
RASW: a Run-time Adaptive Sliding Window
to Improve Viola-Jones Object Detection

Francesco Comaschi, Sander Stuijk, Twan Basten and Henk Corporaal
Electronic Systems Group, Eindhoven University of Technology, The Netherlands

{f.comaschi, s.stuijk, a.a.basten, h.corporaal}@tue.nl

Abstract—In recent years accurate algorithms for detecting
objects in images have been developed. Among these algorithms,
the object detection scheme proposed by Viola and Jones gained
great popularity, especially after the release of high-quality face
classifiers by the OpenCV group. However, as any other sliding-
window based object detector, it is affected by a strong increase in
the computational cost as the size of the scene grows. Especially
in real-time applications, a search strategy based on a sliding
window can be computationally too expensive. In this paper,
we propose an efficient approach to adapt at run time the
sliding window step size in order to speed-up the detection
task without compromising the accuracy. We demonstrate the
effectiveness of the proposed Run-time Adaptive Sliding Window
(RASW) in improving the performance of Viola-Jones object
detection by providing better throughput-accuracy tradeoffs.
When comparing our approach with the OpenCV face detection
implementation, we obtain up to 2.03x speedup in frames per
second without any loss in accuracy.

I. INTRODUCTION

Innovations in semiconductor technology and computer
architectures are enabling new scenarios in the context of
real-time computer vision systems where the capability of
analyzing the content of a scene in real time is of crucial
importance. A good example of a time-critical task which
finds application in many fields, from video-surveillance to
robot cameras, is the detection and identification of a specific
object in a scene. Among the objects of possible interest,
human faces have recently received significant attention in
both academia and industry [1]. In the available literature,
a wide variety of techniques have been proposed for face
detection. The face-detection technique proposed by Viola and
Jones in [2] represented a real break-through in this research
area. Since its introduction, the Viola-Jones algorithm gained
great popularity due to its high accuracy and solid theoretical
basis. However the computational complexity of the Viola-
Jones algorithm makes it still a challenging task to meet
real-time requirements (e.g., throughput) even on powerful
platforms. The scene-scanning speed heavily depends on the
sliding-window step size ∆, which is the number of pixels by
which the sliding window is shifted when scanning the image
in search of objects. In most available implementations the step
size ∆ is constant and fixed at compile time; this implies that
the sliding window is shifted by a constant amount of pixels
regardless of the scene content. In this paper, we propose the
Run-time Adaptive Sliding Window (RASW) approach which
significantly improves the throughput without degrading the
accuracy of the algorithm by adapting the sliding-window step
size ∆ at run time.

The paper is structured as follows. In the next section, we
give an overview of the related work. In Sec. III, we review
the Viola-Jones algorithm. In Sec. IV, the proposed RASW

approach is presented. Experimental results are provided in
Sec. V while Sec. VI contains the concluding remarks.

II. RELATED WORK

Many hardware implementations of the Viola-Jones face
detector have been proposed in recent years to obtain a
high throughput [3]–[5]. However, a custom hardware design
presents two main drawbacks: i) it requires a significant engi-
neering effort, which also implies high non-recurring costs; ii)
it does not provide flexibility, making it almost impossible to
adapt the system to any changes in the application scenario.

Another possible solution to speed-up the algorithm is
resorting to a GPU implementation [6]–[8]. However, the
amount of power consumed by a GPU makes it an unpractical
solution if low power is a concern, such as for embedded
applications. Moreover, GPU implementations can be used in
combination with the optimization proposed in this paper. In
particular, features- and scale-parallelization are possible. For
a more detailed discussion readers are referred to [6].

In [9] the authors proposed an OpenCV software implemen-
tation optimized for embedded environments, but the algorithm
is left unaltered with respect to the original OpenCV imple-
mentation. Our algorithmic optimization improves the system
throughput by reducing the required computation without
degrading the system accuracy.

