
Automated Bottleneck-Driven Design-Space
Exploration of Media Processing Systems∗

Yang Yang1, Marc Geilen1, Twan Basten1,2, Sander Stuijk1, Henk Corporaal1

1Department of Electrical Engineering, Eindhoven University of Technology, Netherlands
2Embedded Systems Institute, Eindhoven, Netherlands

Email: {y.yang, m.c.w.geilen, a.a.basten, s.stuijk, h.corporaal}@tue.nl

Abstract—Media processing systems often have limited re-
sources and strict performance requirements. An implementation
must meet those design constraints while minimizing resource
usage and energy consumption. Design-space exploration tech-
niques help system designers to pinpoint bottlenecks in a system
for a given configuration. The trade-offs between performance
and resources in the design space can guide designers to tailor
and tune the system. Many applications in those systems are
computationally intensive and can be modeled by a synchronous
dataflow graph. We present a bottleneck-analysis-driven tech-
nique to explore the design space of those systems automatically
and incrementally. The feasibility and efficiency of the technique
is demonstrated with experiments on a set of realistic application
models ranging from multimedia to digital printing.

Index Terms—Synchronous dataflow, Design-space explo-
ration, Bottleneck identification

I. INTRODUCTION

Nowadays, system designers are challenged by the ever-

increasing complexity of systems and the pressure for a shorter

time-to-market. Designers are struggling to find a balanced

design point that meets both resource and performance re-

quirements. Design-Space Exploration (DSE) aims to provide

designers with a profile of the system that shows all the trade-

offs in the design space. Those trade-offs can help designers

to dimension the system and to make important decisions

on the system, e.g., the number of processors, the size of

the memory, the bandwidth of the bus, and so on. However,

the design spaces of those systems are normally very large

and cannot be explored exhaustively. Bottleneck-driven DSE

tries to explore the design space of the system efficiently by

identifying resource bottlenecks and by exploring in specific

directions, increasing the amount of bottleneck resources.

Compared to exploration techniques that treat all resource

dimensions equally, bottleneck-driven DSE can reduce the

number of candidate design points to be explored considerably.

Although the identification of bottlenecks depends on the

problem, the design flow of many bottleneck-driven DSEs can

be seen as a specialization of the well known Y-chart method

[1], [2]. Given a system design problem, design alternatives

of the application and the architecture are represented via

a set of parameters, and the metrics of interest are defined.

Next, metrics are evaluated and the bottleneck parameters

are identified. With this information, the system parameters

∗This work has been carried out as part of the Octopus project with Océ
Technologies B.V. under the responsibility of the Embedded Systems Institute.
This project is partially supported by the Netherlands Ministry of Economic
Affairs under the Bsik program.

A

B

C

Resource-aware SDFG

(In configuration ρ2)

Application Parameters:

Execution Time

Resource Requirements

Architecture Parameters:

Resource Amounts

1

State Space Exploration

2

A B

C δR1

δR1

δR2

Abstract Dependency Graph

(For configuration ρ2)

3

ρ1:(R1=a,R2=b)

ρ2:(a1,b) ρ3:(a,b1)

ρ4:(a2,b)

Inc R1 Inc R2

Inc R1
Configuration

Space

4

Dependency Analysis

Bottleneck IdentificationTuning & Dimensioning

Throughput EvaluationModeling

Configure Model

Increase

Bottleneck

resource

Exploring
R1

R2
S1 S2 S3

S4

S5

S8

S6

S7

Fig. 1. Bottleneck-driven DSE for Resource-aware SDFG

are tuned. By iterating these steps, the design space can be

explored.

Media processing systems, from mobile phones to digital

printers, perform computations usually in a streaming way.

Applications are frequently modeled by Synchronous Dataflow

Graphs (SDFGs, [3]), and the systems normally have highly

constrained resources (memory footprint, bandwidth, etc.).

Once the mappings of the applications onto the components

of the architecture template has been decided, it remains

to dimension the architecture. In this paper, we develop

a bottleneck-driven DSE flow for platform dimensioning

of those systems that are modeled by an extended SDFG

model: resource-aware SDFG [7]. Through the bottleneck-

driven DSE, designers can obtain a design-space profile for

the system and choose among the trade-offs in the profile.

