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Abstract. Performance is a key aspect of many embedded systems, em-
bedded data processing systems in particular. System performance can
typically only be measured in the later stages of system development. To
avoid expensive re-work in the final stages of development, it is essential
to have accurate performance estimations in the early stages. For this
purpose, we present a model-based approach to performance engineering
that is integrated with the well-known V-model for system development.
Our approach emphasizes model accuracy and is demonstrated using
five embedded data-processing cases from the digital printing domain.
We show how lightweight models can be used in the early stages of sys-
tem development to estimate the influence of design changes on system
performance.

1 Introduction

Performance metrics such as throughput and latency are key to many (em-
bedded) systems. Typically, however, system-level performance tests only are
available late in the development process, because they require an assembled
system. It is well known that late changes are more expensive to make than ear-
lier changes [21]. Therefore, if these tests show problems, then repairing these
is expensive, if possible at all without major re-design. Having early insight in
system-level performance metrics therefore is beneficial: it can decrease time-to-
market, reduce development cost and improve quality of the product.

Architectural models such as the 4+1 architectural view model [12] and the
CAFCR model [14] usually include performance engineering activities in order
to obtain early insight in system-level performance. Nevertheless, these activities
are not always done in practice. A recent study [15] identifies a number of major
current problems in the wider scope of model-driven engineering. These also
apply to model-based performance engineering and include the following issues:
(i) limited tool usability, (ii) inconsistencies between artifacts (e.g., between
model and realization), (iii) lack of fundamentals / body of knowledge, (iv) lack
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of industrial evidence of benefits. Not explicitly mentioned in [15] and more
specific for performance engineering is (v) the difficulty of building sufficiently
accurate predictive models. This often is an implicit but important assumption,
because non-accurate models can turn model-based performance engineering into
a hazard instead of a benefit. Issues (i), (ii), (iii) and (v) are obstructions that
increase the cost of performance engineering, and issue (iv) directly addresses the
lack of evidence that performance engineering is beneficial. Our interpretation
of this is that in practice it is often felt that the difficulties and cost of applying
performance engineering outweigh the potential benefits: there is no business
case. Making a business case for performance engineering such as described,
e.g., in [22] is hard, because it is very difficult to quantify both the tangible and
the non-tangible benefits without extensive empirical studies. Our work tries to
solidify the business case in the particular domain of embedded data-processing
systems by a description of how we have applied a process, techniques and tools
to five industrial cases, and by a discussion of the costs and benefits.

Contribution The paper has two contributions. Firstly, we couple a model-
based performance engineering process to the well-known V-model development
process [9]. We address model consistency (issue (ii)) and accuracy (issue (v))
by explicit calibration and validation steps, and by assuming evolutionary devel-
opment. The performance engineering process allows arbitrary modeling tools,
and is not part of the critical path in the development process; it can be applied
when deemed necessary. There is much work on performance engineering, see,
e.g., the survey [3]. Although the process, calibration, and validation ingredi-
ents are described by others as well, see, e.g., [16, 18–20], we believe that our
description makes an extra step in bringing these ingredients together in the full
engineering scope. Secondly, we present how we have used two well-established
techniques (discrete-event simulation and regression analysis) with the earlier
described process in five industrial cases. The techniques and tools have been
selected because they are relatively easy to use (issue (i)). The ideas in these
cases add to the body of knowledge (issue (iii)), and their results to the evidence
of the benefits of model-based performance engineering (issue (iv)).

Outline We describe the process that we use in Sect. 2. Section 3 describes the
techniques and tools that we have applied in the cases, which are consequently
described in Sect. 4. Finally, Sect. 5 concludes.

2 Performance Models and the Development Process

Figure 1 shows a view which generalizes our way of working in several industrial
cases (see Sect. 4). It relates the performance engineering process to the regular
V-model development process [9]. The precondition of this hybrid process is that
there is an existing system that is being evolved with a V-model iteration. The
definition of existing system and iteration can be very broad. We distinguish the
following steps:

1. Requirements analysis for a new system Y, the successor of an existing sys-
tem X, leads to a number of performance-related questions. For instance,
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Fig. 1. Performance models in an iterative V-model development process.

system Y might be required to have a higher throughput than X. A typical
question then is how much the bottleneck components must be improved in
order to achieve the new requirements.