The first step in a typical object detection system is the
scanning of the scene in search of candidate image regions.
This scanning step is computationally intensive. RASW is
a new approach in the scene-scanning process that exploits
run-time information to speed-up the detection; therefore it
relates also to recent works on optimal image search. Lampert
et al. [10] propose an analytic approach known as Efficient
Subwindow Search (ESS) to allow efficient object localization.
However, the proposed approach refers to object localization,
which implies that the number of objects of interest present
in the scene must be known in advance. Such an approach
can be extremely useful in contexts like image retrieval from
the web, but from [10] it is not clear which performance
can be expected in contexts where many objects of interest
are simultaneously present in the scene. Moreover, in [10] a
bounding function has to be built in order to apply ESS to an
object detector, and in that work there is no example of such a
function for a cascade classifier. The approach proposed in this
paper is specifically targeted for cascade classifiers, does not
require any additional information such as a bounding function
and applies for any number of objects of interest in the scene.

In [11] the authors consider a method based on a model of
visual search in humans for fast object detection. Comparing
their work to the OpenCV implementation of the Viola-Jones
face detector, they obtain an average 2x speedup, which comes



at the cost of a small loss in accuracy. The experimental
results are reported for a single image, so it is difficult to
understand if the reported results still hold when testing the
proposed approach in a more extensive way. Moreover, the
approach proposed by the authors in [11] applies to images
containing one single face, and it is not clear how to apply such
an approach to images with multiple instances of objects of
interest. Even if some results are reported for different choices
of the scaling factor s, the other parameters involved in the
scene-scanning process are not systematically explored. The
approach introduced in this paper can always reach a better
accuracy than the OpenCV implementation at the same time
speeding-up the detection task. Our results are presented for
a standard database of faces and the influence of the different
parameters involved is carefully analyzed.

In [12] the authors propose an interesting method to re-
duce the missed detections in a cascade face detector while
increasing the step size in a sliding-window based technique.
The authors present very promising results on several face
databases. However, the approach proposed in [12] requires
the off-line training of a decision tree which is adopted for
location estimation. Also, the use of interests points adds some
extra computation time to the detection task, thus making it
more difficult to apply it in case of memory or processing
power limitations. The algorithmic optimization presented in
this paper is solely based on run-time information and it
is obtained by performing the scene scanning in a more
computationally efficient manner; therefore it does not require
any extra training on the object classifier and does not add
any computational overhead to the standard sliding-window
techniques.

III. VIOLA-JONES ALGORITHM OVERVIEW

The Viola-Jones algorithm is used as a starting point in
this work; therefore we present an overview of the algorithm
describing its main steps. However, it should be noted that
the proposed optimization may benefit every sliding-window
based object detection algorithm adopting a cascade classifier.
Since the proposed optimization relates to the scene-scanning
process, without affecting the computations performed on each
of the sliding windows, we focus in our discussion on the
scene-scanning process and the merging of multiple detections.
We also provide a brief description of the parameters influ-
encing the run-time behavior of the algorithm and we briefly
describe the working principles of the cascade classifier.

Scanning the detector: In Fig. 1 we provide a graphical
representation of the scene-scanning process: in steps 1-4 a
sliding window of fixed size is scanned across the complete
image (left-to-right-top-to-bottom) according to a step size
∆. Each sliding window is provided as input to the cascade
classifier (see Fig. 2, explained later). In step 5 the image
is scaled-down according to a scale factor s to detect faces
of various sizes. In step 6 the scanning is repeated on the
scaled-down image. In step 7, when the image is smaller than
the sliding window, the detection ends. In steps 8-9, multiple
detections are merged using the ratio of the intersection/union
of the detection areas.