Fig. 1 shows the overview of the flow. Given an application

with a number of tasks with known execution times and

resource requirements for a given platform with a number

of resources, we use a resource-aware SDFG to model the

system for a given mapping. For this paper, we choose

throughput as the metric of interest. As the throughput cannot

be computed directly from formulas, we execute the model

and evaluate the throughput from the state space of the model.

Through the analysis of the state space, we construct the

abstract dependency graph, that captures the dependency of

task executions on the availability of resources, and identify

the resource bottlenecks in the system. We then increase the

amount of one or more of the bottleneck resources and iterate

the above steps. For example, for configuration ρ2 in Fig. 1,

we deduce that progress of A and C cyclically depends on

availability of resource R1. Given that R1 thus is a potential

bottleneck, we increase the amount of R1 to generate a new

configuration ρ4 which potentially has a better performance.

We use configuration ρ4 to configure the resource-aware SDFG

and repeat the above steps automatically until the design space

has been explored.

The paper is structured as follows. Sec. 2 introduces SDFGs

and their resource-aware extension (steps 1, 2 in Fig. 1). Sec.

3 discusses bottleneck identification (step 3), while Sec. 4

presents the exploration of the resource configuration space

(step 4). An experimental evaluation is given in Sec. 5. Sec.

6 discusses related work and Sec. 7 concludes.

II. RESOURCE-AWARE SDFGS

The top part of Fig. 2 shows a simple example SDFG. The

circular nodes are called actors and represent computations.

Actor computation is atomic and its execution time is constant.

Actor names and execution times are denoted inside the nodes.

Actors transfer information to each other on FIFO channels

(solid directed edges) via data items called tokens (black dots).

An essential property of SDFGs is that every time an actor

fires (executes), it consumes the same amount of tokens from

its input ports and produces the same amount of tokens onto

its output ports. These amounts are called the rates, and are

attached to the ports in the figure.

Fig. 2. Example Resource-aware SDFG

We assume a set Ports of ports, and with each port p ∈
Ports we associate a rate Rate(p) ∈ N\{0}. An SDFG is a

tuple (A,C, τ) with a finite set A of actors, a finite set C ⊆
Ports

2 of channels and a mapping τ : A 7→ N that assigns

to each actor a ∈ A the time it takes to execute once, i.e., its

execution time. The source of every channel is an output port

of some actor; the destination is an input port of some actor.

All ports of all actors are connected to precisely one channel.

When an actor a starts its firing, it consumes Rate(q) tokens

from all input ports q. After time has progressed by τ(a), the

actor finishes its firing and produces Rate(p) tokens on every

output port p.

Efficient algorithms to compute the throughput [4] and the

required channel capacities of an SDFG [5], [6] exist. Channel

capacities can be modeled in the SDFG [5], but it is hard to

directly model other resources and handle situations such as

resources shared by more than two actors. [7] extends SDFGs

to resource-aware SDFGs to explore the trade-offs between

multiple resources and throughput. We develop a bottleneck-

driven analysis technique for resource-aware SDFGs.

For example, the SDFG in Fig. 2 is extended to a resource-

aware SDFG by taking the architecture and the resource

requirements into account. Rectangular blocks are added to

model the resources: one processor Proc, one accelerator

Accl and one shared memory Mem with capacity 9. The

dashed edges between the actors and the resources capture

the resource requirements of actors. Actors A, B, C, D are

mapped to Proc and actor E is mapped to Accl. When C
and E start firing, they claim 5 units of memory; when they

end firing, they release 5 units of memory. For each actor,

we annotate the amount of claimed and released resources at

the actor resp. resource side of the corresponding requirement

edge. We conservatively assume that resources are claimed

and released at firing start and end, respectively.
Definition 1: (RESOURCE-AWARE SDFG) A resource-

aware SDFG is a tuple (A,C, τ, R,Req, ρ) consisting of

SDFG (A,C, τ), finite set R of resources, finite set Req ⊆
A × R of requirement edges, and resource configuration

ρ : R 7→ N, denoting the available amount of resources. For

each resource requirement edge (a, r) ∈ Req, Clm(a, r) gives

the amount of r claimed at the firing start of a and Rel(a, r)
gives the amount of r released at the firing end of a.

