
Model-Driven Design-Space Exploration for
Software-Intensive Embedded Systems?

(extended abstract)

Twan Basten1,2, Martijn Hendriks1, Lou Somers2,3, and Nikola Trčka4

1Embedded Systems Institute, Eindhoven, the Netherlands
2Eindhoven University of Technology, Eindhoven, the Netherlands

3Océ Technologies B.V., Venlo, the Netherlands
4United Technologies Research Center, East Hartford, CT, USA

http://dse.esi.nl

Abstract. Software plays an increasingly important role in modern
embedded systems, leading to a rapid increase in design complexity.
Model-driven exploration of design alternatives leads to shorter, more
predictable development times and better controlled product quality.

1 Motivation

Industries in the high-tech embedded domain (including for example professional
printing, lithographic systems, medical imaging, automotive, etc.) are facing the
challenge of rapidly increasing complexity of next generations of their systems.
Ever more functionality is being added, user expectations regarding quality and
reliability increase, an ever tighter integration between the physical processes
being controlled and the embedded hardware and software is needed, and tech-
nological developments push towards networked, multi-processor and multi-core
platforms. The added complexity materializes in the software and hardware em-
bedded at the core of the systems. Important decisions need to be made early in
the development trajectory. Which functionality should be realized in software
and which in hardware? What is the number and type of processors to be inte-
grated? How should storage (both working memory and persistent disk storage)
be organized? Is dedicated hardware development beneficial? How to distribute
functionality? How to parallelize software? How can we meet timing, reliability
and robustness requirements? The decisions should take into account the appli-
cation requirements, cost and time-to-market constraints, as well as aspects like
the need to re-use earlier designs or to integrate third-party components.

Industries typically adopt some form of model-based design for the soft-
ware and hardware embedded in their systems. Fig. 1 illustrates such a process.

?
This work was carried out as part of the Octopus project with Océ Technologies B.V. under
the responsibility of the Embedded Systems Institute. This project was partially supported by
the Netherlands Ministry of Economic Affairs under the Bsik program. This extended abstract is
based on earlier papers describing the Octopus tool set [2] and our philosophy behind model-driven
design-space exploration [7]; the full version of this extended abstract will appear as [3]. Nikola
Trčka was employed by Eindhoven University of Technology when this work was performed.



2 T. Basten et al.

White board Analytic, static 
models

Executable, 
operational models

Expensive, time-
consuming iterations

Cheap, fast 
exploration

Prototypes
(hardware, software)

Fig. 1. Embedded-systems development is an iterative process typically involving sev-
eral costly iterations over physical prototypes. Model-driven DSE avoids these itera-
tions through fast and efficient exploration using models, improving time-to-market
and leading to better controlled product quality.

Spreadsheets play an important role in early decision making about design alter-
natives. They provide a quick and easy method to explore alternatives at a high
abstraction level. Executable operational models may then be developed for fur-
ther exploration and/or synthesizing hardware and software. Current industrial
practice uses such models mostly for the latter purpose, focussing on functional
and structural aspects and not on extra-functional aspects such as timing and
resource usage. Promising alternatives are realized in prototypes that include
large parts of the software and hardware that are ultimately also used in the
final system. Parts of the process may be iterated several times.

Design iterations through prototypes are time consuming and costly. Only
a few alternatives can be explored. The number of design alternatives is ex-
tremely large though. The challenge is to more effectively exploit models for
design-space exploration (DSE), avoiding design iterations over prototypes and
extensive performance tuning and re-engineering at the implementation level.
Spreadsheet analysis is suitable for a coarse pruning of options. However, it not
well suited to capture system dynamics due to for example pipelined, parallel
processing, data-dependent workload variations, resource scheduling and arbi-
tration, variations in data granularity, etc. (see Fig. 2). High-level operational
models can capture such dynamics. However, in industry, such models are not yet
extensively used for DSE purposes. An important challenge is therefore to bridge
the gap between spreadsheet type analysis and prototypes for DSE in industrial
development practice. It is crucial to find the right abstractions, methods, and
analysis techniques to support accurate and extensive DSE.

2 Model-Driven Design-Space Exploration

An important characteristic of DSE is that many different questions may need
to be answered, related to system architecture and dimensioning, resource cost
and performance of various design alternatives, identification of performance



Model-Driven DSE for Software-Intensive Embedded-Systems 3

Workload variations

Different workload 

granularities

Pipelined, parallel processing 

(of a single scanned page)

Suboptimal performance

Fig. 2. An illustrative Gantt chart showing the execution of a printing pipeline. Dy-
namics in the processing pipeline cause hick-ups in print performance due to under-
dimensioning of the embedded execution platform.

bottlenecks, sensitivity to workload variations or spec changes, energy efficiency,
etc. Different models may be needed to address these questions. Models should be
intuitive to develop for engineers from different disciplines (hardware, software,
control), and they should be consistent with each other. Multiple tools may be
needed to support the modelling and analysis. The Embedded Systems Institute
(ESI) and its academic and industrial partners have picked up the challenge
to develop systematic methods and tool support for DSE of software-intensive
embedded systems. Given the characteristics of DSE, our approach is based on
two important principles: separation of concerns and re-use and integration of
existing techniques and tools (see Fig. 3).

