implementation, this one requires a single kernel to be launched for the whole group, and
global memory accesses are limited to writes for the output, and reads for stages outside the group.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 0000.



Schedule Synthesis for Halide Pipelines on GPUs 0:9

The equivalent CUDA pseudo-code can be found in Figure 3b. As already mentioned a single
CUDA kernel is launched for the whole group and all pixels computed in a single intra-tile iteration
are stored in the shared memory. Finally, Figure 3c shows a visual representation of the schedule,
The blue and green pixels of the producing stages correspond to the pixels that will be computed
before each intra-tile iteration and stored in the shared memory in order to produce the red pixels
in the output. The green pixels indicate how the dependencies propagate in order to generate the
pixels for one x_i iteration, while the orange arrows show the single pixel dependencies between
stages. It is important to note that while the tile applied to the output would cause a 4x4 thread
block on the generated CUDA kernel, assigning dimensions x and y of the producing stages K and W

causes the actual thread block to grow into 4x8 due to inter-stage dependencies.

1 //function definitions for KWZ group
2 K(x, y, c) = E(x, y) + E(x+1, y) + E(x+2, y)
3 H(x, y) = E(x, y) * 4
4 W(x, y) = K(x, y, 0) + K(x, y, 1) + K(x, y, 2) + 2 * H(x, y)
5 Z(x, y) = W(x, y-2) + W(x, y-1) + W(x, y) + W(x, y+1) + W(x, y+2)

7 //group schedule
8 //start with the output of the group
9 Z.compute_root()
10 //tile the loop
11 .split(x, x_o, x_i, 4)
12 .split(y, y_o, y_i, 4)
13 .reorder(x_i,y_i,x_o,y_o);
14 //assign Vars to threads
15 .gpu_threads(x_i,y_i)
16 .gpu_blocks(y_o,y_o);
17 W.compute_at(Z,x_o)
18 //optimize the member stage
19 .reorder(x, y)
20 .gpu_threads(x, y);
21 //nested fusion should be allowed
22 K.compute_at(W, x)
23 .unroll(c);

(a) Definitions and Example GPU Schedule of Group KWZ: Compu-
tation of K has been moved at the block (innermost inter-tile level)
of the output Z and W has been interleaved inside the thread level
that computes W.

1 //produce Z
2 <CUDA>gpu_block y_o
3 <CUDA>gpu_block x_o
4 allocate __shared__ W[4*8]
5 //produce W
6 <CUDA>gpu_thread W.y_i
7 <CUDA>gpu_thread W.x_i
8 //produce K
9 unrolled K.c
10 K(..) = ...
11 //consume K
12 W(..) = ...
13 //consume W
14 <CUDA>gpu_thread y_i
15 <CUDA>gpu_thread x_i
16 Z(..) = ...

(b) Equivalent pseudo-CUDA loop nest
for segment KWZ: Allocation of stage
W is moved to the shared memory. A
single kernel is launched for the whole
segment. Values of K are computed as
needed per pixel of W and stored in
registers until consumption.

(c) Visual representation of the dependencies and the previous schedule: The blue and green pixels of the producing stages
correspond to the pixels that will be computed before each intra-tile iteration and stored in the shared memory in order
to produce the red pixels in the output. The green pixels indicate how the dependencies propagate in order to generate
the pixels for one xi iteration, while the orange arrows show the single pixel dependencies between each stage. The light
gray pixels correspond to values of K that will be produced (once) for one inter-tile operation without being stored into the
shared memory.

Fig. 4. Nested fusion can significantly lower sharedmemory usage, without increasing redundant computation
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An even more optimized implementation is shown in Figure 4 where computation of stage K has
been moved inside the inner thread dimension of its consumer W to achieve what we call nested
fusion in this paper. Since one pixel of W requires three pixels of K (across the third dimension) but
none across x or y, computing K per pixel of W does not cause redundant computation to increase.
The equivalent loop nest is shown in Figure 4b, where we can see that computation of K is nested
inside W and shared memory allocation is limited to the one required by W. This is better explained
through the visual representation of the schedule in Figure 4c where none of the light gray pixels
of Stage K need to be stored in the shared memory and are computed on-the-fly as needed by W.
The third dimension of K is also unrolled to minimize loop overhead inside W.x_i. Nested fusion
increases the work computed by the W.x_i threads sacrificing parallelism in the process but it can
boost performance in applications with severe memory requirements by replacing large shared
memory allocations with smaller ones in the constant memory and registers.
A larger tile size could further reduce the communication to the global memory (less pixels

needed per tile by stage E), but may reduce the occupancy of the GPU and even cause the schedule
to exceed the constraints imposed by the architecture. As an example, assume that the output stage
Z is tiled with a 32x12 tile. Since dimensions x and y of stage W are also assigned as threads and due
to the dependencies with their consumer Z (four extra pixels along y) the dimensions of the thread
block will be 32x16 causing 512 threads per block in total and 2048 bytes allocated in the shared
memory (assuming 4 bytes per pixel). Such dependencies can easily be derived by the compiler but
are difficult to deduce by developers for more complex cases.
In GPUs, multiprocessor occupancy is the ratio of active warps to the maximum number of

warps supported on an SM. Maximizing the occupancy can help hide latency during global memory
loads which are followed by a thread synchronization command. The occupancy is determined by
the amount of shared memory and registers used by each thread block. Achieved occupancy can
be calculated using a set of equations that vary per Compute Capability (CC) of the GPU. These
equations can be found in [15]. In this specific schedule, on a GPU of 7.5 CC and a configuration of
64Kbytes of shared memory per block, if we assume that our kernel requires 64 registers per block,
2048 bytes of shared memory usage and 512 threads per block we would get a 100% occupancy of
each SM.