A state of a resource-aware SDFG (A,C, τ, R,Req, ρ) is

a triple (δ, η, υ). Mapping δ associates with each channel the

amount of tokens present in that channel in that state. Mapping

η, called a resource quantity, associates with each resource

r ∈ R the amount used of that resource in that state. To keep

track of time progress, actor status υ : A 7→ N
N associates

with each actor a ∈ A a multiset of numbers representing the

remaining times of different active firings of a. We assume

that the initial state of a resource-aware SDFG is given by

some initial token distribution δ0, initial resource usage η0 (not

necessarily zero) and no actor firing, which means the initial

state equals (δ0, η0, {(a, {}) | a ∈ A}) (with {} the empty

multiset). For example, in Fig. 2, the initial state s0 = (〈0, 0,
0, 2, 0, 1〉,〈0, 0, 0〉,{(A, {}),(B, {}),(C, {}),(D, {}),(E, {})}.

An execution σ = s0s1s2 · · · of a system is cap-

tured by a sequence of state transitions of the resource-

aware SDFG model. For example, when actor A in Fig.

2 starts firing, it consumes the initial tokens on ch4 and

ch6, claims processor Proc and its state goes from the

initial state s0 to state s1 = (〈0, 0, 0, 0, 0, 0〉, 〈1, 0, 0〉,
{(A, {1}),(B, {}),(C, {}),(D, {}),(E, {})}. Then the time ad-

vances for the minimal remaining execution time of any of the

active actors, 1 time unit in this example. Actor A then ends

firing, produces 1 token on both ch1 and ch5 and releases

Proc, etc. Resource conflicts (e.g. C and E compete for

Mem) and scheduling freedom (e.g. the firing order of B and

E) for a system allow multiple possible transitions and lead to

different executions of the system. Fig. 3 shows the state space

of the example under resource configuration ρ = 〈1, 1, 9〉.

Fig. 3. State space of the example of Fig. 2

In general, during a state transition from one state to another

state, some actors end firing, produce tokens on channels and

release occupied resources while some other actors start firing,

consume tokens and claim required resources.

As the amount of resources ρ of a resource-aware SDFG is

finite, the state space of a resource-aware SDFG is also finite.

After a finite number of transitions, an infinite execution will

revisit some states infinitely often.

Definition 2: (SIMPLE EXECUTION) An infinite execution

σ is a simple execution if and only if it is of the form σ =
σpre · σ

ω
per , with a finite prefix execution σpre followed by a

repetition of finite execution σper .

Fig. 3 shows multiple simple executions, e.g. σ1 = (s0s1s2
s3s4s5)

ω and σ2 = (s0s1s7s8s9s10)
ω both with empty prefix.

A simple execution generates a finite schedule consisting

of a prefix schedule and a periodic schedule. Moreover, the

performance of the execution, i.e. the throughput, depends on

σper [4], and can be computed efficiently (step 2 in Fig. 1).

Given an execution σ, the resource usage is the least upper

bound of the resource quantities along the execution. If σ is

simple, σ = σpre · σ
ω
per , the resource usage is the maximum

of the resource quantities between σpre and σper . Given the

nice properties of simple executions, for efficiency reasons,

we limit our attention to simple executions. Different simple

executions for a given resource configuration ρ of a resource-

aware SDFG have different throughputs and resource usages.

After throughput evaluation of the resource-aware SDFG

with configuration ρ, we use dependency analysis to identify

the bottlenecks of the resource-aware SDFG with the given ρ.

III. BOTTLENECK IDENTIFICATION

The maximal throughput of a system may be limited by

the amount of available resources (e.g. the number or speed

of processors, the size of memory, the bandwidth of a bus).

In [5], [6], a dependency graph and its abstract dependency

graph are introduced to capture the dependencies on channel

capacities between actor firings of an SDFG. The dependencies

are used to analyze the bottlenecks in channel capacities. In

this paper, we adapt those concepts to analyze resource-aware

SDFGs. In an execution, for example, one or more actors may

not start firing while waiting for the other running actors to end

firing, so that they can claim the released resources. Increasing

the amount of resources may enable the waiting actors to

start firing earlier and possibly increase the throughput. We

would like to detect such situations as indications of a potential

bottleneck. The dependency of the start of firing of an actor

on a resource released or tokens produced by the end of firing

of another actor is called a causal dependency.

