
RC-SIMD: Reconfigurable Communication
SIMD Architecture for Image Processing

Applications

Hamed Fatemi1,2, Bart Mesman2, Henk Corporaal2, Twan Basten2, and
Richard Kleihorst3

1 h.fatemi@tue.nl
2 Eindhoven University of Technology,

PO Box 513, NL-5600 MB Eindhoven, The Netherlands,
3 Philips Research Laboratories,

Prof. Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands,
Tel: (+31)-40-2474741, Fax: (+31)-40-2433066.

Abstract. During the last two decades, Single Instruction Multiple Data
(SIMD) processors have become important architectures in embedded
systems for image processing applications. The main reasons are their
area and energy efficiency. Often the processing elements (PEs) of an
SIMD processor are only locally connected. This may result in a com-
munication bottleneck (only access to direct neighbors). One way to solve
this is to use a fully connected communication network (FC-SIMD) be-
tween PEs. However, this solution leads to an excessive communication
area cost, low communication network utilization, and scalability prob-
lems. E.g., the area overhead of an FC-SIMD is more than 100% when
the number of PEs gets bigger than 64.
In this paper, we introduce a new type of SIMD architecture, called RC-
SIMD, with a reconfigurable communication network. It uses a delay-
line in the instruction bus, causing the accesses to the communication
network to be distributed over time. This architecture requires only a
very cheap communication network while performing almost the same as
expensive FC-SIMD architectures.
However, the new architecture causes irregular resource conflicts. We
therefore introduce a conflict model that existing schedulers are able
to cope with. Experimental results show that, on average (compared
to locally connected SIMDs), RC-SIMD require 21% fewer cycles than
architecture without the delay-line, while the area overhead is at most
10%.

Keywords: Reconfigurable architectures, SIMD processors, Scheduling, Image
processing algorithms, Parallel architectures, Low cost architectures.

1 Introduction

In the last few years, media processing has become one of the dominant com-
puting workloads. Media processing refers to the computation required for the

creation, encoding/decoding, manipulation, display, and communication of dig-
ital multimedia information such as images, audio, video, and graphics. Major
obstacles for implementing these applications on a general-purpose processor are
their high computational demands, the stringent real-time, scalability, and low
power consumption constraints [8].

Parallel architectures help to solve these problems to some extent. Therefore,
there has been an increasing demand to exploit parallelism in applications. It
is possible to explore parallelism along three axes: task-level parallelism (TLP),
instruction-level parallelism (ILP) and data-level parallelism (DLP, or vector
parallelism). Trimedia [16] is an example of a VLIW architecture which can be
used to exploit ILP in applications. The bottlenecks of VLIW architectures are
concerned with the code-size, register file cost, and the costly communication
network between functional units. The Cell-based architecture [9] is an example
of MIMD (Multiple Instruction Multiple Data). It exploits both TLP (between
the processing units) and, to a limited extent, DLP (inside the vector units).
SIMD architectures exploit DLP, usually to a very large extent. E.g., the XETAL
[1] architecture has 320 parallel operating PEs, such that it can process (almost)
complete image lines at once.

Although the SIMD concept has troubled application development and map-
ping, it offers undeniable advantages in control efficiency (e.g., 1 instruction
word for 320 parallel PEs [1]) and its repetitive architecture relieves floorplan
and lay-out design. SIMD architectures are cheaper in area and energy (in com-
parison with e.g., MIMD and VLIW), assuming that applications fit to this type
of parallelism. The latter is true for the image processing domain due to the
huge amount of DLP inherent in pixel-type operations. Nowadays, SIMD-based
processors are available to offer a wide range in the number of PEs working in
parallel.

Fig. 1. Locally connected SIMD (LC-SIMD) architecture: each PE can only commu-
nicate with direct neighbors, and has only access to its (private) memory slice.

Although the utilization of the memory and PEs in SIMD architectures is
essentially determined by the vectorizing compiler, the utilization of the commu-
nication resources is much more architecture dependent. We illustrate this with
the two classes of communication architectures that existing SIMD processors
employ. The first one is the locally connected SIMD (LC-SIMD) architecture
(Fig. 1). Each PE can receive data of a single column in a video frame and
PEs can work on the same video line in parallel. Furthermore, each PE can get
data from its direct neighbors. However, many image processing algorithms (like
FFT, image sub-sampling, and filtering) need to get data not only from direct

neighbors, but also from more distant PEs. Suppose that a PE needs to get
some data from another PE that is 6 blocks away (i.e., 5 intermediate PEs) to
its right; then each PE has to shift 5 times and only then the PE will be able to
load the data from its direct neighbor. These shifts severely reduce performance.
So, this communication architecture is cheap but rather inefficient.

Fig. 2. Fully connected network SIMD (FC-SIMD) architecture: each PE is connected
to all other PEs (simultaneously).

To overcome this inefficiency, one can separate computation and communi-
cation, as illustrated in Fig. 2, and implement a fully connected SIMD (FC-
SIMD). Each PE can send/receive data to/from all other PEs by means of a
fully connected crossbar switch. The problem of this architecture is that when
the number of PEs increases too much (e.g., more than 64 PEs), the area of
this communication network dominates the whole chip area [5]. So this is not
feasible for massively parallel SIMDs. Between these two extremes (locally and
fully connected) exist many other communication network solutions [11]. How-
ever they are difficult to use efficiency when using an SIMD execution mode, due
to communication conflicts.