As seen from the above, proper kernel fusion alongside tile size selection has a direct impact on
the amount of parallelism that will be exploited in the implementation, the occupancy of the GPU’s
SMs as well as the number of external (global) memory accesses. The problem we aim to solve then
lies in introducing a model that can quickly generate an efficient schedule for a whole pipeline while
ensuring that all constraints imposed by the target GPU architecture are satisfied. Such a model needs
to be able to find a balance between parallelism and redundant computations and should focus on
minimizing the number of global memory accesses while maximizing the occupancy of the GPU’s
SMs.

4 GPU autoscheduler

This section presents the new optimization passes implemented in the Halide master [8] autosched-
uler in order to generate optimization schedules that target CUDA-based GPU architectures. We
follow a process similar to the current optimization flow where trivial (pointwise consumed) stages
are first inlined into their consumers and then partitioned into groups using the greedy algorithm
implemented in the Halide master. We adapt its model with new heuristics and steps which are
presented in the following algorithms. Figure 5 shows an overview of the optimization flow used
by the autoscheduler. Our method can generate schedules using the traditional overlapping tiles
analysis, as well as a new nested fusion.
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Fig. 5. Basic Scheduling Flow: The scheduler requires the loop bounds estimates along with a target specification
description given by the user in order to produce an optimization schedule for a given pipeline. Most of the steps in the
compilation flow have been extended in order to support automatic GPU scheduling.

4.1 Initialization and Overview

Most of the steps in the initialization process are identical with the ones performed by the CPU
autoscheduler. The user needs to give an estimate of the problem size (loop bounds for the input
buffers and outputs) as well as the specifications for the target architecture (compute capability).
During the initialization step, the scheduler evaluates the amount of reuse/overlap between stages
and inlines trivial functions. Trivial are considered the functions that are either consumed in a
pointwise function or have a low arithmetic cost. After having initialized the cost of each stage,
the scheduler uses the greedy algorithm of the Halide master in order to inline stages into their
consumers when that is deemed beneficial by the model. The next step involves tiling and splitting
the pipeline into segments, while the last step generates the final optimization schedule of the
pipeline and further tightens the compute granularity of each stage when applicable. These two
steps are discussed in more detail in the following subsections.

4.2 Stage Fusion & Tiling

This section discusses the new algorithms developed for automatic schedule generation targeting
CUDA-based GPU architectures. These algorithms focus on efficient tiling and fusion of stages
of the pipeline while exploiting both parallelism and producer/consumer locality. As already
mentioned in Section 2, our scheduler is driven by an analytical model that expands upon a number
of architecture specific parameters considered in prior related work by incorporating features
such as the active Streaming Multiprocessors and threads per stage when evaluating the cost of a
grouping configuration while also ensuring that the final schedule meets the constraints imposed
by the target hardware platform.

The scheduler begins by determining which dimensions of each stage should be tiled. To this end,
the bounds across each dimension are analyzed and in an attempt to limit the search space, loops
with low iteration count are not tiled (e.g. channel dimensions in RGB images, small filter kernels).
If all dimensions of a stage are found to have a low iteration count (i.e. less than 64 iterations),
then we pick the largest one to be tiled, ensuring that at least one dimension can be tiled and an
adequate number of blocks will be generated by the equivalent PTX kernel. The loop bounds for the
outputs of the pipeline are derived by the estimates given by the user. Loop bounds for all producing
stages are instead determined through the bounds inference analysis pass of the compiler. After the
dimensions to be tiled have been determined, a list of all possible tile sizes for these dimensions gets
generated. Since evaluating all possible combinations would require an enormous amount of time
for deeply nested loops, we impose an upper bound on the generated tiles. These upper bounds
vary per dimension and depend on both its extent as well as the number of dimensions that will be
tiled (𝑁𝑇𝑑𝑖𝑚𝑠 ). The bounds (upper 𝑇𝑚𝑎𝑥 and lower 𝑇𝑚𝑖𝑛) for the generated tile sizes (𝑇𝑑𝑖𝑚) across
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each dimension (𝑑𝑖𝑚) based on the corresponding extents 𝐵𝑑𝑖𝑚 are selected such that the scheduler
does not spend extra time evaluating options that are known to be inefficient or invalid. Invalid
are considered the configurations that exceed the constraints imposed by the platform (number of
threads or shared memory allocation higher than the maximum permitted), while inefficient are
deemed those that do not exploit enough parallelism (e.g. number of blocks less than 2-4 times the
number of SMs). These upper and lower bounds are defined based on the following equations:

𝑇𝑚𝑖𝑛 ≤ 𝑇𝑑𝑖𝑚 ≤ 𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛 =

{8, if 𝐵𝑑𝑖𝑚 ≥ 64
2, otherwise

𝑇𝑚𝑎𝑥 =



𝐵𝑑𝑖𝑚

128
, if 𝐵𝑑𝑖𝑚 ≥ 1024, 𝑁𝑇𝑑𝑖𝑚𝑠 = 1

𝐵𝑑𝑖𝑚

32
, if 𝐵𝑑𝑖𝑚 ≥ 1024, 𝑁𝑇𝑑𝑖𝑚𝑠 > 1

𝐵𝑑𝑖𝑚

2
, otherwise

The numbers 2, 32 and 128, used as upper bounds for the tiles in the equations above, have been
chosen such that at least one block is active per SM, but they can easily be changed in the model
for architectures with a low SM count. In a similar fashion, the lower bounds ensure more than 8
threads per block in loops with extents larger than 64, and at least one block active per SM in loops
with low iteration count. The step size used for the final tile size configurations is set to two.

After generating the tile size configurations that will be evaluated, we proceed to the fusion
analysis of the pipeline’s stages by recursively attempting to merge groups of stages until no more
beneficial merges can be found. This process is performed using the greedy algorithm of the CPU
autoscheduler in the Halide master. A merge is deemed beneficial only when the total cost of the
new merged group is less than the sum of the costs of each individual group. Each independent
group corresponds to a single CUDA kernel as seen in the examples of Section 3 (Figures 3 and 4).
The cost of a group as well as the benefit of a configuration are determined through the algorithm
and analytical model presented in listing 1. Specifically, A brief description of some of the terms used
in the pseudocode is found in Table 1. The terms denoted with capital letters refer to architecture
parameters used as constant constraints in the following algorithm.

Description
group A group of stages merged together into a single kernel.
tiles A tiling configuration applied on the group’s output stage loop nest
inputs Stages computed outside the group, or stages input to the pipeline.
members Non-inlined stages of the group

footprint The total size of the shared memory allocation required for this group
thread_block[dim] The thread block size across each dim dimension.

thread_count The total number of threads required for a computation.
active_SMs The number of active SMs during a computation.

active_threads The number of active threads during a computation (subset of the total threads).
occupancy The SM occupancy during the computation of a member stage.
SM_COUNT The number of Streaming Multiprocessors in the GPU.

MAX_THREADS_PER_BLOCK Maximum threads per block constraint.
MAX_SHARED_MEM_PER_BLOCK Maximum allowed shared memory per block constraint.

WARP_SIZE The number of threads that correspond to a single warp.

Table 1. Notation of terms used in Listing 1

Listing 1 shows the analysis that evaluates the costs (memory and arithmetic) for a given tiling
configuration of a group. Similar to the CPU scheduler, the memory cost of a stage is calculated as
the number of loads from a buffer, multiplied by a factor equal to the cost of accessing the global
memory compared to a computation. Specifically, the algorithm first calculates the costs of loading
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1 Function evaluate_group_costs(group):
2 //evaluate load costs
3 for each stage in group.inputs:
4 memory_cost += stage.memory_cost / consecutive_loads
5 for each stage in group.members:
6 memory_cost += stage.memory_cost
7 footprint += stage.footprint
8 //evaluate GPU terms
9 thread_count=1
10 for each dim in (group.output and loop_threads):
11 thread_block[dim] = tiles[dim]
12 thread_count *= thread_block[dim]
13 //get the extents required for each stage across each dimension based on tile sizes
14 local_bounds = dependence_analysis(group.tiles);
15 //initialize metrics
16 occupancy = 1.0
17 active_threads = MAX_THREADS_PER_BLOCK
18 active_SMs = SM_COUNT
19 for each stage in group.members:
20 stage.thread_count=1
21 for each dim in (stage.dims and loop_threads):
22 stage.thread_block[dim] = local_bounds.stage[dim]
23 stage.thread_count *= stage.thread_block[dim]
24 //keep track of the maximum on each dimension for the overall thread block size
25 thread_block[dim] = max(thread_block[dim], stage.threads[dim])
26 {stage.occupancy, stage.active_threads, stage.active_SMs} = estimate_occupancy(stage.thread_count, footprint)
27 //ensure occupancy above threshold
28 if(stage.occupancy < OCCUPANCY_THRESHOLD) return invalid_configuration
29 //evaluate arithmetic costs
30 arithmetic_cost += stage.arithmetic_cost / (stage.occupancy * stage.active_threads)
31 occupancy = min(occupancy, stage.occupancy)
32 active_threads = min(active_threads, stage.active_threads)
33 active_SMs = min(active_SMs, stage.active_SMs)
34 thread_count = max(thread_count, stage.thread_count)
35 //ensure resource requirements within target constraints
36 if(thread_count % WARP_SIZE != 0 || thread_count > MAX_THREADS_PER_BLOCK ||
37 active_SMs < SM_COUNT || footprint > MAX_SHARED_MEM_PER_BLOCK ) return invalid_configuration
38 //evaluate total cost
39 group_cost = arithmetic_cost + memory_cost / (occupancy * active_threads)
40 return group_cost