Definition 3: (CAUSAL DEPENDENCY) A firing of actor a
causally depends on the firing of actor b if and only if the firing

of a claims resources or consumes tokens that are released or

produced by the firing end of b without any time progress

between the firing start of a and the firing end of b.

The causal dependencies can be classified into two types,

channel dependencies and resource dependencies.

Definition 4: (CHANNEL DEPENDENCY) A causal depen-

dency caused by producing and consuming tokens on channel

c ∈ C is a channel dependency, denoted by δc, or δc(x, y) to

make the involved firings or actors x and y explicit.

Definition 5: (RESOURCE DEPENDENCY) A causal depen-

dency caused by releasing and claiming resource r ∈ R is a

resource dependency, denoted by δr, or δr(x, y) to make the

involved firings or actors x and y explicit.

A channel dependency only exists between two actors that

connect to the same channel, and can thus be easily detected.

The detection of a resource dependency depends on how the

resource is shared. If it is only shared between two actors, it

can also be detected easily. For a resource shared by more

than two actors, the resource dependencies cannot be easily

detected as we do not know exactly how released resources are

distributed among the waiting actors. Given a resource r ∈ R
that is shared by more than two actors and a time instance

t, the producer set Ap contains firings that end and produce

the resource at t and the consumer set Ac contains firings

that start and consume r at t. Without loosing any resource

dependencies, we assume that the resource dependency exists

between every firing in Ap and every firing in Ac if and only

if the available amount of r, Ravail(r), at the time t before

release is less than the total amount of r that is claimed,

i.e. δr(p, c), exists for every pair (p, c) ∈ Ap × Ac if and

only if Ravail(r) <
∑

c∈Ac

Clm(c, r) (assuming the obvious

interpretation of Clm for firings). This assumption simplifies

the detection of resource dependencies, but it also introduces

false dependencies, that are discussed later in detail.

Causal dependencies between actor firings can be captured

as follows.

Definition 6: (CAUSAL DEPENDENCY GRAPH) Given a

simple execution σ = σpre · σ
ω
per of a resource-aware SDFG,

the causal dependency graph (D,E) contains a node ak ∈ D
for the k-th firing ak of the actor a ∈ A in σper and the set of

dependency edges E contains an edge δc(ak, bl) or δr(ak, bl)
if and only if there exists a causal dependency for channel c
or resource r between firings ak and bl.

Fig. 4. An execution fragment of the example of Fig. 2

A1

C1

B1

D1

E1

5ch
δ

1ch
δ

4ch
δ

3ch
δ

proc
δ

proc
δ

proc
δ

proc
δ

mem
δ

D2

(a) Dependency Graph

A

C

B

DE

5ch
δ

1chδ

4ch
δ

3ch
δ

proc
δ

proc
δ

proc
δ

proc
δ

mem
δ

(b) Abstract Dep. Graph

Fig. 5. Dependency Graph and Abstract Dependency Graph

For the execution period of the example of Fig. 2 given in Fig.

4, the dependency graph is given in Fig. 5(a).

Dependencies between actor firings in the σper of a simple

execution σ can form cyclic dependencies, called a causal

dependency cycle. For example, in Fig. 5(a), dependency edges

δproc(A1, D2), δproc(D2, D1), δproc(D1, C1), δmem(C1, E1)
and δch5(E1, A1) form a causal dependency cycle.

Definition 7: (CAUSAL DEPENDENCY CYCLE) A causal

dependency cycle is a simple cycle in the dependency graph.

The throughput of a simple execution is limited by some

of those cycles in its dependency graph. For example, the

throughput of the execution in Fig. 4 is limited by the

dependency cycles that contain δmem(C1, E1). If a resource

dependency δr appears in a causal dependency cycle, the

throughput may increase if we can remove the dependency by

increasing the amount of r, e.g. the increase of Mem allows

E and C to fire at the same time. Resource dependencies not

in cycles are not critical to the performance. For example,

δproc(B1, A1) is not on a dependency cycle; it is not critical

to the throughput of the execution in Fig. 4. If we delay B1

one time unit, the throughput remains the same.

