
Modular Model-Based Supervisory Controller
Design for Wafer Logistics in Lithography

Machines
Bram van der Sanden∗, Michel Reniers∗, Marc Geilen∗, Twan Basten∗§,

Johan Jacobs†, Jeroen Voeten∗§, and Ramon Schiffelers∗†
∗Eindhoven University of Technology, Eindhoven, The Netherlands

b.v.d.sanden@tue.nl
†ASML, Veldhoven, The Netherlands

§TNO Embedded Systems Innovation, Eindhoven, The Netherlands

Abstract—Development of high-level supervisory controllers
is an important challenge in the design of high-tech systems.
It has become a significant issue due to increased complexity,
combined with demands for verified quality, time to market,
ease of development, and integration of new functionality. To
deal with these challenges, model-based engineering approaches
are suggested as a cost-effective way to support easy adaptation,
validation, synthesis, and verification of controllers. This paper
presents an industrial case study on modular design of a
supervisory controller for wafer logistics in lithography machines.
The uncontrolled system and control requirements are modeled
independently in a modular way, using small, loosely coupled and
minimally restrictive extended finite automata. The multiparty
synchronization mechanism that is part of the specification
formalism provides clear advantages in terms of modularity,
traceability, and adaptability of the model. We show that being
able to refer to variables and states of automata in guard
expressions and state-based requirements, enabled by the use of
extended finite automata, provides concise models. Additionally,
we show how modular synthesis allows construction of local
supervisors that ensure safety of parts of the system, since
monolithic synthesis is not feasible for our industrial case.

I. INTRODUCTION

Over the last few decades, the complexity of high-tech
systems and their control architectures have increased consid-
erably due to demands for higher quality, faster time to market,
better performance, new functionalities, and verified safety. To
deal with this complexity, various kinds of models are used
increasingly often in the development process. Model-based
systems engineering (MBSE) methodologies provide various
advantages for supervisory controller development. Specifi-
cally, formal and executable models are built and employed in
the design phase for design-space exploration of supervisors
that control the system. These models are a crucial part of
the design process, as subsequent steps such as synthesis,
validation, verification, testing, and code generation all depend
on them. Therefore, it is very important that the models are
easy to create, understand, and adapt.

In this paper we look at the modeling aspect in the synthesis-
based MBSE engineering approach [1], [2] using extended
finite automata. In this modeling formalism, multiparty syn-

chronization among different automata is used, where execu-
tion of shared events is synchronous. This mechanism provides
the ability to express various aspects of the system at hand in
separate, clear, precise, and compact specification modules.
Properties of each part of the system can be modeled in
isolation, and the composition forms the complete system
model. In the evaluation, we focus on ease of modeling,
traceability of requirements, and modularity and adaptability
of the model. We also look at synthesis and validation. The
synthesis step entails application of the supervisory control
theory (SCT) of Ramadge-Wonham [3], [4] to automatically
obtain a supervisor for the system from a declarative descrip-
tion of the system in terms of its desired behavior.

In our evaluation we use an industrial case study involving
the control of the wafer logistics in lithography machines. The
supervisor has to ensure that operations are carried out on a
wafer in accordance with its wafer life cycle. Furthermore,
proper resource claiming and avoidance of wafer collisions
need to be ensured. The proposed way of modeling is applica-
ble to any system with a discrete material flow, where products
have a number of operations to be performed on them, such
as a manufacturing system.

Supervisory control typically looks at systems modeled as
a discrete-event system [5]. Such systems are discrete-state,
event-driven systems, whose state evolution depends entirely
on the occurrence of discrete events. When designing (super-
visory) control functions for discrete-event systems, model-
based approaches can be used to understand the system’s be-
havior. Modeling formalisms used include Petri nets [6], max-
plus algebra [7], (hybrid) process algebra [8], [9], and modal
logic [10]. The most commonly used approach however is
that of automata, more specifically finite-state machines. This
approach is also used in the synthesis-based MBSE frame-
work, where finite-state machines extended with variables are
used; extended finite automata. In this framework first, a
discrete-event model of the uncontrolled system, referred to
as the plant, is created. Second, the control requirements are
modeled. These requirement models may refer to variables and
states of plant automata to enable concise modeling. After



R D

RS RS S S

RP DP P P

Interface I

define

define

define design

model

design

synthesize

model

realize

realize

integrate

integrate

integrate

integrate

Fig. 1. Model-Based Engineering process with supervisory control synthesis. Icon denotes documents, denotes models, and denotes realizations.

modeling, SCT can be applied to automatically synthesize
a control function in the form of an automaton, called a
supervisor, that restricts the behavior of the plant, such that
the system never violates any of the given requirements. The
supervisor does not restrict the behavior of the plant more
than strictly necessary, which is referred to as a minimally
restrictive supervisor [3], [4]. The supervisor can be taken as
a starting point for subsequent steps to construct a controller
that is optimal with respect to extra-functional criteria such as
throughput.

With the clear separation between plant and requirements
in the modular specification, it becomes easier to deal with
changing requirements of the controller. Instead of manual
adaptation of the existing supervisor, one can modify the con-
trol requirements and automatically generate a new supervisor
that is guaranteed to satisfy the evolved requirements. Because
requirements can be added in a modular way, they remain
traceable in the models.

Contributions of the Paper: The paper describes the main
steps of modeling the wafer logistics in lithography machines
in a synthesis-based MBSE framework. Discrete-event models
are developed capturing the behavior of the uncontrolled
machine and the desired requirements to be imposed onto
the system. We show that multiparty synchronization provides
clear advantages in terms of modularity, traceability, and
adaptability of the model. Modularity is given both by being
able to describe the system using a set of loosely coupled,
small models, and orthogonally add information about aspects
like timing, continuous behavior, and stochastic distributions.
We also show that being able to refer to variables and states of
automata in guard expressions and state-based requirements,
enabled by the use of extended finite automata, provides con-
cise models. It enables a clear separation between observing
the system state on the one hand, and enforcing guards on
controllable actions on the other hand. Additionally, we show
how modular synthesis allows construction of local supervisors
that ensure safety of parts of the system for our industrial case
where monolithic synthesis is not feasible.