2. An initial model of system X is built based on the initial questions.
3. The model of system X is calibrated and validated with respect to the re-

quirements: we predict the past. This is a key step as it builds a certain degree
of trust in the model and its predictions.

4. The envisioned changes of system Y compared to system X are incorporated
in the calibrated and validated model. This step gives a predictive model, or
a set of models (one for each design alternative), for system Y.

5. We use model analysis to explore the design alternatives: we explore the
future4. The analysis results are input for the architecture and design steps.

6. After system Y has been realized, the predictive models can be validated
against the actual realization. This retrospective validation builds experi-
ence, and allows us to reconcile the model with reality. This completes the
iteration and brings us in the position where we might be able to re-use the
models for a new V-model iteration.

The value of predictive models is mainly determined by their accuracy, and
reasonably accurate models are a necessary precondition for model-based per-
formance engineering. The sketched approach assumes a rather gradual devel-
opment process with relatively small iterative steps. This enables us to take ad-
vantage of the existing system: calibration and validation on the existing system
builds trust in the modeling approach and gives an indication of the accuracy of

4 The phrase “predict the past, explore the future” originates from [16].



the models. Predictions in step 5, however, come from unvalidated models (due to
changes introduced in step 4), and therefore always have an unknown accuracy.
The development-validation-gap thus bears the risk of significantly wrong model
predictions. We distinguish two cases to discuss this problem based on the cost-
to-validation, which is the cost of the development process that is needed after
step 5 to enable step 6. Firstly, we can have the situation with a small cost-to-
validation, i.e., the model predictions of step 5 can relatively easily be validated.
An example is the optimization of software parameters such as buffer sizes by
model-based analysis. Insufficiently accurate model predictions only waste some
time in this case, and the validation results can be used for additional calibra-
tion. The authors of [4] identify easy validation as one of the success factors of
their model of the paper path inside a printer that nowadays is used by industry.
Secondly, we can have the situation in which validation of the model prediction
can be done only after further development steps (e.g., after several weeks of
development and integration), or is not possible at all (e.g., when model predic-
tions lead to the choice to not follow a certain design). Insufficiently accurate
model predictions can then lead to significant waste of time and engineering
resources or a suboptimal design. Thus, using model predictions in the situa-
tion with a non-negligible cost-to-validation implies a certain amount of trust in
the model. We believe that experience and a set of best practices (that can be
domain-specific) can help to mitigate the risks of this situation.

The modeling line in Fig. 1 is loosely coupled to the development process,
which is to say that it can be skipped when it is not deemed necessary. We
also do not make assumptions about how the models are created; this could
be a manual process, or, on the other extreme, a fully automated process that
generates performance models from design artifacts.

Although our process does not fix modeling formalisms, we do follow some
modeling principles that have proved to be useful. The most important principle
that we use in building our performance models, is that of the separation of
concerns provided by the Y-chart [2]. This pattern decomposes a system model
into an application model, a platform model, and a mapping model. The appli-
cation model describes the functionality of the system; it typically describes the
application’s tasks, their computational loads, and their interdependencies. The
platform model describes the resources of the computational platform and their
capabilities. Platform resources include processing resources such as CPUs and
storage resources such as memories, but also bandwidths and energy can be plat-
form resources. The mapping model describes the deployment of the application
tasks onto the platform resources.

To successfully apply the modeling process described above, it is essential to
define models that accurately describe a system’s performance. However, models
should also be as simple as possible, because simple models require less effort
to develop and to maintain. Simple models typically require little analysis time,
which is beneficial for design-space exploration. On the other hand, the models
must be sufficiently accurate for the purpose they serve. If a high accuracy is
required, then typically a high model complexity is required. For instance, a



cycle-accurate simulation is very accurate, but also very complex. In this paper,
we will focus on simpler models that are accurate enough to predict the past and
explore the future.