Merging multiple detections: Following a standard im-
plementation [12], [13], we combine multiple detections (of
the same face/region) in he following fashion. The set of
detections is first partitioned into disjoint subsets, where two

∆

Start from top-left corner Shift sliding window by ∆ pixels

(face detected)and classify sliding window and classify sliding window

Classify sliding window

End of first round

H

W

Hs

Ws

Scale down image:

Ws = W
s

Hs = H
s

Classify sliding window

(face detected)

End of detection

Merge bounding boxes:

if at least γ boxes

are overlapping,

merge them into

a single object

1 2 3

4

5 6

7

8 9

otherwise reject detection

Fig. 1. Scene-scanning.

different bounding boxes are in the same subset if their overlap
ratio is above a threshold α. If any detection is defined by a
rectangular bounding box Ri = (xi, yi, wi, hi), where xi and
yi are the top left corner of the bounding box and wi and hi
are its width and height respectively, then the overlap ratio
between any two rectangles Ri and Rj is given by:

J(Ri, Rj) =
Ri ∩Rj

Ri ∪Rj
(1)

where Ri ∩ Rj and Ri ∪ Rj stand for the area of their
intersection and union respectively. The value of J ranges
from 0 to 1 and we have experimentally determined a value of
0.45 for α. Once the entire set of detections has been divided
into subsets of overlapping rectangles, we merge each subset
of overlapping rectangles into a single rectangle (bounding
box), where the corners of the final bounding box are the
average of the corners of all detections in the subset. Since
targets (and also false positives) are often detected multiple
times, it is useful to introduce a configurable merging threshold
γ which is defined as the minimum number of overlapping
rectangles in each disjoint subset for accepting the merged
detection. When a subset of overlapped rectangles contains
less detections (rectangles) than γ, the subset will be rejected,
i.e., the merging step reverts the decision of the cascade
classifier and classifies the region as a region not containing
a face. In steps 8-9 of Fig. 1 we provide an example where
γ = 2 leads to a true positive (face correctly detected), a false
positive (bounding box at output of merging step that contains
no face) and a false negative (face not detected).

Cascade detector: To achieve rapid detection, Viola and
Jones proposed to perform the detection task through a cascade
of nodes, which are referred to as strong classifiers. The
cascade structure is shown in Fig. 2. The cascade consists of
n stages, which for our purposes can be seen as black boxes
performing some computation on the input sliding window.
Each stage is characterized by a stage-threshold and each
stage computation results in a binary decision: if a certain
condition is satisfied, then the sliding window is passed to the
next stage for further processing; otherwise it is immediately
rejected. Only sliding windows that can make it through the
complete cascade are classified as faces. Since the computation



performed within each stage is quite costly, the structure of the
cascade reflects an attempt to reject the majority of the sliding
windows in the input as soon as possible, which reduces
the amount of computation required. The parameters of the
classifier have been obtained by training them on a set of
positive and negative samples of fixed size. Since our focus is
not on the training process, we have used a classifier already
available from the OpenCV library [14]. This cascade classifier
consists of n = 25 stages trained over sample images of 24
× 24 pixels.

sliding

reject sliding window

object

detected
stage 1 stage 2 stage n

T T T

F F F

window

Fig. 2. Cascade classifier composed by n stages. Each stage results in a binary
decision. If a stage returns false, the sliding window is rejected immediately
and no further processing is required.

IV. RUN-TIME ADAPTIVE SLIDING WINDOW (RASW)
In Sec. III, we have seen that at each scaling of the original

image a sliding window is scanned across the complete
(scaled) image according to a step size ∆. For our purposes,
we should distinguish between the step size along the x and the
y axis, i.e. ∆x and ∆y . For sake of simplicity, we keep the ∆
notation whenever a statement is valid for both directions. The
sliding-window step size ∆ affects both the detection accuracy
and the system throughput. Generally speaking a higher value
of ∆ improves the system throughput, since a smaller number
of detection sliding windows will have to pass through the
cascade classifier for the detection task. On the other hand, this
usually results in a worsening of the recall (i.e., the fraction of
detected objects that are relevant to the search over the number
of objects of interest present in the scene), since some objects
of interest might be missed when moving the sliding window
too fast. If we find a criterion to move the detection sliding
window faster when scanning regions that do not contain any
objects of interest, and move it slower in the vicinity of faces,
we are able to speed-up the scene-scanning process without
affecting the recall. Moreover, by moving the sliding window
faster in uniform regions of the image, we reduce the chance
for the classifier to wrongly classify a background region as a
face, thus improving the precision (i.e., the fraction of detected
objects that are relevant to the search over the total number
of objects retrieved by the classifier).