Listing 1. Group Costs Analysis: Calculates the total cost of a group (kernel fusion and tiling) as well as various GPU
specific metrics in order to ensure that the equivalent optimization schedule adheres to the target’s resource constraints.

data from stages outside the group (global memory accesses), which may be either stages from
other groups or input buffers. Stages accessing input buffers (which typically reside in the global
memory) have their memory cost divided by the number of consecutive loads from that buffer (in
bytes) in order to take memory coalescing (lines 3-4) into account. The benefit from such loads
is capped by the maximum transfers that can be issued per global transaction. The memory cost
for stages within the group (member stages) is then calculated in a similar fashion. Allocations for
buffers of such stages are allocated in the shared memory (line 6) and the sum of all such allocations
will be equal to the shared memory requirements for a given tiling/grouping configuration (line 7).

For each specific tiling configuration for a group we need to estimate the dimensions of the
thread block required for the corresponding schedule in order to ensure that the generated kernel
does not exceed the target’s constraints. If the group is a singleton (only one non inlined stage
which is the output), then the thread block dimensions are equal to the intra-tile extents (tiles) of
the loop levels that were chosen to be assigned as threads by the equations described above, found
in loop_threads (lines 10 to 12). This behavior can be seen in Figure 2 where each of the K, H, W,

Z stages correspond to a different group and therefore an independent CUDA kernel whose thread
block dimensions are equal to the tile sizes on each dimension. On the other hand, for groups
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with multiple (non-inlined) stages, the thread block dimensions have to be calculated based on the
regions of each stage required to produce one tile of the output. These regions (local_bounds)s are
inferred by the dependence analysis of the compiler (line 14). The actual final thread block size in
each dimension will be equal to the maximum extent across all stages of the group (line 25) and
the total number of threads will be equal to the product across each thread block dimension (lines
23). As an example consider the definitions and schedule of Figure 3a. The schedule of the group
output Stage Z will require a thread block of 32x12 dimensions (due to tiling in x and y dimensions
respectively), but due to its dependencies with the producing stage W, the actual grid dimensions
will be 32x16 with a total of 512 threads per block.

Based on the total shared memory allocation, as well as the number of threads required per stage,
we can calculate the occupancy of each stage, the number of active threads, as well as the number
of SMs that will be active during the computation of said stage (line 26). This calculation takes
place in a new pass (estimate_occupancy) that is implemented in our scheduler and is made based
on the NVIDIA Occupancy Calculator [15] which can determine all of these metrics as a function
of the number of threads (estimated_threads), shared memory per block (footprint), the number
of registers per thread as well as the compute capability of the platform. Since it is not possible to
accurately predict the number of registers that will be used at compile time, we estimate them such
that:

𝑁𝑟𝑒𝑔𝑠 ≤ 𝑚𝑖𝑛(𝑀𝐴𝑋 _𝑅𝐸𝐺𝑆_𝑃𝐸𝑅_𝑇𝐻𝑅𝐸𝐴𝐷,
𝑇𝑂𝑇𝐴𝐿_𝑅𝐸𝐺𝑆_𝑃𝐸𝑅_𝑆𝑀

𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

)

If the occupancy of a stage is less than OCCUPANCY_THRESHOLD (usually set to 0.1) then the number of
active warps per SM may severely limit parallelism and the configuration can already be considered
inefficient (line 28). Unlike a CPU-only architecture where the number of tiles n_tiles is enough to
obtain an estimate to the amount of parallelism that can be exploited, a GPU architecture requires
all of the above metrics for a given configuration. In order to calculate the total arithmetic cost
of each group, the arithmetic cost of each stage is scaled by the product of active threads, and
occupancy (line 30). Finally, the total (sum) arithmetic and memory costs are multiplied by the
number of tiles, and the number of active threads and occupancy of the group is set to the minimum
across all stages (lines 30-31).
The final cost of a grouping/tiling configuration can be evaluated given all of the metrics