We distinguish three types of performance models with a varying degree of
system knowledge and therefore with a different level of complexity. Black-box
models are system models that do not use any a priori knowledge of internal
behavior of the system. These models typically only consider the system’s input
and output behavior and are derived using experimental data [5]. White-box mod-
els are models that have all a priori knowledge about the internal workings of a
system. As the structure of a white-box model is known, it is simpler to calibrate
them. On the other hand, having system behavior knowledge typically results
in more complex models. We distinguish a third model type, which combines
both system knowledge and experimental data: gray-box models are created us-
ing high-level information about a system’s internal behavior and corresponding
experimental data. In this paper, we only use white-box and gray-box models,
as we always have application knowledge and using this knowledge simplifies
performance engineering.

3 Techniques and Tools

3.1 Discrete-Event Simulation and Execution Visualization

Discrete-event simulation is a methodology that discretizes the evolution of sys-
tems through a sequence of time-stamped events [8]. It allows the user to esti-
mate all kinds of properties such as system throughput and processing latency.
Discrete-event simulation is widely applicable, and often discrete-event simula-
tion models are easier to manipulate and experiment with than the system under
study. Another key benefit is that discrete-event simulation creates additional
insight in the system dynamics.

In [10] we have presented the OctoSim framework, a discrete-event sim-
ulation approach for software-intensive embedded systems on a high level of
abstraction that is based on a piecewise-linear notion of progress of computa-
tional tasks. The Y-chart based approach separates application, platform and
mapping, and additionally separates the execution of tasks from the application
structure. This results in models consisting of loosely coupled components with
excellent opportunities for re-use. The OctoSim framework is available as a
Java library, and can be classified as an embedded domain-specific language.
The use of a general-purpose programming language has the advantage that
all existing and often highly mature tooling for this language can be used. For
instance, the Eclipse Integrated Development Environment (IDE) for Java de-
velopers can be used as a modeling environment [6]. This IDE includes a plethora
of functionality, e.g., debugging, which in particular is useful during model devel-
opment. The fact that the OctoSim library is based on Java interfaces makes
the modeling language very flexible and powerful.

The OctoSim discrete-event simulation provides a simulation run (or a set
of runs) which can be analyzed for key performance metrics. In addition to these



Fig. 2. A sample Trace view which shows a system’s activity over time.

system-level numbers, we have experienced that detailed insight in the dynam-
ics of the system is highly valued for both model validation, and to understand
system-level numbers that are not expected. Therefore, we have coupled the
Trace tool, a Gantt chart viewer and analyzer, to our OctoSim tool [7]. Fig-
ure 2 shows an example of an OctoSim simulation run in the Trace tool.
Trace enables us to zoom into the details of the behavior, and enables anal-
ysis methods to, e.g., compute and show differences in behavior or to compute
and visualize the critical activities and resources [11]. Trace is available as an
Eclipse plug-in and therefore the full discrete-event simulation tool chain is
available in a single, mature and widely-used IDE.

3.2 Regression Analysis

Regression analysis is a statistical technique for investigating and modeling the
relationship between variables [13]. It involves response variables yi and (inde-
pendent) predictor or regressor variables xi,j . The goal of regression is finding
a regression model, i.e., a model that relates response variables yi and regressor
variables xi,j . This is a function f , such that yi = f(xi,1, . . . , xi,m) + εi, where
εi is a zero-mean error or residual.

There are several types of regression depending on the structure regression
function f . The most common type is linear regression, which finds regression
coefficients β0, β1, . . . , βm, such that yi = β0 +

∑m
j=1 βj · xi,j + εi. Linear regres-

sion uses least-squares estimation to compute intercept β0 and slopes β1, . . . , βm.
Besides estimations for the intercept and the slopes, linear regression also pro-
vides information on the quality of the found fit. Examples are the coefficient of
determination R2, which is the proportion of variation explained by regressors
xi,j , and an assessment of the significance of the intercept and slopes. Details
about these and other supported techniques can be found in the textbook by
Montgomery et al. [13].