ESI coordinates its efforts on model-driven DSE through the Octopus tool
set (http://dse.esi.nl). The tool set architecture (Fig. 3, left) separates the mod-
elling of design alternatives, their analysis, the interpretation and diagnostics of
analysis results, and the exploration of the space of alternatives. This separation
is obtained by introducing an intermediate representation, the DSE Intermedi-
ate Representation DSEIR, and automatic model transformations to and from
this representation. This set-up allows the use of a flexible combination of mod-
els and tools. It supports domain-specific modelling in combination with generic
analysis tools. Multiple analyses can be applied on the same model, guaranteeing
model consistency among these analyses; different analysis types and analyses
based on multiple models can be integrated in a single search of the design space.
Results can be interpreted in a unified diagnostics framework.

The modelling in Octopus follows the Y-chart paradigm of [1, 5] (Fig. 3,
right) that separates the concerns of modelling the application functionality,
the embedded platform, and the mapping of application functionality onto the
platform. This separation allows to easily explore variations in some of these
aspects, for example the platform configuration or the resource arbitration, while



4 T. Basten et al.

Analysis

plugins

Domain-Specific 

Modelling

DSEIR
(design-space exploration 

intermediate representation)

Diagnostics

plugins

Search

plugins

PlatformApplication

Mapping

Analysis

Diagnostics

Fig. 3. Separation of concerns. The Octopus tool set architecture separates modeling,
analysis, search and diagnostics through the intermediate representation DSEIR (left).
Modeling and design-space exploration follow the Y-chart paradigm ([1, 5]; figure from
[2]), separating application, platform and mapping aspects (right).

fixing other aspects, such as the parallelized task structure of the application. It
also facilitates re-use of aspect models over different designs.

Intermediate representation DSEIR [7] plays a crucial role in the Octopus
approach. It follows the Y-chart paradigm and is specifically designed for the
purpose of model-driven DSE. DSEIR is realized as a Java library. The current
implementation supports four views: application, platform, mapping, and ex-
periment. DSEIR can be used through a Java interface, an Eclipse-based XML
interface, and an Eclipse-based prototype GUI.

Applications in DSEIR are modelled as task graphs. Tasks communicate via
ports, and their work loads are specified in terms of required services (such as
CPU computation, storage needs). The use of services avoids direct references
to the platform definitions, thus realizing the Y-chart separation of concerns.
A platform consists of a number of resource declarations. Each resource has a
capacity and provides services at a certain speed. The combination of service
speed of a resource and service work load of a task can be used to compute
task execution times. The mapping connects an application to a platform. It
consists of resource allocations and priority specifications. Resource allocations
specify whether or not preemption is allowed. Execution follows the dynamic
priority scheduling paradigm. DSEIR models are all parameterized, with for
example processor speeds, memory sizes, priorities, etc. as parameters. DSEIR
has a well-defined operational semantics. The abstraction level is such that it is
possible to efficiently and effectively capture the system behaviour and dynamics
that is essential for a fast but accurate assessment of design alternatives. The
experiment view of DSEIR allows to define sets of DSE experiments for selected
models and model parameter settings. The analyses to be performed and the
way to handle the output of the experiments can be specified as well.

The current tool set implementation supports modelling directly in DSEIR
[7] as well as modeling of printer data paths for professional printers through a
Domain-Specific Language (DSL) called DPML, the Data-Path Modelling Lan-
guage [6]. Several types of analysis are supported. Performance analysis through



Model-Driven DSE for Software-Intensive Embedded-Systems 5

discrete-event simulation is supported via CPN Tools (http://cpntools.org),
model checking is supported via Uppaal (http://www.uppaal.org), and dataflow
analysis through SDF3 (http://www.es.ele.tue.nl/sdf3). Exploration support is
available through JGAP (http://jgap.sourceforge.net) and the tool set has built-
in support for dividing multiple analyses over the available processors of a multi-
processor machine. Diagnostic support is provided through Excel, Gantt charts
(see Fig. 2) and Pareto analysis [4].