calculated above. We first check whether the new schedule will be valid for the target plat-
form (lines 36-37). To this end, we ensure that the number of threads (thread_count) and shared
memory per block (footprint) does not exceed the maximum values allowed for the architec-
ture (MAX_THREADS_PER_BLOCK and MAX_SHARED_MEM_PER_BLOCK respectively). Unlike CPU scheduling,
where such checks are not necessary, GPU schedules that exceed these platform specific constraints
will cause the generated kernel to fail at run-time, and should therefore be invalidated by the
scheduler’s analysis as quickly as possible. We ensure that the minimum active SMs per group
(active_SMs) are at least equal to the number of SMs in the platform (SM_COUNT, line 36). During
the fusion analysis, the final, total cost is simply equal to the arithmetic and memory cost of the
analysis, as determined by the algorithm in Listing 1. During the fusion/grouping analysis, we
only generate tile sizes which are powers of two in order to further reduce optimization runtime
(not shown in the listing for simplicity). However, the final tile sizes should ensure that the total
number of threads is a multiple of the WARP_SIZE (usually 32 in most architectures). As a result, a
final tiling pass, where tiling configurations use a step size of 2), is performed after all groupings
have been concluded. During this step, the memory cost of a group configuration (tiling/fusion) is
scaled by the product of occupancy and active threads in order to avoid situations where the tile
sizes grow too large while the occupancy and active threads remain the same (line 39).
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Similar to the CPU scheduler in the Halide master, after the group’s cost has been calculated, a
new grouping choice is picked for evaluation until no more beneficial group merges can be found.
The pipeline whose groups result in the minimum overall cost is picked for the final optimizations
and schedule generation.

4.3 Other Optimizations and Schedule Generation

After tile sizes have been selected and the pipeline has been split into segments, we finalize the
optimization schedule of the pipeline. For each group, we first tile the loop based on the sizes selected
during the previous steps and then assign the outer (up to three) inter-tile variables as blocks
and the outer intra-tile variables as threads (Halide gpu_blocks and gpu_threads respectively). The
loop nests of each stage are reordered such that dimensions not assigned as threads are innermost
(ordered based on their stride), followed by the thread dimensions and finally the block dimensions.
Inner intra-tile loops (such as the kernels of convolution layers and the channel dimension of RGB
images) are then unrolled.

1 Function max_order_reuse(consumer, producer):
2 //find overlap dimensions with largest ordering in the consumer's loop nest
3 overlap_dims = reuse_per_stage[consumer].find(producer);
4 set = false
5 for dim in overlap_dims:
6 if (!set) max_order = dim
7 else if(consumer.loop_order[dim] > consumer.loop_order[max_order] :
8 max_order = dim
9 return max_order

11 Function optimize_granularity(group):
12 for each stage in group.members:
13 set = false
14 if(stage == group.output_stage) continue
15 //find its consumers
16 for each consumer in group.members:
17 //if the compute level is not set initialize it here
18 if(!set):
19 member.compute_level = max_order_reuse (consumer, stage)
20 if(consumer == stage) stage.compute_stage = group.output_stage //consumes itself
21 else stage.compute_stage = consumer
22 else:
23 if(topological_order(consumer) > topological_order(stage.compute_stage)):
24 stage.compute_level = max_order_reuse (consumer, stage)
25 if(consumer == stage) stage.compute_stage = group.output_stage //consumes itself
26 else stage.compute_stage = consumer
27 return

Listing 2. Nested Fusion Optimization Pass: A quick post-tiling pass that attempts to tighten the interleaving of
stages by lowering the compute level of producing stages without affecting the amount of redundant computation.

Contrary to the traditional overlapping tiles analysis where computation of stages is always
placed/interleaved at the innermost inter-tile (or GPU block) level of the output (consuming) loop
nest, our scheduler can also generate schedules where nested fusion is enabled. Nested fusion
allows scheduling the computation of stages at different levels, including at intermediate stages of
the group similar to the schedule presented in Figure 4, where computation of stage K has moved
from the block dimension (x_o) of the group’s output stage (Z) to the inner thread dimension x of
stage W. This optimization pass is applied on groups where member stages have severe resource
requirements (i.e. high number of active threads, high shared memory usage).
The above code (Listing 2) demonstrates how nested fusion is implemented in our scheduler.

The algorithm attempts to tighten the compute and storage granularity of a stage by lowering its
compute_at level both in terms of consumers (compute_stage) as well as dimension (compute_level).
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After a loop ordering (loop_order) has been chosen, we schedule producing stages (each stage in
group.members) at their last consumer (in topological order) and one level above the overlap dimen-
sion with the highest order in the consuming loop’s ordering (lines 5-8), using the max_order_reuse
function. For stages that only consume themselves (e.g. matrix multiplications, convolutions) the
compute_stage is set to the group’s output stage (lines 20 and 25). The amount and dimension
of reuse/overlap per stage (reuse_per_stage) is determined during the initialization step of the
autoscheduler as seen in Figure 5. On the example seen in Figure 4, computation of stage K has
been moved to the x level of the loop nest of stage W since there is no reuse/overlap between K and
W across iterations of x or y. On the other hand, stage W will not be moved below the innermost
inter-tile loop level (block level x_o) since reuse possibilities exist across iterations of y (which is
the outermost intra-tile loop of the consuming stage Z). This extra optimization step can further
increase locality in applications with severe memory requirements by reducing shared memory
allocations and allowing temporary values to stay in the constant memory or registers, at the cost
of extra synchronization and therefore reduced parallelism.