In this paper, we use regression to create parameterized (white-box or gray-
box) models that are used for performance prediction. Using system knowledge,
we first determine a model template, i.e., a function f describing the relation
between input parameter values and system performance. For linear models, the
template equals yi = β0 +

∑m
j=1 βj · xi,j , where xi,j represents input parameters



that can be controlled and βi are constants. We use regression to calibrate the
identified models. For the example of linear regression, this corresponds to de-
termining the constants βi using measurements of yi for different values of input
parameters xi,j . Section 4 describes two cases, in which regression is used for
model calibration; one case uses linear regression, the other non-linear regression.

4 Cases

In this section we describe five cases from industrial practice in which we have
applied performance engineering techniques to aid the development process. The
design questions span all three parts of the Y-chart: Sects. 4.1, 4.3, and 4.5
describe choices with respect to the application, Sect. 4.2 analyzes platform
design alternatives, and Sect. 4.4 considers mapping alternatives.

4.1 Predicting the Effect of Application Changes

Problem Description The first case involves the data paths of a family of
wide-format printing systems. These printers can print images of over one meter
in width. These images are printed by an ink-jet carriage that moves over the
medium, e.g., a paper role. An image is printed in bands, called swaths; the
height of these swaths equals the number of nozzles in the printer carriage and
their width equals the image width. The corresponding data paths have to handle
a huge amount of data. They take a bitmap as input and transform this bitmap
into sequences of firing moments for the (thousands of) nozzles of the printers’
ink-jet carriage. The data paths of the wide-format printers are different for
each printer in the product family, but they are all built from a single library of
generic image processing steps. Examples of these steps are copying, masking,
re-sampling, and transposition.

We would like to quickly and accurately predict the performance of the data
path of future wide-format printing systems. For instance, in an early develop-
ment phase, we would like to assess the influence of different printer configura-
tions on the data path performance. Examples of these configuration changes
include a larger number of ink-jet nozzles or different printer dimensions. Simi-
larly, we would like to accurately predict the performance of different sequences
of image processing steps.

Performance Engineering As we have access to the code of all image pro-
cessing steps of an existing prototype, a white-box modeling approach has been
used to address this challenge. The modeling step (step 2 in Fig. 1) mainly con-
sisted of code analysis, which was used to determine the (nested) loops in the
data path code and the corresponding loop bounds. This loop structure deter-
mines a template for the performance model. For instance, if the implementation
contains a single loop iterating over the pixels of a swath, then this operation’s
latency can be expressed as β0 + β1 · n, where n is the number of pixels in
the swath and β0 and β1 are unknown constants. This determines the model
structure, which is later used for calibration using (linear) regression.



Fig. 3. Simplified Excel performance model.

Calibration and validation (step 3 in Fig. 1) has started with code instrumen-
tation and systematic measurements. Code instrumentation has been applied to
record the start and end times of image processing steps using an accurate clock.
This additional code disturbs the measurements. However, the measurement
overhead is very small compared to the execution times of the image processing
steps. Measurements have been performed using different inputs; the inputs are
selected using information of the loop bounds found during code analysis. Mea-
surements with varying loop bounds were performed. For instance, if an image
processing steps has an expected latency of β0 +β1 ·n, where n is the number of
pixels in the swath and β0 and β1 are unknown constants, then the set of mea-
surements should cover different values of n. Finally, linear regression was used
to calibrate a performance model for each image processing step separately. The
regressors are the loop bounds found using code analysis. For the example of an
expected latency of β0 + β1 ·n, n is used as the only regressor. Linear regression
will determine the values of intercept β0 and slope β1. We have validated the
model by comparing model predictions for a new input (with a different number
of pixels in the swath) with measurements. The differences are approximately
1%.

A simplified and anonymized version of the resulting performance model is
shown in Fig. 3. This model takes only one regressor, the input size. It is a simple
model in Excel with a single input parameter, i.e., the size of the input of image
processing step IP1. The input sizes of the subsequent steps are determined by
the preceding steps, as for each step it is known how much output it produces for
a given input size. By varying the sequence of image processing steps or the size
of the input of the first step, different printer configurations can be evaluated
and used for exploring the future (steps 4 and 5 in Fig. 1).

Costs & Benefits The procedure used to estimate the performance of wide-
format printers is a simple process, which allows a large degree of automation.
The following benefits have been observed from using the data path performance
model, both during data path development and for design-space exploration.