II. SYNTHESIS-BASED MODEL-BASED SYSTEMS
ENGINEERING

Model-based systems engineering (MBSE) methods are
finding their way into industry [11]. In MBSE, the for-

malized application of modeling is used to support system
requirements, design, analysis, optimization, validation, and
verification activities. Executable models can be created that
allow engineers to test the designs before they are actually
built. Examples include checking for deadlock-freeness, ver-
ifying that all requirements are met, or estimating system
performance in various scenarios.

Figure 1, introduced in [12], shows the synthesis-based
MBSE process. The first step in the design of the system is
defining the global requirements R. Then, a high-level design
D is created with an abstract decomposition of the various
components that are present in the system. For each of these
components, a set RS of requirements is modeled in a modular
way, and from the plant design DP , a modular model P is
made of the plant. These two models together provide the
input to the supervisor synthesis step, to generate a supervisor
S. Multiparty synchronization of the supervisor with the plant
results in the supervised system C (i.e., C = S ‖ P ).

The modular approach enables understanding of the ar-
chitecture, and reasoning about the system in terms of the
requirements that are imposed upon it. In the early phases
of designing a system, requirements are subject to change
and often multiple iterations are needed to obtain the final
set of requirements. Having these requirements captured in
a modular way allows one to quickly add, adapt, or remove
requirements while leaving the rest of the model unaltered.
This yields a maintainable system design that is easy to extend
and modify.

The advantage of using multiparty synchronization is that it
makes sure by definition that an action can only be executed
if all involved parties are able to execute the action. This
allows one to add requirements restricting when a certain
action is allowed to occur in a modular fashion. When using
asynchronous communication, like channels or broadcasts, this
is not the case. When using channels, communication between
the plant and requirements is done pairwise. If we have
more than two components sharing some action, guards are
needed to ensure that the action is enabled in all components.
Moreover, a chain of synchronizations is needed to make
sure that all components execute the action. The guards are
also required when using a broadcast mechanism. It must
be guaranteed that all receiving parties are available when
executing some action.



Modeling the system using multiparty synchronization also
enables the use of supervisory control theory to synthesize
a supervisor. The synthesized supervisor is guaranteed to be
deadlock-free and correct with respect to the modeled require-
ments. This differs from model checking [13], [14]. Rather
than verifying whether the model satisfies a given requirement,
in synthesis all incorrect situations are identified and avoided
to guarantee that the resulting system after synthesis never
violates any of the given requirements.

III. SUPERVISORY CONTROL THEORY

Given a plant and a set of control requirements, SCT
can automatically synthesize a supervisor restricting the plant
towards the requirements. If the plant is given as a number of
subplants P1, . . . , Pn, the monolithic plant P is represented
by the composition of the subplants P = P1 ‖ · · · ‖ Pn. In
SCT, often the term synchronous composition is used rather
than multiparty synchronization. They are however equivalent
in the sense that execution of shared events among multiple
actors is synchronous.

Events of the plant are partitioned into two disjoint subsets;
the set Σc of controllable events and the set Σu of uncon-
trollable events. Controllable events can be enforced by the
supervisor (e.g. actuator commands), whereas uncontrollable
events cannot be inhibited by the supervisor (e.g. changing
sensor values).

In the SCT framework, the generated supervisor has some
useful properties; the supervisor is minimally restrictive (some-
times also called maximally permissive), controllable, and
nonblocking. Minimally restrictiveness means that the be-
havior of the controlled system is not restricted more than
strictly necessary to enforce the requirements. Controllability
indicates that the supervisor does not block uncontrollable
events. Nonblockingness means that the system is always able
to finish tasks as required. This is captured using the notion of
marked states, that must always be reachable in the controlled
system.

The original SCT framework has been generalized to ex-
tended finite automata [15] for modeling of the plant and
requirements. An extended finite automaton [16] is an augmen-
tation of a finite automaton with data variables that can be used
in guard formulas and variable updates on event transitions.
Furthermore, we can use state-based properties of automata
which turns out to be useful to simplify requirement and plant
models. For an automaton A with a location l we can use
the proposition A.l to denote whether the current state of
automaton A is l. We will refer to such propositions as location
variables. Using extended finite automata, requirements can
often be formulated more concisely [16], [17]. Instead of
using automata to express requirements or plant behavior, one
can also use state-based expressions [18]. These expressions
state the conditions under which an event is allowed to occur.
Figure 2 shows a state-based requirement expressed as an
automaton (2a) and as expression (2b), stating that event e is
only allowed to occur if conditions c1 and c2 are both satisfied.

c1 ∧ c2
e

(a) Automaton

e ⇒ (c1 ∧ c2)

(b) Expression

Fig. 2. State-based requirement as automaton or expression.

In our case study we use extended finite automata to model
the system, using state-based requirements in the form of
expressions to specify conditions on the occurrence of certain
events. By being able to refer to states, these expressions can
be formulated very concisely.

IV. CASE STUDY: WAFER FLOW IN LITHOGRAPHY
MACHINES

Lithography machines are used in the production process
of integrated circuits or chips. They manipulate silicon wafers
by exposing them to a light source with nano-scale precision.
The integrated circuits are built in a cyclic process, where in
each cycle a layer of conducting nano-structures is created. On
average, a chip contains more than 30 of these layers. After
exposure, the chips are post-processed and finally split into
integrated circuits.

We describe the wafer flow in a lithography machine,
using an abstract interface model of the system as plant. This
interface model encapsulates the behavior of the system, and
provides an abstract model of the available operations.

The wafer routing scheme in the machine is depicted in
Figure 3. Wafers are fed into the system from a track (TR).
The system itself consists of two operational areas; the wafer
stage and the wafer handler. In the wafer stage, wafers are
put on a chuck in order to perform the measurement and
exposure operations. There are two chucks in the wafer stage,
where wafers are measured and exposed in parallel. These two
chucks are CH0 and CH1. A chuck has either an expose or
measure function, depending on whether the chuck is below
the exposure lens or not. The chuck currently having a measure
or exposure function is denoted by M, or E, respectively.