5 Evaluation and Experimental Results

This section presents the results that were obtained using our proposed method on a test suite of 14
applications. We test our algorithms using two state-of-the-art CUDA-based architectures, the key
parameters of which are shown in Table 2. The RTX 2080Ti platform is chosen to represent targets
in the High Performance Computing domain, while the AGX Xavier represents the embedded
domain. The list of benchmarks along with the corresponding number of channels or dimensions of
the output loop nest, number of stages and compile time (on an AMD Ryzen 2920X processor) using
our scheduler can be found in Table 3. All benchmarks share a problem size of 1536x2560 (width,
height) and differ in the number of output channels. Exceptions are the matmul and convlayer
benchmarks that compute a 1536x1536 and 128x128x64x4 (width, height, output feature maps,
batch size) output image respectively. A description of each of the benchmarks used can be found
in [1, 13].

RTX 2080 Ti AGX Xavier
Compute Capability 7.5 7.2

L1 cache 64KB 128KB
Max Shared memory per Block 64KB 48KB

SM count 68 8

Max threads per Block 1024
Max regs per Block 255
Max regs per SM 65536

Table 2. Architectural parameters for the two platforms

Benchmark [c,s,t]
bilateral [2,8,24s]
camera [2,30,47s]

harris [3,13,3s]
histogram [3,7,4s]

IIR [3,8,3s]
interpolate [3,52,10s]
laplacian [3,103,21s]
maxfilter [3,9,15s]
unsharp [3,9,2s]
nlmeans [3,13,28s]
stencil [3,34,28s]
lensblur [3,74,51s]

matmul [2,2,1s]

convlayer [4,4,2s]

Table 3. Benchmarks, corresponding
number of channels, functional stage
and compile time using AutoGPU re-
spectively.
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5.1 Halide GPU Scheduling

We compare our solutions to the manual schedules obtained from the Halide official repository [8]
as well as the ones generated by the Li et al scheduler [10]. Some manual schedules were further
optimized before benchmarking since the existing ones were either targeting GPUs with limited
amount of available memory (interpolate) or older architectures (matmul) and the results would not
be representative of actual expert-tuned schedules. To investigate the impact of each optimization
pass/step in our model, we generate three kinds of implementations: schedules where fusion is
entirely disabled and stages are tiled and computed either inline or at root level (AutoGPU w/o
Fus), schedules where fusion strategies are limited to the the traditional overlapping tiles technique
(AutoGPU Overlap) and finally schedules where all optimization passes are enabled and nested
fusion may also be applied on a group (AutoGPU Nested) depending on the heuristics described in
the previous section. The performance of our proposed AutoGPU autoscheduler corresponds to the
AutoGPU Nested bar.

The average execution time of each implementation is measured as follows: each application is
executed 100 times and afterwards host and GPU device are synchronized. We measure the average
time elapsed and repeat this process 100 times. The minimum average execution time across all
samples is finally used in the following graphs.
Figure 6 shows the results obtained with the NVIDIA RTX 2080Ti platform. Our solutions

outperform the Li et al scheduler [10] in all benchmarks with a significant speedup (over 5x)
in large pipelines where fusion is beneficial. Moreover, our schedules result in an average of
10% performance improvement over the manual implementations. Three applications also have a
moderate performance improvement when the scheduler operates under the nested fusion mode
compared to only overlapping tiles. Forcing the scheduler to apply the nested fusion optimization
on all groups would cause two benchmarks to suffer a slowdown (bilateral, lensblur) due to
reduced parallelism. The effect of our tiling analysis can be determined by comparing the Li et al
scheduler with the results that correspond to the no fusion schedules. Our solutions (AutoGPU
w/o Fusion) outperform the latter [10] in most cases due to a more extensive tiling analysis. We
notice that four out of 14 benchmarks experience zero slowdown when fusion is disabled, since all
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Fig. 6. Average Execution time (ms) NVIDIA RTX 2080 Ti
Comparison of the average runtime of our proposed method (without stage fusion, with overlapped tiling and with nested
fusion applied on all groups) with the manual tuned Halide schedules and the Li et al autoscheduler [10]
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implementations would converge to breadth-first schedules anyway (where all non-inlined stages
are set to compute_root). The Li et al autoscheduler was not able to generate valid solutions for the
last two applications (cvlayer and lensblur).
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Fig. 7. Average Execution time (ms) NVIDIA AGX Xavier
Comparison of the average runtime of our proposed method (without stage fusion, with overlapped tiling and with nested
fusion applied on all groups) with the manual tuned Halide schedules and the Li et al autoscheduler [10]

Results for the same benchmarks when run on the NVIDIA AGX Xavier architecture while
running at max clock on the default power mode are shown in Figure 7. The results follow a
similar trend with our scheduler outperforming both the manual and the Li et al solutions, with
the latter being slower in all cases even when fusion is disabled in our model. The only application
where we can notice a deviation compared to the RTX platform is the histogram, where the Li
et al autoscheduler performs similar to our methods due to limited parallelism offered by the
platform (low SM count compared to the RTX 2080 Ti). Overall, we notice that two non-local means
(nlmeans) and camera pipeline are the only applications with a significant benefit when nested
fusion is enabled (around 40% and 33% respectively in the AGX platform). Pipelines with a small
number of stages (histogram, IIR, matmul) do not offer large fusion opportunities and all three
methods result in similar performance. Similar results (lower runtimes but similar ratios) were
obtained on the maximum power mode.