First, bottleneck identification. The performance model identifies which of
the image processing steps are most expensive. This allows the data path de-
signers to focus their attention in optimizing the data path performance on those
image processing steps that contribute most to the execution time. Second, hard-



ware scaling analysis. The input size is the main regressor of most of the image
processing models. This allows exploration beyond the dimensions of existing
wide-format printers. If there are plans for a printer that allows larger input
widths or larger ink-jet carriages, then the model provides first predictions of
the future data path performance. This gives an early impression whether the
data path performance will be sufficient for the new printer configuration. Third,
sequence optimization. A typical data path contains a number of re-sampling
steps; these change the resolution of the image. Having the optimal sequence
of image processing steps is essential in optimizing data path performance; the
most expensive steps should be executed on as little data as possible. The pre-
dictive model allows all sequences to be specified and analyzed separately; the
data path designer does not need to implement and test all sequences individ-
ually. Instead, the optimal sequence can be derived using the model and data
path designers can implement this sequence. Fourth, detection of unexpected
performance behavior. During code analysis, the loop structure of the image
processing steps is identified. This is used as input for calibration using linear
regression. In principle, each of the loop bounds should appear as a significant
regressor in the corresponding model. However, we have unexpectedly identified
an operation for which the input size was not considered a significant regressor.
This has led to special attention to analyze and correct the unexpected behavior.

4.2 Predicting the Effect of Platform Scaling

Problem Description The second case involves the data path of a high-
production cut-sheet printer. Like the wide-format data path, this data path
transforms an input bitmap into firing moments. The data path takes the in-
put image, e.g., of A4 size, and divides it into a number of bands. These bands
are processed in parallel individually by separate threads of the data path; each
thread runs on a dedicated processor core. When there are more bands than pro-
cessor cores, then bands are processed sequentially. This case involves a platform-
scaling question: we would like to estimate the performance of the data path on
different hardware platforms without individually purchasing and testing all of
them. Using these estimations, discussions are fed to select the computational
hardware of the printer being developed with the best balance between cost and
performance.

Performance Engineering We applied a gray-box modeling approach in
which we use the information that a large part of the application is parallelized
over the available processor cores of the platform. Estimating the performance of
an application on a (multi-core) computer platform is very challenging, because
(i) there are many platform parameters that influence system performance (e.g.,
the number and type of CPU cores, bus capacities, cache sizes and cache line
sizes), and (ii) it is generally not possible to vary only one of the parameters
to isolate its effect on performance. To create a simple, yet accurate, predictive
performance model, it is essential to identify the parameters that have the highest
influence on data path performance. Experiments have, unsurprisingly, identified
the number of CPU cores as the most important platform parameter.



Our performance model that predicts application performance on a new plat-
form consists of three parts (step 2 in Fig. 1). Amdahl’s law [1], which estimates
the maximum possible speed-up of an application running on parallel processors
has been used for the first part of our model. It divides the computational load
of the application into two parts: a sequential part, which cannot be parallelized,
and a parallel part, which can be ideally parallelized. Amdahl’s law can be for-
mulated as T (n) = T (1)·(s+ 1

n ·(1−s)), where T (n) is an application’s execution
time on n processors and s ∈ [0, 1] is the sequential fraction of the application.
Changing the platform, however, will affect both T (1) and s (where we assume
that Amdahl’s law still applies on the new platform). The second part of our
performance model therefore consists of a method to estimate T (1) for an un-
known platform. A first attempt to use the CPU clock frequency as a means to
relate processors did not provide an accurate model: model predictions deviated
greatly from measurements on the available platforms. A more suitable means
to relate processors was found in an on-line performance benchmark [17]. This
benchmark quantifies the performance of a single core of (multi-core) CPUs. The
third and final part of our model consists of a relation between T (1) and s, such
that we can estimate s for the new platform from our estimation of T (1) on the
new platform that follows from the second part of the model.