After one wafer has been measured and another has been
exposed, a chuck swap is executed. The exposed wafer returns
to the wafer handler, and a new wafer is put onto the chuck for
measurement. The life cycle of a wafer in the machine consists
of conditioning, alignment, measurement and exposure.

The wafer handler is responsible for performing a number
of pre-exposure steps on the wafers, and routing wafers from
the track to the wafer stage and back. The wafer handler
consists of two robots, the load robot (LR) and unload robot
(UR), and process and storage locations. At the storage unit
bottom (SUB), the wafer is conditioned. This process secures
that the temperature of the wafer is within a specific range.
At the pre-aligner (PA), a wafer is aligned such that the exact
orientation and positioning of the wafer is known for exposure.
From the discharge unit (DU), wafers can be picked up by the
track.

Because immersion lithography is used, a wafer must al-
ways be present on the exposure chuck to avoid disruption of
the film of water below the lens. Sometimes there can be a



disturbance in the track, which means that delivery of the next
production wafer takes slightly longer. Dummy wafers can be
inserted into the wafer flow and subsequently be placed on the
exposure chuck in order avoid disruption of the film of wafer.
Locations CTC0 and CTC1 are the storage locations for these
dummy wafers when not used.

track

wafer handler

wafer stage

TR

SUB

DU LR

UR

CTC1

CTC0

PA M E

Fig. 3. Wafer routing possibilities

A. Activity Scheduling

In the scheduling of the wafer flow, there are two types
of activities. On the one hand we have actions that move
a wafer from one resource to another. On the other hand
we have operations that can be performed on the wafer at
a specific resource. Once an activity is started, it must be
completed before another activity using the same resource can
be started. We make a distinction between starting and ending
an activity to keep track of whether an activity is running. The
reason that we need this distinction is that when an activity
involving a certain resource is started, other activities using
this resource are not allowed to start. This assumption avoids
situations where the internal state of resources is altered by
other activities using the same resource.

B. Assumptions

There are a number of important assumptions with respect
to the models described in this paper. Since untimed super-
visor synthesis is used, all events in the model are untimed.
Operations on a wafer are assumed to never fail. In reality,
operations such as wafer alignment may fail and wafers are
returned to the track unexposed. With respect to the track, we
assume that it is always ready to deliver or pick-up a wafer.
In future work we plan to extend the model in order to relax
these restrictions.

V. MODEL STRUCTURE

We model the plant and control requirements in a modular
way using extended finite automata. To visualize automata, we
use circles for locations, full and dashed labeled arrows for
controllable and uncontrollable edges, respectively, incoming
arrows for initial locations, and double-lined circles for marked
locations. The plant and control requirements are composed
using synchronizing parallel composition.

In the remainder of this section we describe the interface
of the resources containing the provided activities. This set

of interfaces is used as basis for modeling the wafer flow.
We also explain why wafers are explicitly taken into account
during synthesis.

Resources: Given an activity A involving a wafer, we
define the start event set A ? s and the end event set A ? e
as

A ? s = {A i s ∈ Σc | i ∈ I},
A ? e = {A i e ∈ Σu | i ∈ I},

where I denotes the finite set of wafer identifiers. The function
of the identifiers is explained at the end of this section.

Only one activity using resource R can be started at a
time, after which this activity must first be completed before
another activity also using resource R can be started. We add
the constraint that the system must always be able to end an
activity once started. This structure is also known as a star
interface [19].

Activities not involving a wafer do not have a wafer
identifier. One such an activity is a chuck swap.

As an example, consider resource CH0 with activ-
ities CH0 Measure, CH0 Expose, chuckSwap, LRtoCH0,
CH0toLR, and CH0toUR. The corresponding star interface is
given in Figure 4.

claimed CH0toLR

claimed CH0toURclaimed CH0 Measure

claimed CH0 Expose

claimed chuckSwap claimed LRtoCH0

CH0toLR ? s

CH0toLR ? e

CH0toUR ? s

CH0toUR ? e
CH0 Measure ? s

CH0 Measure ? e

CH0 Expose ? s

CH0 Expose ? e

chuckSwap s

chuckSwap e
LRtoCH0 ? s

LRtoCH0 ? e

Fig. 4. Model Interface CH0: Star interface for resource CH0.

An event set on an edge means that in the model an edge is
present for any element in the set. Figure 5 gives an illustration
for event set A ? s where I = {1, 2, 3}.

A ? s
A 1 s
A 2 s

A 3 s

Fig. 5. Edge set refinement.

Before starting the execution of an activity, all the required
resources must be claimed. When the execution is finished,
all claimed resources for the activity are released again. An
activity cannot start if one of the resources is not available.
Therefore, all resources involved in some activity are claimed
at the same time. For the same reason, resources are released
at the same time. This is achieved easily using multiparty
synchronization.



For the track we have the additional uncontrollable events
assignCH0, assignCH1 and assignNoChuckDed. The function
of these events is explained in the next section.

Wafers: For each wafer we need to keep track of the
status in the life cycle and the current position in the system.
In the given system it is also possible that a wafer arriving
later in the system can overtake a wafer that was already in
the system. Therefore, wafers are an explicit part of the model.

This also means that the wafers are an explicit part in the
synthesis of the supervisor. Because there are nine resources in
the machine, at most nine wafers can be present in the system
at any point in time. Since there are two dummy wafers in
the system, seven production wafers and two dummy wafers
are modeled. In this way, an infinite stream of wafers can be
simulated using this finite number of wafers.

Each wafer is given a unique identifier. Given n production
wafers, the production wafers have identifiers 0, . . . , n−1, and
the two dummy wafers have identifiers n and n+1. Therefore
the set of wafer identifiers is given by I = {0, . . . , n + 1}.
Activities in the system are given an index i to denote that the
action is performed on wafer i.