All experiments were repeated on four more platforms with different GPUs of various generations.
Figure 8 shows the average speedup achieved using our proposed AutoGPUmethod over the manual
and Li et al schedules for all six considered architectures. The performance of AutoGPU is equal
to the AutoGPU-Nested bar of the above graphs and corresponds to the situation where fusion
is enabled and the nested optimization pass is performed only when it is deemed profitable by
the heuristics presented in the previous section. As seen in the graph, our schedules on average
perform similar to the manually tuned ones. In detail, they achieve around 10% higher performance
on the RTX 2080Ti and RTX 2070 platforms, 3% to 5% on the embedded Tegra boards (K1 and
Xavier) but are 7% slower on the older GTX TITAN GPU. On the other hand, and as expected since
the Li et al scheduler does not consider stage fusion, our solutions are 70% to 127% faster than the
ones generated by [10].

We should also note that even though our framework itself has not been optimized for compile-
time, all schedules are generated within the order of seconds as can be seen in Table 3.
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Fig. 8. Speedup of AutoGPU compared to manual and Li et al scheduling: AutoGPU refers to our scheduler when
all optimization passes are enabled.

In order to further investigate our results, the roofline model for the RTX 2080 Ti platform [30]
was derived for six of the benchmarks as shown in Figure 9. The roofline model can show how
close an implementation is to the maximum performance achieved by the target platform. Memory
bound applications are bound by the memory bandwidth of the hardware (GDDR6 on RTX2080 ti),
while compute bound applications are bound by the maximum achieved performance, or Floating
point Operations per second (FLOP/s). Arithmetic intensity was calculated after profiling each
application using the NVIDIA Nsight profiler [7] in order to count the number of DRAM (and other
memories for the hierarchical roofline) transactions, and Floating ooint Operations (FLOPs). Peak
performance and bandwidth was measured using the Empirical Roofline Toolkit (ERT) [25].
As seen from the above figures, all applications are mostly memory bound which is common

in image processing. It is also interesting to note that since different optimization schedules can
heavily influence the number of memory accesses as well as floating point operations (e.g. inlining)
implementations do not share the same arithmetic intensity (AI). We can notice that for three
benchmarks (bilateral, interpolate and unsharp) the AutoGPU implementations are equivalent to
the manual ones and close to the ceiling imposed by the DRAM memory bandwidth. In two cases
(laplacian and lensblur) AutoGPU schedules cause a higher AI allowing for higher performance.
In cvlayer, AutoGPU achieves higher FLOP/s with more dram accesses (lower AI) but higher L1
and L2 AI which also explains the lower execution time. It is important to note however that all
figures should be considered alongside the runtimes shown in Figure 6, since higher performance
(in FLOP/s) does not necessarily mean lower execution time. As an example, consider the nlmeans
benchmark where the AutoGPU overlap implementation achieves a higher performance than
AutoGPU with nested fusion enabled even though the latter is 20% faster. Through nested fusion,
AutoGPU requires less than half of the dram accesses of AutoGPU-Overlap (half bytes) for the
same number of floating point operations. A similar situation happens for harris, where the manual
schedule achieves a higher rate of floating point operations per second (FLOP/s) but at reduced
performance compared to AutoGPU since it requires nearly 2x FLOPS for the same bytes (and has
therefore higher AI). Finally, we can see that without loop fusion and a limited tiling model, Li et
al is constrained to a much lower AI than the other implementations due to excessive memory
accesses and no shared memory usage, which explains why it is heavily bound by a platform’s
memory bandwidth ceiling. This coincides with the fact that loop/kernel fusion and inlining can
make applications less memory bound, enabling higher performance through other optimizations.

All experiments were repeated using a much smaller problem size (192x320 for most benchmarks
and 512x512 for matmul) as well as a larger one (3840x2160 and 4096x4096 for matmul). For smaller
problem sizes our scheduler performed on average similar to the manual (within 1%) while in the
larger cases, our solutions outperformed the manual ones by 15% and the results were similar to
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Fig. 9. Roofline models for a subset of the applications used as benchmarks. The ceiling values correspond to the
maximum achieved memory bandwidth of the RTX 2080 Ti architecture and the maximum achievable performance.

the ones presented in Figure 6. In both cases the solutions generated by our scheduler were around
2 or more times faster than the ones given by the Li et al scheduler.

ACM Trans. Arch. Code Optim., Vol. 0, No. 0, Article 0. Publication date: 0000.