Definition 8: (BOTTLENECK) A resource r ∈ R in a

resource-aware SDFG is a bottleneck of execution σ under

configuration ρ if and only if increasing r in configuration ρ
is needed for an increase of the throughput of σ.

Unfortunately, the size of the dependency graph can be very

large. For example, the minimal number of actor firings in one

period of the sample rate graph of [8] is 612. Therefore, we use

an abstract representation of the dependency graph to capture

all dependencies between the firings in σper .

Definition 9: (ABSTRACT DEPENDENCY GRAPH) Given a

causal dependency graph (D,E), the abstract causal depen-

dency graph (Da, Ea) contains a node da ∈ Da for each

actor a ∈ A and a dependency edge δ(da, db) ∈ Ea for each

dependency edge δ(ak, bl) ∈ E.

Fig. 5(b) shows the abstract dependency graph of Fig. 5(a).

By construction, any dependency cycle in the dependency

graph gives a dependency cycle in the abstract graph. Depen-

dency edges related to bottleneck resources thus appear at least

once in a dependency cycle of the abstract dependency graph.

We can therefore detect resource dependencies in the abstract

graph to identify potential bottlenecks (step 3 in Fig. 1).

Proposition 1: If a resource r is a bottleneck, then the

abstract dependency graph has a dependency cycle containing

a resource dependency for r.

Three items remain to be discussed. First, causal dependen-

cies are defined based on firings. However, an execution may

enter into a deadlock state, where no actor is able to fire. We

need to redefine the causal dependency concept in this case.

With this adapted definition, an abstract dependency graph can

be derived as before.

Definition 10: (CAUSAL DEPENDENCY IN DEADLOCK) In

a deadlock state, a firing of actor a causally depends on a

firing of actor b if and only if the firing of a needs tokens that

may be produced by or resources that may be released by a

firing of actor b.

Second, the dependency assumption in the shared resource

case and the use of the abstract dependency graph instead of

the dependency graph can lead to false dependencies. Fig. 6

shows two examples. In Fig. 6(a), firing start X claims 5 units

of resource r and firing start Y claims 2 units; the available

amount is 3 units before firing end Z releases 6 units. If Y
uses the available amount of r and X uses the amount of r

released by Z , then only X depends on Z and the dependency

between Y and Z is false. However, in our definition, X
and Y both depend on Z . In Fig. 6(b), there is no cycle in

the dependency graph, but a false dependency cycle exists

in the abstract dependency graph. The false dependencies in

the abstract dependency graph can cause some non-bottleneck

resources to be detected as bottleneck resources and may lead

to redundant exploration.

X ZY

r(3)

clm 5 clm 2 rel 6

X Y

Actor Firings

Z

Dependency Graph

rδ
r

δ

(a) False Resource Dependency

Abstract Dependency Graph

Xk Xk+1

Yk

Dependency Graph

rδ
r

δ

Yk+1

X

Y

rδ
rδ

(b) False Dependency Cycle

Fig. 6. False Dependencies
Third, multiple simple executions can exist in the state space

of a resource-aware SDFG, each with an abstract dependency

graph. Often, bottleneck resources are the same. For efficiency,

we build a dependency graph that merges all dependencies into

one graph. This may again lead to false dependency cycles.

Again, real bottleneck resource dependencies always exist in

the merged graph and the real bottlenecks are always detected.

We gain efficiency by tolerating those false detections while

keeping the exploration safe.