In most existing implementations, the step size is fixed to
a constant value, usually ∆x = ∆y = 1 or ∆x = ∆y = 2
since higher values would normally provide poor results in
terms of recall. Our analysis reveals a correlation between the
presence of faces in regions of the image and the stage of
the cascade classifier where the sliding window is rejected
(from now on referred to as the exit-stage). In particular, in
background regions, the detection sliding windows are rejected
in the earlier stages of the classifier, while in general the higher
the proximity of faces, the higher the exit-stage. Fig. 3 shows
an example image from the test set and for each of the sliding
windows scanned across the image the corresponding exit-
stage from the cascade classifier. If the top-left corner of the
current sliding window is at position (x, y) of the image, the

Fig. 3. The left plot is an example image from the test set. The right plot
shows the correlation between regions of the image and the exit-stage from
the cascade classifier when the sliding window passes over that region. The
analysis suggests that the sliding window can be safely shifted by a bigger
step in correspondence to low exit-stage values, without missing any faces

pixel in position (x, y) is displayed with an intensity which
is inversely proportional to the exit-stage. In other words, the
darker the pixel, the higher the exit-stage.

Our analysis suggests that the sliding window can be safely
shifted by a bigger step in correspondence to low exit-stage
values, since in most cases this implies that the current region
of the image does not present any objects of interest. On the
other hand, as the exit-stage value approaches the end of the
cascade classifier, it is wise to slow-down the scanning process
in order not to miss any faces, because a higher value of the
exit-stage corresponds to a higher probability of being in the
proximity of objects of interest. The basic idea behind the
standard cascade classifier is to spend less time on image
regions that are less likely to contain objects of interest. The
proposed RASW approach directly discards non-promising
regions by exploiting spatial data locality. Even though the
discarded regions are those where computation would have
been less expensive, the considerable reduction in the number
of detection windows leads to a faster computation without
affecting the recall. This is especially true because by directly
discarding a window, we also avoid image normalization of
the subwindow, which is a rather expensive pre-processing
operation required by the Viola-Jones algorithm in order to
minimize the effect of different lighting conditions [2], [9].

In Fig. 4 we provide a graphical representation of the
intuition behind the proposed approach. In order to make the
figures more readable, we distinguish between the x (left) and
the y direction (right). The gray-scale blocks are a zoomed-
in view of pixels from 204 to 213 (x-axis) and from 114 to
122 (y-axis) of the image reported in Fig. 3 (right). The black
pixel at position (209, 117) corresponds to the bottom-right
face detected in Fig. 3. For each of the approaches reported in
Fig. 4, the corresponding geometric shape specifies the pixels
where the sliding window is placed. In Fig. 4 (left) we can
see how, by taking a constant step of ∆x = 2 or ∆x = 3,
the detector fails to place the sliding window at the location
where the face is present. On the contrary, the RASW approach
automatically reduces the step size ∆x as the sliding window
approaches the face, thus allowing to place the sliding window
properly. The same behavior can be observed in Fig. 4 (right),
the only difference being that in this case also a constant step
∆y = 3 allows to place the sliding window properly.



∆x = 2 ∆x = 3 RASW

204 205 206 207 208 209 210 211 212 213

122

121

120

119

118

117

116

115

114

∆y = 2 ∆y = 3 RASW

204 205 206 207 208 209 210 211 212 213

122

121

120

119

118

117

116

115

114

Fig. 4. Graphical representation of the proposed RASW method. To make the
figure more readable, we distinguish between the x (left) and the y (right)
direction. The squares and circles represent the position where the sliding
window is placed by taking a step ∆ = 2 and ∆ = 3, respectively. The
triangles represent the position where the sliding window is placed by the
RASW approach. From the figure we can see how a dynamic adaptation of
the step size along both directions allows to speed up the scene scanning in
background regions while allowing to properly detect faces.