Calibration and validation (step 3 in Fig. 1) has been based on measurements
on several available homogeneous multi-core platforms. Regression has been used
to identify model parameters T (1) and s. The non-linear regression resulted in a
good fit, and the sequential fraction s proved to be small; around five percent of
the application cannot be parallelized. This sequential fraction involves mainly
the parts at the beginning where the bitmaps are divided into bands and at the
end where the band results are accumulated. This validates our use of Amdahl’s
law. Next, we have validated our method to estimate T (1) using the bench-
mark data and the available platforms. It has proven to be sufficiently accurate
for practical usage: the single-threaded data path performance of an unknown
platform can be derived from the single-threaded data path performance of a
known platform by scaling with the corresponding benchmark values. This has
proven accurate within circa 10%. By taking into account additional platform
characteristics, an even better accuracy has been achieved. Finally, we have fit-
ted a relation between T (1) and s based on the measurements on the available
platforms.

Costs & Benefits Using little effort and simple means, a simple, yet accu-
rate, predictive performance model has been created. The model can be used to
estimate the data path performance on many different computational platforms
without having to purchase all of them. The model is being used to trade off
platform cost and performance to select promising candidate platforms for fur-
ther investigation (steps 4 and 5 in Fig. 1). Note that when a new platform has
been acquired for evaluation, it can be used to further calibrate and validate the
model (steps 6 and 3 in Fig. 1) to improve the accuracy.
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4.3 Optimization of Application Structure for Bitmap Processing

Problem Description We consider a prototype data path for a second type of
cut-sheet printer. The data path functionality that is the subject of this case con-
verts Page Description Language (PDL) data (e.g., PostScript) to bitmap images
that are suitable for the print engine. This conversion has been implemented in
three functional image processing steps IP1 – IP3, and a step, IP4, that writes
the bitmap data to a hard disk. Because often there are no data dependencies
between PDL items (i.e., pages of the document to print), these steps can be
parallelized. Furthermore, the steps allow pipelining. Figure 4 shows a schematic
of the situation with three instances of the processing pipeline. The configuration
question we face is how many copies of the processing pipeline IP1 – IP4 should
be used. There is a trade-off between the memory usage (each pipeline instance
statically allocates a significant amount of RAM) and throughput. The latter is
hard to estimate based on static calculations because of (i) resource sharing (the
steps IP1 – IP3 all are mapped to a 4-core CPU), (ii) pipelining behavior and
(iii) the variation in the duration of the processing steps (which heavily depends
on the PDL data).

Performance Engineering In the modeling step (step 2 in Fig. 1) we have
built a gray-box discrete-event simulation model using the OctoSim tool (see
Sect. 3 and [10]). The model consists of a number of dependent tasks (as in
Fig. 4), each with a parameter for the nominal execution time. It also includes
details about data granularity and buffering. Resource interaction, e.g., when
multiple tasks run on the CPU, is modeled by extrapolation of the nominal
execution times by the platform model; see [10].

Calibration and validation (step 3 in Fig. 1) has been enabled by code instru-
mentation (as in Sect. 4.1) and systematic measurements using a small number
of representative jobs. This gave us the nominal execution times of the process-
ing steps IP1 – IP4 on the target platform, which have been used for model
calibration. In order to validate our OctoSim model, we have measured the
throughput of the system for the representative jobs for one, two and three
copies of the pipeline. We then have compared these numbers with the predic-
tions of our model (we predict the past). This has shown that the model is quite



accurate given the high level of abstraction: the predictions are all within 10%
of the measured values.

Next, we have explored the future (steps 4 – 5 of Fig. 1) by using the model
to predict the throughput of a number of fictive jobs and a varying number of
pipeline copies. This has shown us that the ratios of the nominal execution times
of IP1 – IP3 per PDL data item play an important role. If IP1 – IP3 have a
similar duration, then the system does not scale well. In that case IP1, IP2 and
IP3 of a single processing pipeline all are active more or less continuously (with
different PDL data items). A single pipeline instance therefore already claims
three of the four CPU cores. Using workloads derived from practical job sets,
we were able to optimize the number of parallel pipelines for the expected use
patterns of the printer.