5ch
δ

6ch
δ

1ch
δ

4ch
δ

3ch
δ

proc
δ

proc
δ

proc
δ

proc
δ

mem
δ

mem
δ

(a) ρ = 〈1, 1, 9〉

5ch
δ

6ch
δ

1ch
δ

4ch
δ 3ch

δ

proc
δ

proc
δ

proc
δ proc

δ

2ch
δ

proc
δ

(b) ρ = 〈1, 1, 10〉

A C

B

DE

5ch
δ

6ch
δ

1ch
δ

4ch
δ

3ch
δ

2ch
δ

(c) ρ = 〈3, 1, 10〉

Fig. 7. Bottleneck Identification

IV. DESIGN SPACE EXPLORATION FLOW

From Sec. III, we know that bottleneck information of a

resource-aware SDFG is embedded in its abstract dependency

graph. We can compute the SDFG’s maximal achievable

throughput without resource limitations efficiently from its

strongly connected components through state-space analysis

[4]. In practice, we always perform a DSE within some

resource ranges, for instance, given by cost. In [5], [6],

channel-buffer bottlenecks of an SDFG are detected through an

abstract dependency graph and used to guide the exploration of

buffer configurations. In this paper, we also infer the potential

resource bottlenecks and increase the amount of relevant ones

incrementally until the graph reaches the maximal throughput

or the maximal resource configuration that we want to explore.

For example, in Fig. 7(a), Mem and Proc are potential

bottlenecks. We increase Mem from 9 to 10, and the Mem
dependency disappears in Fig. 7(b). When increasing Proc
from 1 to 3, all resource dependencies disappear (Fig. 7(c))

and maximal throughput is reached.
Fig. 8 gives the DSE algorithm. It uses an initial resource

configuration to configure a resource-aware SDFG and ex-

plores the state space of the configured graph. Upon detecting

a cycle in the state space, throughput and resource usage

Goto next state

Construct abstract

dependency graph

Compute throughput

& resource usage

Bottleneck Analysis

Generate New Resource

Configurations

Configure

resource-aware SDFG

Initialize configuration

Compute Pareto-optimal

configurations

Stop exploring the

configuration?

Select

Configuration

Output Design Space

Yes

No

Still have Unexplored

Configurations?

No

Yes

Cycle detected?

Yes

No

Fig. 8. Design-Space Exploration Flow

of the execution are computed. Pareto-optimal design points

among all explorations are kept as the output of the DSE.

When detecting a cycle, causal dependencies are added to the

abstract dependency graph. As multiple cycles can exist in the

state space, the abstract dependency graph is complete only

after the state-space exploration stops. Bottleneck analysis

is then performed by identifying resource dependencies in

strongly connected components of the dependency graph.

Identified bottleneck resources are each increased a minimal

step, specified by the user. Thus, a new set of unexplored

configurations is generated and pushed into the configuration

queue. Breadth-first search is used to search the configuration

space. Dynamic programming is used to avoid redundant

explorations of configurations that have already been explored.

The algorithm terminates if the configuration queue is empty.

V. EXPERIMENTAL EVALUATION

To evaluate the DSE flow, we experiment with a set of

DSP, multimedia and printer datapath models on an Intel 2.2

GHz CoreTM2 with 4GB RAM. Since exhaustive exploration

of the configuration space is infeasible, we compare our

algorithm with the approach in [7] that does not use bottleneck

information but that samples the resource configuration space

according to a grid and explores each grid point (configuration)

separately. Through bottleneck analysis, we expect that many

grid points do not need to searched by the bottleneck-driven

DSE, reducing the exploration time. Our method has been

implemented in the freely available SDF3 [9] tool.

In the first experiment, we compare the execution times of

the approaches on six resource-aware SDFG models (adapted

from six SDFGs by adding resource requirements). The set

contains a modem [8], a satellite receiver [10] and a sample-

rate converter [8] from the DSP domain and an MP3 decoder

[5] and an H.263 decoder [5] from the multimedia domain.

We also use the often used artificial bipartite graph from [8].

Fig. 9. MP3 Buffer Configuration

For each model, we explore the trade-offs between through-

put and the size of one shared memory. As the state space

for one specific SDFG is very large, we heuristically limit

the state-space search. The memory (resource configuration)

range is from the lower bound of [11] to the upper bound of [5]

and it is uniformly divided into 10 steps. The left column for

each model in Table I gives execution times and the numbers

of explored configurations for both the grid (Non-BD) and

bottleneck-driven search (BD).