VI. MODELING

Figure 6 shows a decomposition of the complete model into
the plant and requirement models. In this overview we have
abbreviated Interface r to I r, and ReqOccupied r to R r for each
resource r. The top part shows the models for the wafers in the
system. For each production wafer j there are seven automata,
and for each dummy wafer k there are four. The bottom part
shows the models related to the resources in the system.

ReqLifeCycle j

ChuckDedAss

R TR

ReqFIFO

I TR

track

R LR

R UR

I LR

I UR

R SUB

R PA

I SUB

I PA

R CTC0

R CTC1

I CTC0

I CTC1

R DU I DU

wafer handler

ReqBreakWater

R CH0 R CH1

BreakWater

I CH0

I CH1

ActionChucks

PositionChucks

wafer stage

ReqAligned j

ObsAligned j

WaferPlant j AssignChuckDed j

production wafers

ReqStayInSystem k

ReqAligned k

ObsAligned k

WaferPlant k

dummy wafers

· · ·
ReqChuckDed j

ObsChuckDed j

resources

Fig. 6. Overview of the complete model.

The remainder of this section contains the plant and require-
ment models for the wafers and resources.

A. Modeling of the Production Wafers

Each action that involves a wafer contains the index of the
specific wafer. For instance, action TRtoDU j s denotes the
start of the move of wafer j from resource TR to resource
DU. Action TRtoDU j e denotes the ending. For each wafer
we model the location of the wafer, the actions that can be
performed on the wafer and the order in which these actions

should be carried out. Wafers that are not present in the
machine are assumed to reside in the track.

1) Wafer Plant: For each wafer we have to keep track of
its position in the plant, and the actions that can be executed
on the wafer. Figure 7 shows the abstract plant model for a
production wafer j. To get the plant automaton, each edge
should be replaced by a construct similar to the one shown in
Figure 8. Between starting an activity and ending an activity
is an intermediate state to indicate that the activity is running.

TR

SUB

DU LR

UR

CTC1

CTC0

PA

CH0

CH1

PA Align j s

SUB Cond j s

CH0 Measure j s
CH0 Expose j s

CH1 Measure j s
CH1 Expose j s

Fig. 7. Model WaferPlant j: Wafer plant for production wafer j.
S StoT T

StoT j s StoT j e

Fig. 8. Refinement structure for the edge from S to T.

2) Wafer Requirements: Each production wafer goes
through the same life cycle of conditioning, alignment, mea-
surement, and exposure. Measurement and exposure can be
done on either one of the chucks. After exposure, the wafer
must be returned to the track. The alignment accuracy can be
lost during the wafer movement.

Figure 9 shows the wafer life cycle requirement. Wafer j
enters the system after ending activity TRtoSUB. Then the
processing steps of the wafer need to be performed in the
specified order, after which the wafer leaves the system.

TRtoSUB j e

SUB Cond j s

SUB Cond j e

PA Align j s

PA Align j e

CH0 Measure j s,
CH1 Measure j s

CH0 Measure j e,
CH1 Measure j e

CH0 Expose j s,
CH1 Expose j s

CH0 Expose j e,
CH1 Expose j e

DUtoTR j s

PA Align j s

Fig. 9. Model ReqLifeCycle j: production wafer life cycle requirement.

If an aligned wafer is picked up by the load robot and put on
any resource but one of the chucks, the alignment of the wafer
is lost and needs to be redone. If the unload robot picks up
the wafer, the alignment is always lost. When any event in set
M is executed after finishing the alignment, and before the



measurement step, the alignment needs to be redone. Given
the routing possibilities (cf. Fig. 3), we have

M = {LRtoDU j s, LRtoPA j s, LRtoCTC0 j s,
CH0toUR j s, CH1toUR j s, PAtoUR j s,
SUBtoUR j s, CTC1toUR j s}.

Two automata are used to capture that only aligned wafers
are allowed to enter the wafer stage. On the one hand, we use
a special plant automaton called an observer. This automaton,
shown in Figure 10, keeps track of the alignment status of
the wafer without restricting the behavior of the plant. On the
other hand, we have a state-based requirement ReqAligned j that
enforces the constraint that a wafer must be aligned before it
can be sent to the wafer stage:

LRtoCH0 j s, LRtoCH1 j s ⇒ ObsAligned j.aligned.

This constraint expresses that actions LRtoCH0 j s and
LRtoCH1 j s are only enabled if the active state of automaton
ObsAligned j is aligned.

not aligned aligned

PA Align j e

M

PA Align j eM

Fig. 10. Model ObsAligned j: alignment status of wafer j

As described in Section IV, the integrated circuits on a wafer
are built in a cyclic process. Because the chucks might be
physically slightly different, there is the possibility that this
can cause an overlay error. Therefore, there is an option to
enable a mode called chuck dedication. When in this mode,
before a wafer enters the system, the track tells the supervi-
sor whether the chuck should be measured and exposed on
CH0 or CH1. Events assignCH0 and assignCH1 respectively
are introduced for this purpose. Event assignNoChuckDed is
introduced for no chuck dedication.

The assignment to a chuck is done before a wafer enters
the system. Since this behavior is a contract with the track, it
is modeled as a plant model shown in Figure 11.

assignCH0 j
assignNoChuckDed j

assignCH1 j

TRtoSUB j s

Fig. 11. Model AssignChuckDed j: chuck assignment is done before
entering the system.

When the simulated wafer enters the machine again it is
assumed to be a new wafer, for which the assignment must
again be done. In this way, we can simulate any sequence of
assignments of wafers to the chucks.