Algorithm 1 Run-Time Adaptive Sliding Window
Require: scaled input image X , classifier cascade S
Ensure: vector V of detected faces (bounding boxes)

1: for y ← 0 to X.height− subwindow.height do
2: ∆x ← 1
3: for x← 0 to X.width− subwindow.width do
4: ∆x ← ∆x − 1
5: ∆y[x]← ∆y[x]− 1
6: if ∆x = 0 AND ∆y[x] = 0 then
7: exit-stage← S(x, y)
8: if exit-stage = n then
9: R← (x, y, width, height)

10: push R into V
11: end if
12: if exit-stage < ∆x,t1 then
13: ∆x = ∆x,max

14: else if ∆x,t1 ≤ exit-stage < ∆x,t2 then
15: ∆x = ∆x,nom

16: else
17: ∆x = ∆x,min

18: end if
19: else if ∆x = 0 then
20: ∆x ← ∆x,min

21: else if ∆y[x] = 0 then
22: ∆y[x]← ∆y,min

23: end if
24: end for
25: end for

Algorithm 1 presents the implementation of RASW. Every
time we run the cascade classifier on a sliding window (line 7
of algorithm 1), the stage where the window has been rejected
is returned. A face is detected when exit-stage = n. Whenever
a face is detected (line 8), a rectangular bounding box R is
created and pushed into the vector of detected faces V (line
10). The sliding window step size ∆x can switch between three
different values: ∆x,max,∆x,nom and ∆x,min, depending on
the exit-stage from the cascade classifier of the latest evaluated
sliding window (the same holds for the y direction). In order
to assign a proper value to ∆x and ∆y , we need to store
the information related to the result of the latest evaluated
detection sliding window. Such information can be directly
stored in the step sizes ∆x and ∆y . In our implementation
the sliding window is scanned in a left-to-right-top-to-bottom
fashion; therefore the information related to the x-direction

can be stored in one single short integer variable (∆x). On
the other side, every time a sliding window reaches the end
of a row, the information related to the step size across the
y-direction must be preserved for the entire row; therefore
∆y is an array of short integers whose size is the width of
the current scaled-down image X . At each iteration of the
algorithm, both ∆x and ∆y[x] are reduced by one. Only when
both ∆x and ∆y[x] reach zero the current sliding window is
evaluated. If the condition is met by only one of the two step
sizes, then such step size is reinitialized to the minimum (lines
20 and 22). The transition from one value of ∆ to another
is determined for both directions at run time based on four
threshold parameters: ∆x,t1, ∆x,t2, ∆y,t1 and ∆y,t2. These
parameters are set at compile time to one of the stages of
the cascade classifier; therefore they can assume the integer
values in the range [0; n + 1], with ∆x,t1 ≤ ∆x,t2 and
∆y,t1 ≤ ∆y,t2. We include the corner cases where ∆x is con-
stant and equal to either ∆x,min (∆x,t1 = ∆x,t2 = 0), ∆x,nom

(∆x,t1 = 0, ∆x,t2 = n + 1) or ∆x,max (∆x,t1 = n + 1).
The same holds for ∆y . For the sake of brevity, in lines 12-
18 of algorithm 1 we report only the code related to the x
direction, but the same code should be reported for the y
direction, although with some variations. Different choices for
the threshold parameters provide several accuracy-throughput
tradeoffs. Depending on the performance requirements of the
application, by properly tuning the thresholds together with the
other parameters involved in the scene-scanning process (scale
factor s and merging threshold γ), different design points in
the accuracy-throughput space can be reached. For the values
of ∆max,∆nom and ∆min we chose 3, 2 and 1 respectively
(for both directions), since in our experiments higher values
have proven to provide poor recall results (below 70%).

In the next section we show that, by assigning different
values to the threshold parameters, the proposed RASW
approach provides new configurations in the scene-scanning
design space which dominate the configurations provided by
the existing implementations.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of RASW
in improving the performance of Viola-Jones object detection
by comparing it with an implementation that assigns a static
value to ∆x and ∆y , and to the two approaches adopted in
the OpenCV 2.4 library, which implement simpler mechanisms
of run-time adaptation. The experiments have been run on a
quad-core Intel Core i7 with a 3.07 GHz clock featuring an
8.00 MB level-3 cache. The selected test set is the CMU+MIT
face database set [15].