Costs & Benefits We estimate that modeling, calibration and validation,
and analysis took approximately one full working week, starting from the basic
OctoSim building blocks. The model has allowed us to experiment with different
types of input and varying the number of pipeline copies, and this has led to
a satisfactory configuration. Being able to avoid experiments on the prototype
system has saved a lot of time. Furthermore, the model allowed us to investigate
the relation between input characteristics and the throughput in a systematic
way, which significantly increased the understanding of the system dynamics.
Finding a set of jobs with the required range of properties to test on the prototype
would have been very time-consuming, if possible at all.

4.4 Mapping a Computationally Expensive Processing Step

Problem Description In this case we consider a part of a prototype data
path that consists of three copies of a pipeline consisting of image processing
steps IP5 – IP10. The current prototype implementation does not meet the
performance requirements on throughput. Measurements show that the 4-core
CPU is heavily loaded. Mapping a computationally expensive step (IP7, which
uses three threads) to the GPU might improve the throughput. This, however,
is not obvious due to the complex dynamic behavior of the system (pipelining,
parallel processing, task interactions on the CPU, etc.). Furthermore, the three
copies of the processing pipeline cannot use the GPU in parallel which might
create a new bottleneck. The current situation and the design alternative are
shown schematically in Fig. 5. Building a prototype of the design alternative
would imply that the functionality of IP7 should be re-implemented for the
GPU, which would require a lot of engineering effort. Instead of embarking on
this directly, we have decided to first employ a model-based analysis.

Performance Engineering We have created, calibrated and validated a
gray-box OctoSim discrete-event simulation model for the current situation in
a similar way as described in Sect. 4.3 (steps 2 – 3 in Fig. 1). The validation
consisted of a manual inspection of the execution trace of the model using the
Trace tool, and of a comparison of the measured throughput with the modeled
throughput (within 5%). The delta-modeling (step 4 in Fig. 1) adjusted the
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Fig. 5. The current situation and a possible new design which maps IP7 to the GPU.

mapping of IP7 and made some additional minor structural changes. Our design-
space exploration (step 5 in Fig. 1) consisted of a systematic analysis of the
throughput for a range of durations of IP7, since we have no implementation of
IP7 on the GPU and therefore no measurements. This led to the insight that
even an efficient implementation of IP7 on the GPU only leads to a small increase
in system throughput.

Costs & Benefits An experienced modeler used approximately two working
days to create the models from the basic building blocks in the OctoSim library
and to analyze them. This includes several meetings with the team that worked
on the system to create, calibrate and validate the model. The combination of the
model-based analysis results with the estimation of effort for the implementation
of IP7 on the GPU led to the decision to not pursue this solution direction.
Note that step 6 in Fig. 1 is not possible because of this decision. Performance
engineering thus has provided insights that are at the basis of a significant design
decision.

4.5 Combining an Application Model with a Real Platform

Problem Description A prototype data path running on a regular desktop
PC with a standard operating system suffered a severe performance degradation
in some use cases: the throughput could unpredictably drop to less than 10% of
the required value. Initial analysis led us to the insight that in these cases the
hard disk was the bottleneck. A critical step that reads data from the hard disk
became extremely slow. Modeling the behavior of the hard disk under the load
that the data path imposed on it, however, would require detailed knowledge of
OS and hard disk internals. This information simply was not available to us.

Performance Engineering Instead of creating a model of the application,
the mapping and the platform, we created a model of the application and map-
ping only that we could execute on the real platform (step 2 in Fig. 1). In other
words, we created a Java program that mimics the load that the data path im-
poses on the hard disk. The program has three threads that each write a number
of files to the disk at a certain rate, and it has one thread that reads those files
from the disk at a certain rate. Configuration parameters of the model are the



file size, the rates, and the delay for the reader (i.e., the reader starts to read the
first file after a certain number of files have been written to the disk). The Java
program can be executed on the physical platform to analyze various scenarios
from a performance point of view. Calibration of the application model consisted
of configuring the file size, the write and read rates, and the reader delay. These
values were extracted from the problematic use case. Manual inspection resulted
in the conclusion that the test program exhibited behavior similar to the be-
havior of the real data path: we predicted the past (step 3 of Fig. 1). Analysis
led us to the conclusion that the OS gives reading a lower priority than writing,
which has the effect that in high load scenarios reading almost completely stops.
We used this qualitatively validated model to experiment with two mechanisms
to control the concurrency of the writers and reader in order to make the hard
disk performance more predictable (we did not succeed in influencing the OS
scheduling in a more direct way; step 4 in Fig. 1). The model predicted that a
semaphore that prevents concurrent API calls to the file system from the writer
and reader threads solves the problematic behavior: we have explored the future
(step 5 in Fig. 1).