To model the chuck dedication, an observer and requirement
model are introduced. The observer, shown in Figure 12, keeps

track of the chuck dedication status. A variable stores the
chuck dedication status, which is updated when the chuck
dedication is set using an assignment event. The requirement,
shown in Figure 13, enforces that measurement and exposure
are only allowed on a dedicated chuck.

not assigned assigned

assignCH0 j dedication := DedicatedToCH0,
assignCH1 j dedication := DedicatedToCH1,

assignNoChuckDed j dedication := NoChuckDed

DUtoTR j s

DUtoTR j s

assignCH0 j,
assignCH1 j,

assignNoChuckDed j

Fig. 12. Model ObsChuckDed j: chuck dedication status of wafer j

CH0 Measure j s, CH0 Expose j s ⇒
ObsChuckDed j.assigned ∧
(dedication = DedicatedToCH0 ∨ dedication = NoChuckDed)

CH1 Measure j s, CH1 Expose j s ⇒
ObsChuckDed j.assigned ∧
(dedication = DedicatedToCH1 ∨ dedication = NoChuckDed)

Fig. 13. Model ReqChuckDed j: measurement and exposure are only
allowed on a dedicated chuck.

B. Modeling of the Dummy Wafers

A dummy wafer has roughly the same plant model as a
production wafer with the difference that alignment is the
only operation that can be performed on the wafer. Also, both
dummy wafers start on either one of the chucks instead of
starting at the track.

For a dummy wafer there is no life cycle of actions or
chuck dedication requirement. However, the requirement that
only aligned wafers are allowed to enter the wafer stage
also holds for any dummy wafer k (cf. ObsAligned k and
ReqAligned k). Furthermore, the dummy wafers are initially
aligned because they start on one of the chucks. We have an
additional requirement ReqStayInSystem k that dummy wafers
are never sent to the track:

DUtoTR k s ⇒ false.

C. Modeling of the Resources

For each resource in the wafer handler or wafer stage, we
define a requirement automaton that keeps track of whether the
resource contains a wafer or not. When starting an activity that
moves a wafer to the resource under consideration, the status
becomes occupied. After completion of an activity that takes
a wafer from the resource, the resource becomes free again.
This requirement is shown in Figure 14.

In the wafer stage, there are two chucks that can hold a
wafer. A chuck is either at the expose side, where a wafer can
be exposed, or at measure side for measurement of the wafer.
When at measure side, wafers can also be loaded from and
unloaded to the wafer handler. The physical position of the
chucks can be swapped using a chuck swap. The plant model



free occupied
LRtoCH0 ? s

CH0toLR ? s
CH0toUR ? s

Fig. 14. Model ReqOccupied CH0: wafer place status of resource CH0.

shown in Figure 15 keeps track of the physical positions of the
chucks. This information is used by the requirement shown in
Figure 16 to specify the allowed actions on each of the chucks
at any point in time.

atExpose atMeasure

chuckSwap s chuckSwap e

chuckSwap schuckSwap e

(a) PositionCH0

atExpose atMeasure

chuckSwap s chuckSwap e

chuckSwap schuckSwap e

(b) PositionCH1

Fig. 15. Model PositionChucks: physical position of the chucks.

CH0 Measure ? s, CH0toLR ? s,
CH0toUR ? s, LRtoCH0 ? s ⇒ PositionCH0.atMeasure

CH0 Expose ? s ⇒ PositionCH0.atExpose

CH1 Measure ? s, CH1toLR ? s,
CH1toUR ? s, LRtoCH1 ? s ⇒ PositionCH1.atMeasure

CH1 Expose ? s ⇒ PositionCH1.atExpose

Fig. 16. Model ActionsChucks: actions allowed on the chucks.

The breaking of the water layer below the lens is captured
using an uncontrollable event breakWater. This event can
occur when the chuck below the lens does not contain a wafer,
shown in Figure 17.

breakWater ⇒
(PositionCH0.atExpose ∧ ReqOccupied CH0.free) ∨
(PositionCH1.atExpose ∧ ReqOccupied CH1.free)

Fig. 17. Model BreakWater: when no wafer is below the lens, the water
layer can break.

Using an automaton ReqBreakingWafer we can model that this
event is never allowed to occur:

breakWater ⇒ false.

The interface between the wafer handler and the track
adheres to a FIFO requirement. Wafers enter the system in
order, and must leave the system in the same order. Figure 18
shows this requirement for n− 1 production wafers.

Assignment of the chuck dedication to a wafer is only done
for the wafer that is next to be sent to the system. This behavior
is modeled as a plant automaton shown in Figure 19.

VII. GENERATION AND VALIDATION OF THE SUPERVISOR

A. Simulation

After creating models of the system, simulation can be used
to validate whether or not they capture the intended behavior.

TRtoSUB 0 s

TRtoSUB 1 s

TRtoSUB 2 s

TRtoSUB n-1 s

(a) In-order

DUtoTR 0 s

DUtoTR 1 s

DUtoTR 2 s

DUtoTR n-1 s

(b) Out-order

Fig. 18. Model ReqFIFO: FIFO requirement of the track.

TRtoSUB 0 s

TRtoSUB 1 s

TRtoSUB 2 s

TRtoSUB n-1 s

assignCH0 0,
assignCH1 0,

assignNoChuckDed 0

assignCH0 1,
assignCH1 1,

assignNoChuckDed 1

assignCH0 2,
assignCH1 2,

assignNoChuckDed 2

assignCH0 3,
assignCH1 3,

assignNoChuckDed 3

assignCH0 n-1,
assignCH1 n-1,

assignNoChuckDed n-1

Fig. 19. Model ChuckDedAss: Chuck dedication assignment is only done
for the wafer that is next to be sent to the system.

Using simulation one can validate a) whether the plant is a
good representation of the real system; and b) whether the
controlled system shows the desired behavior.

In order to perform such simulation, plants, requirements,
and supervisors are described using the Compositional Inter-
change Format (CIF) [2]. Using the CIF simulator, scenarios
can be executed and the evolution of the state of the system is
shown in the output. To aid in the validation of the synthesized
controller in a more graphical way, the visualization capabil-
ities of the CIF simulator can be used. The CIF simulator
provides support for real-time, interactive visualization of the
system using user supplied images of the system in standarized
SVG (Scalable Vector Graphics) format [20]. A CIF/SVG
mapping is used to create a mapping between the model and
the visualization. The visualization of the wafer flow in the
system is shown in Figure 20. By executing activities during
simulation, one can track the flow of wafers and see validate
the behavior of the system. The wafer identifiers are also
visualized. Production wafers also show the chuck dedication
status, which is either CH0, CH1, or ? (no chuck dedication).
Colors are used to denote the wafer life cycle status.