The approaches that we have taken into account are the
following: (i) static: ∆x and ∆y constant and equal to either
1, 2 or 3 (therefore leading to nine possible combinations);
(ii) OpenCV 1: ∆x = 2 for every region of the image, unless
the previous sliding window has detected a face. In the latter
case, the step size ∆x is reduced to 1. ∆y is kept constant
and equal to 1; (iii) OpenCV 2: ∆ = 1 if the sizes of the
current scaled-down image are less than half of the original
image sizes, ∆ = 2 otherwise. In this case a change in the
step size affects both ∆x and ∆y .

We remark here that the first 2 approaches (static and
OpenCV 1) used for our comparison are sub-cases of the pro-



posed RASW approach. In particular, every combination of the
static approach can be derived from Algorithm 1 by assigning
proper values to ∆t1 and ∆t2 (as already mentioned in the
previous section). The second approach (OpenCV 1) can be
obtained by setting ∆x,t1 = 0, ∆x,t2 = n, ∆y,t1 = ∆y,t2 = 0.

In order to illustrate the advantages achievable through
RASW, we tested the different approaches for several values
of the two other scene-scanning parameters: the scaling-
factor s and the merging threshold γ. In particular we have
chosen the following settings: s ∈ {1.1, 1.2, 1.3, 1.4, 1.5} and
γ ∈ {1, 2, 3, 4, 5}. Larger values for any of these param-
eters provided poor results in terms of recall. Having five
possible values for s, five different values for γ and eleven
different approaches on ∆ (nine static combinations plus the
two OpenCV approaches), we end up with 275 different
configurations for the existing approaches. Regarding RASW,
different choices are possible for the threshold parameters
∆x,t1, ∆x,t2, ∆y,t1 and ∆y,t2. Since the number of stages
of the selected classifier is n = 25, and in order to perform an
extensive testing of our method in reasonable time we pruned
the search space by assigning to the threshold parameters a
limited set of values in the range [0;n + 1]. In particular
∆x,t1,∆x,t2,∆y,t1,∆y,t2 ∈ {0, 5, 10, 15, 20, 25, 26}, with the
constraints ∆x,t1 ≤ ∆x,t2 and ∆y,t1 ≤ ∆y,t2, which leads
to 28 possible combinations for each direction. Multiplying
by the possible values for s and γ we end up with a total of
19,600 configurations.

To analyze the performance of the proposed algorithm,
we use two metrics often adopted when comparing object
detection algorithms (in particular these are the same metrics
adopted in the Pascal VOC challenge [16]). These two metrics
are the recall and the precision, and they are defined as:

recall =
TP

TP + FN
, precision =

TP

TP + FP
(2)

where TP is the number of true positives, FN is the number
of false negatives while FP is the number of false positives.
Hereby we want to show that the proposed RASW approach
provides the designer with new design points which dominate
the existing solutions. Among all the generated configurations,
we show only the so-called Pareto points, which are locally
optimal solutions that capture all the optimal tradeoffs in the
design space1 [17]. A configuration in the design space is
said to dominate another configuration if it is at least as
good in each of the adopted metrics. Typically, we want to
remove elements that do not contribute interesting realization
options. A configuration that is dominated by another one is
not interesting. A set of configurations that does not contain
any dominated configuration, is said to be Pareto minimal.
Thus, all individual elements of a Pareto-minimal set of
configurations are Pareto points.

In Fig. 5(a) we report the Pareto points obtained through
the baseline (static, OpenCV 1, OpenCV 2) and the RASW
approaches in the 2-dimensional space recall/precision. The
Pareto-minimal configuration set from the baseline implemen-
tations contains 27 Pareto points while the Pareto-minimal
configuration set from the RASW approach contains 48 Pareto

1To provide our results so that they are in line with the traditional definition
of Pareto point [17], we use 1−recall instead of recall, 1−precision instead
of precision. In this way the theoretically best possible configuration coincides
with the origin of the axes.

points. From Fig. 5(a) we can see that all the Pareto-minimal
configurations from the baseline design space are dominated
by points from the RASW design space. This implies that
for every colored cross or x-mark (baseline configuration)
in Fig. 5(a) we can find at least one red circle (RASW
configuration) that is at least as good in each of the adopted
metrics. In practice, for a given recall, the RASW approach
always provides at least one configuration point in the scene-
scanning parameters design space which is at least as precise
as any configuration point from the baseline implementations
with the same (or better) recall.