The results show that bottleneck-driven DSE has two effects

on the execution time. On the one hand, it avoids the explo-

ration of some unnecessary resource configurations. On the

other hand, the bottleneck analysis brings some overhead. For

Bipartite, the two approaches explore the same configurations

and the number of simple executions for each configuration

is very large, so the bottleneck-driven approach is worse. For

Modem, many unnecessary configurations can be avoided by

bottleneck-driven DSE and the analysis overhead is more than

compensated by the reduction in configurations. The other

models give results in between these two extremes.
To test bottleneck analysis for multiple resources and large

configuration spaces, we did experiments with distributed

memory. For MP3, for example, Fig. 9 shows the buffer

sharing among actors for three different buffers. The right

column for each model in Table I gives the results. Substantial

reductions are obtained in all cases. As expected, the per-

formance of bottleneck-driven DSE improves with increasing

numbers of resources.
The second experiment is a printer case study provided by

Océ (www.oce.com). We aim to dimension the memory and

bus usage of three different printer architectures, one reference

architecture, one with faster processing units, and one with

additional processing units. Table II shows that bottleneck

analysis reduces the number of explored configurations, and

even if the overhead for bottleneck analysis is substantial

(Arch 3), the overall execution time reduction is still good.
The configuration space of grid search with and without

bottleneck analysis for the first printer architecture is shown in

Fig. 10. The (blue) squares are configurations explored without

bottleneck analysis. The (green) triangles are configurations

explored with bottleneck analysis. Thanks to the bottleneck

identification, exploration stops increasing specific resources

if they are no longer a potential bottleneck of the system.

The (red) circles show the resource usage of the found Pareto

points. They do not coincide with grid points because the

actual resource usage may be less than the configured amounts.

VI. RELATED WORK

The Y-chart method [1], [2] is widely used to analyze

embedded systems and as the basis for DSE [12], [13].

However, [12], [13] formulate the DSE problem as an in-

teger programming problem and solve it with evolutionary

TABLE I
EXECUTION TIME COMPARISON

Bipartite Sample Rate Modem Satellite MP3 H.263(QCIF)
No. of Mem buffers 1 2 1 3 1 2 1 2 1 3 1 2
Conf No. Non-BD 168 286 288 1176 336 125 264 245 408 360 264 45

Exec Time Non-BD (s) 134.3 92.4 523.7 404.831 359.2 83.5 562.2 585.337 577.9 237.8 252.5 85.7
Conf No. BD 168 168 216 181 89 19 90 27 118 89 264 14

Exec Time BD (s) 181.9 86.1 496.5 89.3 116.8 16.0 207.9 62.92 235.3 145.6 259.3 19.5
Conf Reduction 0% 41% 25% 85% 73% 85% 66% 89% 71% 75% 0% 69%

Exec Time Reduction -35% 6% 5% 78% 67% 80% 63% 89% 59% 39% -3% 77%

TABLE II
PRINTER ARCHITECTURE COMPARISON

Arch 1 Arch 2 Arch 3
Conf No. Non-BD 110 110 110

Exec Time Non-BD (s) 71.9.6 128.2 120.0
Conf No. BD 37 44 58

Exec Time BD (s) 40.2 78.3 100.0
Conf Reduction 66% 60% 47%

Exec Time Reduction 44% 39% 20%

Grid
BD

Pareto

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

MemoryHMBL

B
a
n

d
w

id
th
HM

B
�s
L

Configuration Space Comparison

Fig. 10. Comparison between Configuration Spaces

algorithms. These approaches do not work for problems that

cannot be formulated as an integer programming problem (e.g.

throughput analysis for SDFGs). Bottleneck analysis is an

important aspect of system performance analysis [14]. Work

has been done on bottleneck analysis in areas such as system

design [1], [2], hardware optimization [15], [16], network

flow analysis [17], program optimization [18], and trade-off

analysis [5], [6]. [18] analyzes program traces and constructs

a dependency graph of program execution. By analyzing the

dependencies in the critical path of the dependency graph,

the bottleneck can be identified and performance improved.