In order to generate a supervisor using synthesis, the plant
model needs to be discrete. However, a system typically con-
sists of both discrete and continuous behavior. The multiparty
synchronization mechanism makes it possible to link a discrete
abstraction of the plant to a full hybrid plant model in a
modular fashion. Continuous variables can be used whose
values are described by a set of differential equations. Such
models are similar to the hybrid automata formalism [21].



TR

DU

SUB

UR

LR

CTC0

CTC1

PA

CH0

CH1

Expose

Measure

8

7

6
CH0

5
 *

4
CH0

3
 *

2
CH0

1
CH1

0
CH1

Fig. 20. Visualization of the wafer flow in the system.

chuckSwap s
t := 0

t ≥ timeChuckSwap
chuckSwap e

(a) Fixed timing

chuckSwap s
t := 0;T := sample(normal(4,0.003))

t ≥ T
chuckSwap e

(b) Stochastic timing distribution

Fig. 21. Timing model for the chuck swap activity with continuous variable
t having a derivative of 1.

By adding continuous dynamics to the model it becomes
possible to link the supervisor and discrete plant abstraction to
actuators and sensors present in the system like (servo) motors,
cylinders, hydraulic drives or optical sensors.

Figure 21 shows an example of hybrid models describing
timing information about the chuck swap. Because of the
multiparty synchronization mechanism, these models can be
added to the model without requiring any changes to the
original model and the events are automatically synchronized.

B. Synthesis

In order to obtain a correct supervisor for the system,
synthesis can be used. Due to the large size of the complete
model, however, monolithic synthesis was not feasible. We
tried monolithic synthesis on the complete model, without
the alignment models (c.f. ObsAligned i and ReqAligned i for
each wafer i) using extended-finite automata synthesis in
Supremica [22]. Synthesis of two production wafers and two
dummy wafers succeeded within 1,5 hours on 4 Intel E5-2630
CPUs with 80GB of available virtual memory. The state space
for this model has a size of 1.9·107 states. For more production
wafers, the available memory was not sufficient.

Models of the plant and the requirements are however made
in a modular way. This means that some requirements can be
enforced locally on subsystems, whereas other requirements
entail multiple subsystems and need to be enforced globally.
Rather than using monolithic synthesis, hierarchical, modular

supervisory control architectures [23], [24] can be used. In
such frameworks, modular supervisors are created for local
subsystems to enforce local requirements. A global super-
visor is computed based on abstractions of these to enforce
requirements on multiple subsystems. These abstractions need
to adhere to certain conditions to ensure that nonblockingness,
minimal restrictiveness and controllability still hold at a global
level [23], [24]. To enforce these global properties, a high-
level coordinator might also be needed that orchestrates the
interaction between local supervisors.

Modular synthesis often results in a more efficient synthesis
step when the decomposition is chosen carefully, such that
subsystems internally share a lot of events while the set
of events shared among subsystems is small. The modular
supervisors that are generated are also easier to understand
for the designer of the system, because the guards generated
for events are typically fairly small. There are also techniques
to obtain very concise guards for events [25].

For the model presented in this paper, we have created
modular supervisors for the wafer stage and the individual
wafers. This corresponds to the dashed part of the model
shown in Figure 22.

ReqLifeCycle j

ChuckDedAss

R TR

ReqFIFO

I TR

track

R LR

R UR

I LR

I UR

R SUB

R PA

I SUB

I PA

R CTC0

R CTC1

I CTC0

I CTC1

R DU I DU

wafer handler

ReqBreakWater

R CH0 R CH1

BreakWater

I CH0

I CH1

ActionChucks

PositionChucks

wafer stage

ReqAligned j

ObsAligned j

WaferPlant j AssignChuckDed j

production wafers

ReqStayInSystem k

ReqAligned k

ObsAligned k

WaferPlant k

dummy wafers

· · ·
ReqChuckDed j

ObsChuckDed j

resources

Fig. 22. Modular synthesis for part of the model.

These supervisors ensure that certain local requirements are
never violated. For the wafer stage we have synthesized a
supervisor given all models related to the wafer stage using
Supremica. This supervisor enforces the following guard on
the controllable action chuckSwap s:

¬ ReqOccupied CH0.free ∧ ¬ ReqOccupied CH1.free

This means that a chuck swap is only allowed when both
chucks contain a wafer. Only in that case, it is ensured that
both before and after the swap a wafer is present below the
exposure lens. Therefore, the water layer below the lens will
never break according to model BreakWater.

For each wafer we synthesize a modular wafer supervisor,
which can be added to the model. These supervisors ensure
that wafers follow their life cycle, and satisfy the alignment
and chuck dedication requirements. Synthesis of these local
supervisors is done within a few seconds.

The modular wafer supervisors and wafer stage supervisor
are not sufficient to guarantee global properties like absence



of deadlocks in the system. Figure 20 shows an example of
this, where no wafer movement is possible. Wafer 3 is not
aligned and can therefore not be moved to a chuck. Wafer 2
cannot be brought to the track because it is not yet exposed.
The only possible action is re-alignment of wafer 0.

Future work will look at hierarchical, modular supervisory
control approaches for the complete model using various
aggregations of the models that ensure the global properties
nonblockingness, controllability, and minimal restrictiveness.
We will evaluate these approaches in terms of computational
efficiency.

VIII. EVALUATION

In Section VI, we have shown how a discrete product flow
can be modeled where each of the products has a certain life
cycle in the system. The capabilities of the system and the im-
posed requirements are modeled in a modular, compositional
way. Also information about timing, hybrid dynamics, and
stochasticity can be added to the model in a modular fashion
(cf. Section VII) without changing the original model. By us-
ing multiparty synchronization all submodels can be linked in
a straightforward manner. Requirements specifying orthogonal
aspects can be captured as separate submodules, for instance
the requirements related to chuck dedication and the alignment
of a wafer. All requirements remain traceable in the model,
because they are specified and added as separate submodules.
The compositionality of this style makes it appropriate for
incremental specification of the system. If the model needs to
be adapted due to changed, added, or removed requirements,
only the model of the specific requirement needs to be adapted
locally.