Especially for embedded applications, where the images
have to be processed under stringent real-time constraints, a
third aspect is of paramount importance: throughput, which
can be defined as the number of processed Frames Per Second
(fps). In order to be able to visualize the Pareto-minimal
solutions when taking also the system throughput into account,
we adopt the F1-score, which is a widely adopted metric
in the context of information retrieval and accounts for the
system accuracy by combining precision and recall together
[18]. The F1-score can be interpreted as a weighted average
of the precision and the recall, and it reaches its best value at
1 and worst score at 0:

F1 = 2× precision× recall
precision+ recall

(3)

In Fig. 5(b) we report the Pareto points obtained through the
baseline and the RASW approaches in the 2-dimensional space
F1-score/throughput2. The Pareto-minimal configuration set
from the baseline implementations contains 16 Pareto points
while the Pareto-minimal configuration set from the RASW
approach contains 28 Pareto points. From Fig. 5(b) we can
see that also in this case the Pareto-minimal configuration set
from the baseline design space is dominated by the Pareto-
minimal configuration set from the RASW design space. In
practice, this implies that for a given accuracy, the RASW ap-
proach always provides at least one configuration point, which
provides a throughput at least as high as the one provided
by any configuration point from the baseline implementations
with the same (or better) accuracy.

The results in Fig. 5 show that, in the design space
of the parameters involved in the scene-scanning process,
RASW provides new configurations that dominate the con-
figurations achievable through the existing implementations.
This means that the same (or better) recall can be achieved
with more precision and that the same (or better) accuracy
can be achieved with less computation. For example, con-
sider the Pareto-minimal configuration achievable through the
OpenCV 1 implementation by setting s = 1.2 and γ = 4
(second x-mark from the top in Fig. 5(b)). Such a point
leads to F1-score = 87.9 and throughput = 6.1 fps. By
selecting ∆x,t1 = 5, ∆x,t2 = 10, ∆y,t1 = 5, ∆y,t2 = 5,
s = 1.3 and γ = 4, the RASW approach leads to a
better accuracy (F1-score = 88.4) with a 2.03x speedup
(throughput = 12.4 fps). This point is plotted with a black
circle in Fig. 5(b).

The gain in performance achievable through the RASW ap-
proach is not constant, i.e. it varies depending on the position

2Also in this case we use 1−F1-score and 1/throughput in order to
report the theoretically best possible solution in coincidence with the origin
of the axes.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-(recall)

1-
(p
re
ci
si
on
)

 

 

RASW

Static

OpenCV 1

(a) Recall/precision trade-off space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

1-(F1-score)

1/
(t
h
ro
u
gh
p
u
t)

 

 

RASW

Static

OpenCV 1

Design point example

(b) F1-score/throughput trade-off space.

Fig. 5. Pareto points in the recall/precision (a) and in the F1-score/throughput space (b). The crosses and x-marks are Pareto-minimal solutions from the
static and OpenCV 1 approaches, respectively (none of the Pareto points comes from the OpenCV 2 approach), the red circles are the Pareto-minimal points
provided by the RASW approach. From the figure we can see that when designing an object-detection system, the proposed RASW approach can always
provide better solutions with respect to a baseline implementation.

in the design space. The purpose of this paper is to show
that, through the RASW approach, the designer of an object
detector has now the possibility to choose new design points
that better fit the target application. For example, suppose that
the target application requires a throughput of at least 10 fps,
with a recall greater than 80% and a precision above 95%.
Then, by choosing the set of parameters mentioned above for
the RASW approach the designer will get the design point
corresponding to the black circle in Fig. 5(b), characterized
by recall = 82.4%, precision = 95.2%, throughput =
12.4 fps, which meets the application requirements. This point
is not achievable through any of the baseline implementa-
tions (the Pareto-minimal configuration from the OpenCV 1
implementation mentioned above leads to recall = 82.6%,
precision = 94% and throughput = 6.1 fps).