3 Industrial Experiences

We have used Octopus in several case studies at Océ Technologies. These case
studies involve design-space exploration of printer data paths of professional
printers. Professional printing systems perform a variety of image processing
functions on digital documents that support the standard scanning, copying and
printing use cases, as well as many combinations and variations of these use
cases. The printer data path encompasses the complete trajectory of the image
data from source (for example the scanner or the network) to target (the imaging
unit). The case studies show that the Octopus tool set can successfully deal with
several modeling challenges, like various and mixed abstraction levels (from pages
to pixels and everything in between), preemptive and non-preemptive scheduling,
stochastic behavior, dynamic memory management, page caching policies, het-
erogeneous processing platforms with CPUs, GPUs, and FPGAs, realistic PCI
and USB arbitration, etc. Our analyses identified performance bounds for print-
ing pipelines and resource bottlenecks limiting performance, they gave designers
a better understanding of the systems, confirmed design decisions (scheduling,
arbitration, and caching), and suggested small design improvements (buffering,
synchronization). Both DPML and DSEIR models can be made with little effort,
very similar to the time investment needed for a spreadsheet model. An impor-
tant advantage is that one model suffices to use different analysis tools. The
analysis time in CPN Tools and Uppaal using models automatically generated
from DSEIR models was always at least as good as with handcrafted models.

4 Challenges

The first experiences with the Octopus approach to model-driven DSE have been
successful, but many challenges remain, both scientific challenges and challenges
related to industrial adoption of model-driven DSE:

– How do we properly handle combinations of discrete, continuous, and proba-
bilistic aspects? Such combinations materialize from combinations of timing
aspects, user interactions, discrete objects being manipulated, physical pro-
cesses being controlled, failures, wireless communication, etc.

– How can we effectively combine the strengths of different types of analysis,
involving for example model checking, simulation, dataflow analysis, con-
straint programming, SAT/SMT solving, etc.? No single analysis technique



6 T. Basten et al.

is suitable for all purposes. Integration needs to be achieved without resort-
ing to one big unified model.

– How do we achieve scalability? Can we support modular analysis and com-
positional reasoning across analysis techniques, across abstraction levels, and
for combinations of discrete, continuous, and probabilistic aspects?

– How to cope with uncertain and incomplete information? Information is of-
ten unavailable early in the design process, environment parameters and user
interactions may be uncontrollable and unpredictable. How do we guarantee
robustness of the end result of DSE against (small) variations in parameter
values? Can we develop appropriate sensitivity analysis techniques?

– How do we cope with the increasing dynamics in modern embedded sys-
tems? Today’s systems are open, connected, and adaptive in order to enrich
their functionality, enlarge their working range and extend their life time, to
reduce cost, and to improve quality under uncertain and changing circum-
stances. System-level control loops play an increasingly important role. What
is the best way to co-design control and embedded hardware and software?

– Can we develop systematic, semi-automatic DSE methods that can cope with
the complexity of next generations of high-tech systems? How do we provide
model consistency when combining multiple models and analysis techniques?

– How do we handle the many different use cases that a typical embedded
platform needs to support? How to support trade-off analysis over the many
objectives that play a role in DSE?

– How do we incorporate DSE in the system development processes? This
involves aspects like model calibration, model validation, and model ver-
sioning, but also linking DSE to code generation, hardware synthesis, and
possibly model-based testing.

– How do we achieve industrial acceptance? Industrially mature DSE tools
are a prerequisite. DSL support, tool chain customization, integration with
other development tools, and training all need to be taken care of.

References

1. F. Balarin et al.: Hardware-Software Co-design of Embedded Systems: The POLIS
Approach. Kluwer, 1997.

2. T. Basten et al.: Model-Driven Design-Space Exploration for Embedded Systems:
The Octopus Toolset. Proc. ISoLA 2010, LNCS 6415, pp. 90–105. Springer, 2010.

3. T. Basten et al.: Model-Driven Design-Space Exploration for Software-Intensive
Embedded Systems. In: T. Basten et al. (eds), Model-based Design of Adaptive
Embedded Systems. Springer, 2013. To appear.

4. M. Hendriks et al.: Pareto Analysis with Uncertainty. Proc. EUC 2011, pp. 189–
196. IEEE CS Press, 2011.

5. B. Kienhuis et al.: An Approach for Quantitative Analysis of Application-specific
Dataflow Architectures. Proc. ASAP 1997, pp. 338–349. IEEE, 1997.

6. E. Teeselink et al.: A Visual Language for Modeling and Analyzing Printer Data
Path Architectures. Proc. ITSLE 2011, 20 pp., http://planet-sl.org/itsle2011/.

7. N. Trcka et al.: Integrated Model-Driven Design-Space Exploration for Embedded
Systems. Proc. IC-SAMOS 2011, pp. 339–346. IEEE CS Press, 2011.