State-based requirements allow a concise way of modeling
the conditions under which an event is allowed to occur.
Many of the requirements in our case study can be expressed
using this mechanism. The main reason for this conciseness
is the ability to refer to the value of variables, and location
variables to refer to locations in any automaton in the model.
For instance in the ReqChuckDed model shown in Figure 13,
both are used. Here, the requirement itself does not have to
keep track of the chuck dedication status to restrict when
measurement and exposure are allowed on a specific chuck.

For industrial-size systems, such as the one in this paper,
monolithic synthesis is often not achievable. Rather than syn-
thesizing a single monolithic supervisor, a modular synthesis
approach can be used. Here, local supervisors are created
to enforce local requirements, and global supervisors enforce
requirements that deal with multiple subsystems. Choosing the
right hierarchical decomposition of the control architecture can
have a big impact on the computational complexity.

IX. RELATED WORK

The modeling approach used in synthesis-based MBSE
resembles the constraint-oriented style that is one of the
prominent modeling styles in the specification language LO-
TOS [26], [27]. One of the critera for using this style is
the ability to identify orthogonal functions of the system by

separate constraints. It enables understanding and reasoning of
the system in terms of the requirements imposed on it and the
relationships between requirements. These observations are in
accordance with the observation obtained in our case study.

Although supervisor synthesis is a well-established field of
research, the number of industrial applications described in
the literature is still limited. There are case studies in the
coordination of exception handling in printers [28], movement
coordination of theme park vehicles [29] and a patient support
table for an MRI scanner [17], [30], and the design of smart
homes for disabled people [31]. Without claiming complete-
ness, there are also several applications of supervisor synthesis
in automated manufacturing and assembly systems: [32]–[34].

Other prominent modeling platforms for supervisory con-
troller design are Matlab/Simulink [35] and SCADE [36].
A fundamental difference with respect to SCT described in
this paper is that they provide tools and methodologies to
support the process of manual development of system models,
but they do not support automatic synthesis of a correct
supervisor as enabled by supervisory control synthesis. State-
based requirements are supported by Simulink but not by
SCADE. Both tools do not support multiparty synchronization.

In our proposed supervisory control framework, only safe
system behavior is taken into account. Extensions to the
theory have been proposed to increase expressiveness of the
control requirements, for instance enforcement of fairness and
liveness [37]–[40], and timing [41] properties. In high-tech
systems also performance criteria such as maximization of the
throughput have to be met, which has been investigated by
Shehabinia et al. [42].

X. CONCLUSION

This paper’s main thesis is that the modeling approach
in synthesis-based MBSE using multiparty synchronization
is very well suited for the development of supervisory con-
trollers, exhibiting clear advantages in terms of traceability,
modularity and adaptability of the requirements. Using this
approach, problems of industrial size can be modeled concisely
using a set of small automata that together capture the desired
behavior of the system. State-based expressions provide a
mechanism to model requirements very concisely, enabled by
location variables that allow to refer to states.

Synthesized supervisors for parts of the model can be put in
parallel with the complete model to enable validation through
simulation. Supervisor synthesis for the complete model is not
feasible with current monolithic synthesis algorithms. Future
work is needed to explore steps to derive a supervisor more
efficiently using modular synthesis algorithms.

The industrial case study presented in this paper has various
aspects that are present in almost any manufacturing system,
like resources, activities, and product life cycles. It might be
expected that the advocated modeling approach has similar ad-
vantages when applied to other manufacturing systems. Future
work includes looking at modular synthesis techniques for the
complete model. We will also investigate the extension towards
timed supervisory control and optimization with respect to



throughput. This optimization is crucial in the wafer logistics
of lithography machines to maximize the number of wafers
that can be exposed per time unit.

ACKNOWLEDGMENT

This research is supported by the Dutch Technology Foun-
dation STW, carried out as part of the Robust Cyber-Physical
Systems (RCPS) project, project number 12693. Further sup-
port is given by the EU FP7 Programme under grant agreement
No. 295261 (MEALS).

REFERENCES

[1] J. Baeten, J. van de Mortel-Fronczak, and J. Rooda, “Integration of
supervisory control synthesis in model-based systems engineering,”
Proc. of Special International Conference on Complex Systems: Synergy,
of Control, Communications and Computing, pp. 167–178, 2011.

[2] D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski,
J. M. van de Mortel-Fronczak, and M. A. Reniers, “CIF 3: Model-based
engineering of supervisory controllers,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2014, vol. 8413, pp. 575–580.

[3] P. J. G. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp.
206–230, 1987.

[4] ——, “The control of discrete event systems,” Proc. of the IEEE, vol. 77,
no. 1, pp. 81–98, 1989.

[5] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Second Edition. Springer, 2008.

[6] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event
Systems Using Petri Nets. Norwell, MA, USA: Kluwer Academic
Publishers, 1998.

[7] B. De Schutter and T. van den Boom, “Max-plus algebra and max-plus
linear discrete event systems: An introduction,” in Workshop on Discrete
Event Systems, May 2008, pp. 36–42.

[8] J. C. M. Baeten, T. Basten, and M. A. Reniers, Process Algebra:
Equational Theories of Communicating Processes, 1st ed. New York,
NY, USA: Cambridge University Press, 2009.

[9] P. Cuijpers and M. Reniers, “Hybrid process algebra,” Journal of Logic
and Algebraic Programming, vol. 62, no. 2, pp. 191 – 245, 2005.

[10] S. L. Ricker and K. Rudie, “Know means no: Incorporating knowledge
into discrete-event control systems,” Automatic Control, IEEE Trans. on,
vol. 45, no. 9, pp. 1656–1668, Sep 2000.