VI. CONCLUSIONS

This paper proposes the use of a Run-time Adaptive Sliding
Window (RASW) for improved object detection. We present
our results for an implementation of the Viola-Jones face
detector, but any sliding-window based object detection al-
gorithm using a cascade classifier can benefit from our opti-
mization. When compared to the existing approaches, RASW
provides better design points both in the recall/precision design
space and in the F1-score/throughput design space, which is
particularly relevant when targeting real-time applications. The
proposed optimization allows to achieve better accuracy than
the existing implementations with less computation, and can
be implemented on top of architecture-level optimizations or
combined with parallelizing techniques to improve the perfor-
mance even further. Since RASW leads to a large design space,
in future work we plan to develop suitable algorithms which
automatically search for the parameters setting that best fits
the application requirements. The proposed algorithm exploits
spatial locality to improve face detection: when capturing
images from video, temporal locality can be also taken into
account to reduce the required computation even further.

ACKNOWLEDGMENT

This work was supported in part by the COMMIT program
under the SenSafety project.

REFERENCES

[1] C. Zhang and Z. Zhang, “A survey of recent advances in face detection,”
in Technical report MSR-TR-2010-66, 2010.

[2] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, 2001.

[3] J. Cho, B. Benson, S. Mirzaei, and R. Kastner, “Parallelized architecture
of multiple classifiers for face detection,” in ASAP, 2009.

[4] M. Hiromoto, H. Sugano, and R. Miyamoto, “Partially parallel architec-
ture for Adaboost-based detection with haar-like features,” IEEE Trans.
Circuits Syst. Video Technol., vol. 19, pp. 41–52, 2009.

[5] B. Brousseau and J. Rose, “An energy-efficient, fast FPGA hardware
architecture for OpenCV-compatible object detection,” in FPT, 2012.

[6] D. Hefenbrock, J. Oberg, N. Thanh, R. Kastner, and S. Baden, “Acceler-
ating Viola-Jones face detection to FPGA-level using GPUs,” in FCCM,
2010.

[7] D. Oro, C. Fernández, J. R. Saeta, X. Martorell, and J. Hernando,
“Real-time GPU-based face detection in HD video sequences,” in ICCV
Workshops, 2011.

[8] S. C. Tek and M. Gokmen, “GPU accelerated real-time object detection
on high resolution videos using modified census transform,” in VISAPP,
2012.

[9] L. Acasandrei and A. Barriga, “Accelerating Viola-Jones face detection
for embedded and SoC environments,” in ICDSC, 2011.

[10] C. Lampert, M. Blaschko, and T. Hofmann, “Beyond sliding windows:
object localization by efficient subwindow search,” in CVPR, 2008.

[11] N. J. Butko and J. R. Movellan, “Optimal scanning for faster object
detection,” in CVPR, 2009.

[12] V. B. Subburaman and S. Marcel, “Alternative search techniques for face
detection using location estimation and binary features,” Comput. Vision
Image Understanding, vol. 117, no. 5, pp. 551–570, 2013.

[13] V. Jain and E. Learned-Miller, “FDDB: A benchmark for face detection
in unconstrained settings,” University of Massachusetts, Amherst, Tech.
Rep. UM-CS-2010-009, 2010.

[14] G. Bradski, “The OpenCV Library,” Dr. Dobb’s J. Softw. Tools, 2000.
[15] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based face

detection,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 20, pp. 23–38,
1998.

[16] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vision, vol. 88, no. 2, pp. 303–338, 2010.

[17] M. Geilen, T. Basten, B. D. Theelen, and R. Otten, “An algebra of pareto
points,” Fundam. Inform., vol. 78, no. 1, pp. 35–74, 2007.

[18] C. Goutte and É. Gaussier, “A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation,” in ECIR, 2005.