[5], [6] extract the dependency graph from the state space of

an SDFG. By analyzing the critical cycles in the dependency

graph, bottleneck buffers and trade-offs between buffer size

and throughput are found. [5], [6] only allow distributed

resources and only deterministic self-timed execution is pos-

sible. [7] propose a resource-aware SDFG model that allows

generic resource analysis. Our work is inspired by [5], [6]

and proposes a bottleneck-driven DSE technique for resource-

aware SDFGs for automatic system dimensioning.

VII. CONCLUSIONS

We developed a bottleneck-driven DSE approach to explore

the design space of a media processing system captured by

a resource-aware SDFG. The approach guides the search by

information collected during the evaluation of metrics of inter-

est. Experimental results show that, for systems with multiple

resources and large configuration spaces, the bottleneck-driven

approach saves up to 89% in analysis time compared to a

brute-force approach. Future directions include applying the

bottleneck analysis to resource-aware SDFGs with specific

scheduling strategies, and analyzing the sensitivity of bottle-

neck analysis to task execution time variation. The approach

is not necessarily limited to resource-aware SDFGs and can

potentially be applied to other models of computation. It can

also be combined with mapping exploration techniques to

explore an even larger part of the overall design space.

REFERENCES

[1] F. Balarin, et al., Hardware-software co-design of embedded systems:
the POLIS approach. Kluwer, 1997.

[2] B. Kienhuis, et al., “An approach for quantitative analysis of application-
specific dataflow architectures,” in Application-Specific Systems, Archi-
tectures and Processors 1997 Proc, IEEE, 1997, pp. 338–349.

[3] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comp.,
vol. 36, no. 1, pp. 24–35, 1987.

[4] A. Ghamarian, et al., “Throughput analysis of synchronous data flow
graphs,” in ACSD’06 Proc, IEEE, 2006, pp. 25–34.

[5] S. Stuijk, et al., “Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs,” in DAC’06
Proc, ACM, 2006, pp. 899–904.

[6] ——, “Throughput-buffering trade-off exploration for cyclo-static and
synchronous dataflow graphs,” IEEE Trans. Comp., vol. 57, no. 10, pp.
1331–1345, 2008.

[7] Y. Yang, et al., ”Exploring trade-offs between performance and resource
requirements for synchronous dataflow graphs,” in Estimedia ’09 Proc,
IEEE, 2009, pp. 96–105.

[8] S. S. Bhattacharyya, et al., “Synthesis of embedded software from
synchronous dataflow specifications,” Journal on VLSI Signal Process.
Syst., vol. 21, no. 2, pp. 151–166, 1999.

[9] S. Stuijk, et al., “SDF3: SDF For Free,” in ACSD’06 Proc, IEEE,
2006, pp. 276–278.

[10] S. Ritz, et al., “Scheduling for optimum data memory compaction in
block diagram oriented software synthesis,” in Int. Conf. on Acoustics,
Speech, and Signal Processing, Proc, 1995, pp. 2651–2654.

[11] M. C. W. Geilen, et al., “Minimizing buffer requirements of synchronous
dataflow graphs with model-checking,” in DAC’05 Proc, ACM, 2005, pp.
819–824.

[12] M. Lukasiewycz, et al., “Efficient symbolic multi-objective design space
exploration,” in ASP-DAC ’08 Proc. IEEE, 2008, pp. 691–696.

[13] A. D. Pimentel, et al., “A systematic approach to exploring embedded
system architectures at multiple abstraction levels,” IEEE Trans. Comp.,
vol. 55, no. 2, pp. 99–112, 2006.

[14] R. K. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation and
Modelling. John Wiley & Sons, April 1991.

[15] F. Gao and S. Sair, “Long-term performance bottleneck analysis and
prediction,” in ICCD 2006, 2006, pp. 3–9.

[16] J. Hu, et al., “System-level buffer allocation for application-specific
networks-on-chip router design,” IEEE Trans. CAD, vol. 25, no. 12,
pp. 2919–2933, 2006.

[17] H. Chen and A. Mandelbaum, “Discrete flow networks: Bottleneck anal-
ysis and fluid approximations,” Mathematics of Operations Research,
vol. 16, no. 2, pp. 408–446, 1991.

[18] M. Agarwal and M. I. Frank, “Spartan: A software tool for paralleliza-
tion bottleneck analysis,” in IWMSE ’09, 2009, pp. 56–63.