[11] J. Estefan, Survey of Model-Based Systems Engineering (MBSE)
Methodologies, rev. b. ed., International Council on Systems Engineering
(INCOSE), Seattle, WA, USA, 2008.

[12] R. R. Schiffelers, R. J. M. Theunissen, D. A. van Beek, and J. E.
Rooda, “Model-based engineering of supervisory controllers using CIF,”
Electronic Communications of the EASST, vol. 21, 2010.

[13] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logic of
Programs, Workshop. London, UK, UK: Springer-Verlag, 1982, pp.
52–71.

[14] J. P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” in International Symposium on Programming, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1982,
vol. 137, pp. 337–351.

[15] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based approach
for modeling plant and supervisor by extended finite automata,” Control
Systems Technology, IEEE Trans. on, vol. 20, no. 6, pp. 1421–1435, Nov
2012.

[16] M. Skoldstam, K. Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,” in Decision and Control,
2007 46th IEEE Conference on, Dec 2007, pp. 3387–3392.

[17] R. Theunissen, D. van Beek, and J. Rooda, “Improving evolvability of
a patient communication control system using state-based supervisory
control synthesis,” Advanced Engineering Informatics, vol. 26, no. 3,
pp. 502 – 515, 2012, evolvability of Complex Systems.

[18] J. Markovski, D. van Beek, R. Theunissen, K. Jacobs, and J. Rooda,
“A state-based framework for supervisory control synthesis and verifi-
cation,” in Decision and Control, 2010 49th IEEE Conference on, Dec
2010, pp. 3481–3486.

[19] R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham, “Hierar-
chical interface-based supervisory control-part i: serial case,” Automatic
Control, IEEE Trans. on, vol. 50, no. 9, pp. 1322–1335, Sept 2005.

[20] W3C, “Scalable Vector Graphics (SVG) W3C recommendation,” 2011.
[21] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[22] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - an
integrated environment for verification, synthesis and simulation of
discrete event systems,” in Workshop on Discrete Event Systems, July
2006, pp. 384–385.

[23] L. Feng and W. Wonham, “Supervisory control architecture for discrete-
event systems,” Automatic Control, IEEE Trans. on, vol. 53, no. 6, pp.
1449–1461, 2008.

[24] K. Schmidt and C. Breindl, “Maximally permissive hierarchical control
of decentralized discrete event systems,” Automatic Control, IEEE Trans.
on, vol. 56, no. 4, pp. 723–737, 2011.

[25] S. Miremadi, K. Akesson, and B. Lennartson, “Symbolic computation
of reduced guards in supervisory control,” Automation Science and
Engineering, IEEE Trans. on, vol. 8, no. 4, pp. 754–765, Oct 2011.

[26] C. A. Vissers, G. Scollo, M. Van Sinderen, and E. Brinksma, “Specifi-
cation styles in distributed systems design and verification,” Theoretical
Computer Science, vol. 89, no. 1, pp. 179–206, 1991.

[27] K. J. Turner, “Constraint-oriented style in LOTOS,” British Computer
Society Workshop on Formal Methods and Standards, pp. 1–13, 1988.

[28] E. Bertens, R. Fabel, M. Petreczky, D. van Beek, and J. Rooda,
“Supervisory control synthesis for exception handling in printers,” in
Proc. Philips Conference on Applications of Control Technology, 2009.

[29] S. T. Forschelen, J. M. Mortel-Fronczak, R. Su, and J. E. Rooda,
“Application of supervisory control theory to theme park vehicles,”
Discrete Event Dynamic Systems, vol. 22, no. 4, pp. 511–540, Dec.
2012.

[30] R. Theunissen, M. Petreczky, R. Schiffelers, D. van Beek, and J. Rooda,
“Application of supervisory control synthesis to a patient support table
of a magnetic resonance imaging scanner,” Automation Science and
Engineering, IEEE Trans. on, vol. 11, no. 1, pp. 20–32, Jan 2014.

[31] S. Guillet, B. Bouchard, and A. Bouzouane, “Correct by construction
security approach to design fault tolerant smart homes for disabled
people,” Procedia Computer Science, vol. 21, pp. 257 – 264, 2013.

[32] J.-F. Pétin, D. Gouyon, and G. Morel, “Supervisory synthesis for
product-driven automation and its application to a flexible assembly
cell,” Control Engineering Practice, vol. 5, no. 5, pp. 595 – 614, 2007.

[33] M. Nourelfath and E. Niel, “Modular supervisory control of an experi-
mental automated manufacturing system,” Control Engineering Practice,
vol. 12, no. 2, pp. 205 – 216, 2004.

[34] M. H. de Queiroz and J. E. R. Cury, “Synthesis and implementation of
local modular supervisory control for a manufacturing cell,” in Workshop
on Discrete Event Systems, 2002, pp. 377–382.

[35] Mathworks, “Simulink: Simulation and model-based design,” 2015.
[36] Esterel Technologies, “SCADE,” 2015.
[37] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel, “Synthe-

sizing nonanomalous event-based controllers for liveness goals,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 1, p. 9, 2013.

[38] P. Gohari and W. M. Wonham, “Efficient implementation of fairness in
discrete-event systems using queues,” Automatic Control, IEEE Trans.
on, vol. 50, no. 11, pp. 1845–1849, Nov 2005.

[39] A. van Hulst, M. Reniers, and W. Fokkink, “Maximally permissive
controlled system synthesis for modal logic,” in SOFSEM 2015: Theory
and Practice of Computer Science, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2015, vol. 8939, pp. 230–241.

[40] ——, “Maximal synthesis for Hennessy-Milner logic,” ACM Trans.
Embedded Comput. Syst., vol. 14, no. 1, pp. 10:1–10:21, 2015.

[41] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,” Automatic Control, IEEE Trans. on, vol. 39,
no. 2, pp. 329–342, 1994.

[42] A. R. Shehabinia, L. Lin, R. Su, and C. S. Chong, “Supervisory
control for a class of discrete event systems for optimal throughput,”
in Workshop on Discrete Event Systems, vol. 12, 2014, pp. 201–207.