Schedule Synthesis for Halide Pipelines on GPUs 0:21

Finally, in order to showcase the portability of our approach to non-CUDA architectures, the
whole test suite was repeated on an Intel GE onboard graphics card using the openCL target
of Halide. The main changes that had to be made to account for the differences in the memory
hierarchy and target specifications was to set the maximum threads per block to 512 (instead of
1024 in CUDA) and set the maximum tile size to half of that in CUDA architectures. The results
obtained were similar to the ones presented above with the difference that the Li et al scheduler
[10] was unable to generate valid schedules in a few benchmarks due to the reduced maximum
threads/memory per block constraints.

5.2 Comparisons with other frameworks

As already mentioned in Section 2, HiPacc is a DSL similar to Halide, which was recently extended
with a kernel fusion model for CUDA. We compared the performance of Halide using our proposed
scheduler with the performance of HiPacc using the instructions provided in [19] for unsharp,
harris and bilateral (which are the common benchmarks in the two suites). HiPacc was in all cases
faster than Li et al but more than 2x slower than both the manual and our schedules. Unsharp
was the only application where HiPacc was only 20% slower than our method and on par with the
manual implementation. (However the two definitions of the algorithms were different, i.e. the
Gaussian kernels in Halide get generated at run-time, while in HiPacc they are hardcoded.)
CuDNN is another widely used framework that provides hand optimized implementations of

popular deep learning applications. We tested our autoscheduler on ResNet-50, a popular deep
learning application used for image classification. Our solutions were on average 25% to 30% slower
compared to the pytorch implementation with CuDNN enabled on the RTX 2080 TI platform.1

6 Conclusions and future work

In this work we introduced a new analytical model along with novel optimization passes and
heuristics for the Halide DSL and compiler in order to enable automatic generation of schedules
targeting CUDA-based GPU architectures. We integrated our model into the Halide autoscheduler
and tested it on a variety of image processing pipelines. Experimental results show that the generated
schedules can achieve performance comparable to, or even better than that of manual, expert-tuned
solutions.
Future work directions can either improve the current model with new techniques (i.e. multi-

level tiling, unrolling of outer loops) or even use the heuristics we developed here as features in
a learned autoscheduler similar to [1]. The occupancy of the target platform and the arithmetic
cost per thread can for example be features that could be beneficial during the training process.
Moreover, a scheduler more dedicated to deep learning could also be enabled as an extension to our
framework with parametric based schedules for layers. Furthermore, an extended scheduler should
integrate the existing CPU and GPU models in order to be able to independently decide whether
pipelines/stages should be scheduled on the host CPU or offloaded into the GPU accelerator when
present.
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A Sources

1. Dependencies
This section describes the process in order to
reproduce the results obtained in the Evaluation
section of the paper.
(1) Hardware Dependencies: A CUDA GPU of at
least 3.2 compute capability.
(2) Software Dependencies: To build and run the
provided source code the following frameworks
are required:
• Clang/LLVM 8.0 or higher (for Linux)
• Linux distribution (tested on Ubuntu 18.04)
• Make 4.1 or higher
• Git 2.17 or higher
• NVIDIA CUDA driver 10.0 or later
• Python 2.7 /w matplotlib and numpy
2. Installation
(1) Acquiring LLVM:
Linux binaries for LLVM 8.0 along with the
matching version of Clang can be found
through http://llvm.org/releases/download.html.
Both llvm-config and clang must be somewhere
in the path.
(2) Acquiring and building Halide with AutoGPU:
The source code for Halide with AutoGPU can
be found through:

$ git clone

https://github.com/TUE-EE-ES/HalideAutoGPU.git

Point Halide to llvm-config and clang:

$ export LLVM_CONFIG=<path to llvm>/build/

bin/llvm-config

$ export CLANG=<path to llvm>/build/bin/

clang

To build Halide:

$ cd Halide

$ make

$ make distrib

3. Benchmarking
This subsection explains the process in order to
reproduce the results obtained in Figures 6 and 7.

(1) To reproduce the results of Figure 6 run the
all benchmarks for the RTX GPU and then plot
the graphs with matplotlib:
$ cd benchmarks

$ source run_tests_2080ti.sh

All runtimes should be listed in a new file named
"results_ti.txt" located in the benchmarks

folder. To plot the graphs:
$ python plot_figures_2080ti.py

(2) To reproduce the AGX Xavier results repeat
the above process using the AGX scripts instead:
$ source run_tests_xavier.sh

All runtimes should be listed in a new file named
"results_xavier.txt" located in the benchmarks

folder. To plot the graphs:
$ python plot_figures_xavier.py

To run an individual benchmark (e.g. harris) first
set up the environment variables needed by the
autoscheduler with:
$ cd benchmarks

$ source setup_env.sh

Compute Capability of the target platform can
be set by changing the HL_TARGET environment
variable set in the above script. For example
changing the cuda_capability_61 target feature
to cuda_capability_35 changes the target’s com-
pute capability from 6.1 to 3.5.
$ cd harris

$ make test

The above process can be repeated for the rest
of the applications. All runtimes are expected
to have a variation of +- 5% but a similar ratio
across each implementation compared to the one
seen in the presented figures.
The source code of the AutoGPU scheduler

can be found in the AutoSchedule.cpp file located
in benchmarks/autoscheduler/.
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