Costs & Benefits Creation of the test program cost little effort; Java
provides ample means for I/O and concurrency. The experiments that the test
program allowed us to do would have been tedious using the actual system.
The reason is that we then would have needed an appropriate set of jobs that
imposes the required load on the disk. It is non-trivial to obtain such a set. The
model-based experiments have provided more insight in the dynamic behavior of
the hard disk and the implications for the data path performance. Furthermore,
they have provided support for the envisioned semaphore solution which requires
non-trivial implementation efforts.

5 Conclusion

We have introduced a model-based performance engineering approach that is
coupled to the V-model. We have discussed the role of accuracy of model predic-
tions and trust issues that can play a role, especially if the cost-to-validation is
significant. Furthermore, we have applied model-based performance engineering
with lightweight techniques and tools to five industrial cases from the digital
printing domain. Y-chart separation of concerns (application, platform, map-
ping) and a high level of abstraction ensure simple but accurate models that
enable design-space exploration. We have made several observations from these
cases.

First, building the models, especially the discrete-event simulation models
which require an explicit Y-chart application graph, is a useful exercise in itself.
It stimulates performance thinking in the team, and documents and clarifies the
design in a way that is often lacking. These models (or informal drawings repre-
senting the models) are good means for communication and facilitate knowledge
transfer between team members. A next step in our process is validation of the
constructed performance models to build trust and to quantify predictive accu-



racy. Usually, we take the system as the leading artifact to which the model must
conform, but the roles could also be reversed. An example is given in Sect. 4.1
in which the system exhibits behavior that differs from the model prediction. In
this case, we regard the regression model as leading and expect a software bug
in the system that causes the difference.

Second, as already observed in [3, 20], automation is an important factor for
the acceptance of performance engineering. In the five cases that we have de-
scribed above, the foundational parts of the gray- and white-box models have
been relatively easy to obtain, i.e., the regression formulas (Sect. 4.1), Amdahl’s
law (Sect. 4.2), the application graphs (Sects. 4.3 and 4.4), and the application
and mapping (Sect. 4.5). The data that is needed to calibrate and validate the
models, however, was much harder to obtain (except for the case in Sect. 4.5).
We believe that a systematic way of storing fine-grained performance-related sys-
tem events will alleviate this. Furthermore, this would enable systematic access
to information that can directly be used by architects and engineers to identify
and diagnose performance problems, and to get more insight in the system dy-
namics. For instance, in the cases described in Sects. 4.1 and 4.3 we have added
performance logging to the system that enabled us to immediately visualize a
Gantt chart of the system’s execution after a test run (Fig. 2 is an example
of this). Architects and engineers acknowledge that this kind of visualization is
very useful. Furthermore, the performance logging output is directly applicable
for calibration and validation of performance models.

Third, there are various models for implementing performance engineering.
Two extremes are (i) to hire a third party to do performance engineering, and
(ii) to change the way of working of the development team to do performance en-
gineering internally. Both have their strengths and weaknesses and both impose
different requirements on the tools, processes and, last but not least, the people
involved. The five cases have used the former model, and our conclusion is that
the cost has been low and we believe that the benefits have been substantial.

To summarize our conclusions, the V-model based performance engineering
method, where models are calibrated using existing products or prototypes and
then used to explore design alternatives for new products, works in the pre-
sented cases from the digital printing domain. Although some of the modeling
techniques that we have applied may be regarded as domain-specific, we believe
that the process in which they are applied, is not. Other domains which also
employ an evolutionary (in contrast to revolutionary) approach with respect to
development can use the process of Fig. 1, but may need to apply different,
possibly domain-specific, modeling and analysis techniques.
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