In this paper, we introduce a novel solution for communication and instruc-
tion distribution in highly parallel SIMD architectures that overcomes the com-
munication bottleneck present in current SIMD processors. The resulting ar-
chitecture is called RC-SIMD, because it has a reconfigurable communication
network. The essential idea is that the instructions for successive processing el-
ements are distributed over time, resulting in a time-interleaved and therefore,
more balanced utilization of communication and computational resources. The
cost of the proposed architecture is almost the same as LC-SIMD. Experiments
on RC-SIMD show that the schedules for our benchmarks often perform well as
on an FC-SIMD.

Furthermore, we show that RC-SIMD is reconfigurable, allowing for run-time
adaptation to the characteristics of an image processing algorithm. RC-SIMD
however, poses new resource constraints that cannot be handled by currently
available scheduling algorithms. Therefore we also developed a resource conflict
model for RC-SIMD which can be used by any scheduler. Experiments with our
scheduler result in high-quality software-pipelined schedules, featuring a very
good network utilization without much shifting overhead, for image processing
loop kernels that are present in the most demanding image processing applica-
tions.

The rest of the paper is organized as follows: In Section 2, we give an overview
of related work. The RC-SIMD architecture is explained in Section 3. Section 4
devises a suitable conflict model for the architecture that can be used by any
scheduler. We present our experimental results in Section 5 and conclusions in
Section 6.

2 Related work

Several commercial SIMD machines were introduced in the 1970s [13], but they
were not widely used. Interest in this class of machines was renewed in the early
1980s with the introduction of the ILLIAC IV [10], the Connection Machine
(CM-1) [17], and the MasPar MP-1 [6].

The ILLIAC IV was an SIMD computer for array processing. It included 64
PEs. An 8 by 8 grid interconnect joined each PE to 4 neighbors. Non-neighbor
communication requires extra shifts. The CM-1 was based on 1-bit processors.
16 processors were implemented on a single chip. Within a chip, processors were
connected through a 4-by-4 grid, and up to 4096 chips were connected via a 12-
dimensional hypercube, which causes quite some communication area overhead.
The MasPar MP-1 was introduced a few years after the CM-1. It also had a
very narrow datapath, but it could process 4 data bits instead of 1 bit at a
time. One of the interesting aspects of the MP-1 is that, there are two separate
communication systems, and programmers can alternate between them to choose
the best performance for different parts of their algorithms. One interconnection
network is known as X-net. It connects each processor to its 8 nearest neighbors
in a 2D torus (potentially causing shift overhead). The other connection is a
global router, which provides point-to-point communication between each two
PEs. The router is implemented by a 3-stage switching network, where each
stage in a 1024-processor machine contains a crossbar, together, the three stages
comprise a crossbar (which causes area overhead and has lower speed).

XETAL [1] and IMAP [7] are more recent and interesting SIMD processor
examples (for video processing). They consist of 320 and 256 PEs, respectively,
arranged as a 1-dim, linear array. Each PE has only the ability to access its
neighbors (left and right) and when it wants to get some data from its n′th
neighbor (n > 1), the corresponding data should be shifted to become accessible.
The communication bottleneck is essentially the same as in Fig. 1, which may
cause a significant increase in the cycle count of the program.

Imagine [12] is an SIMD which consists of 8 PEs (each PE is a VLIW). Each
PE has the ability to get data from all PEs using a fully connected network. This
architecture is not scalable. If the number of PEs is increased beyond 64 (sup-
porting increased data-level parallelism), the area related to this communication
network will dominate the total area [5].

It seems that an SIMD processor needs either many cycles to perform non-
neighbor communication, or a very rich interconnection structure with a high
cost. The latter possibly results into high latency and energy consumption. In

contrast we propose a new reconfigurable architecture and a scheduler which
aims at providing higher connectivity without the additional cost incurred.

Fig. 3. Initial reconfigurable communication SIMD (RC-SIMD) architecture.

3 A reconfigurable SIMD

In this section, we propose a new SIMD architecture for solving the communi-
cation problems between PEs which are explained in the previous sections.

3.1 Basic architecture

As outlined in the previous sections current SIMD architectures are either locally
connected (LC-SIMD) or have a rich and almost fully connected inter-PE com-
munication network (FC-SIMD). The first ones may cause shift overheads when
performing non-local communication while the latter are not scalable. Fig. 3
shows our architecture that can overcome this communication bottleneck. In
this architecture, there are two segmented unidirectional communication busses
(bottom of Fig. 3), one for right and the other for left communication. The seg-
mented bus allows multiple concurrent communications by effectively using one
bus. By controlling the multiplexors, each PE can choose to forward the data
which is already on the bus, or to put itself new data on the bus. This allows e.g.
to have communication from PE1 to PE3 and from PE3 to PE5 over different
segments of the same bus at the same time.

Fig. 4(a) shows an SIMD schedule for a 4-tap filter. LD+2 and LD-2 op-
erations denote acquiring data from the second neighbors to the right and to
the left, respectively. However, this schedule is invalid because, for example, at
(clock) cycle 4, PE0 uses multiplexors S0 and S1 and PE1 uses S1 and S2. So
both PEs (0 and 1) want to use S1 at the same time (with different input).

This problem is caused by the fact that all PEs, when organized in an SIMD
fashion, need to access remote PEs (not only direct neighbors) in the same
cycle. This is essentially due to the SIMD distribution of instructions to PEs.
Although sufficient communication capacity may be available, even for remote
communication, we can not use it for high peak performance.

(a) (b)
Fig. 4. Schedule of a 4-tap filter on the SIMD architecture of Fig. 3, (a) without and (b)
with delay line in the instruction distribution. The schedule for (a) is invalid because
of the communication bottleneck. Note that an FC-SIMD also solves this problem.

We solve this problem by executing the same SIMD instruction on different
PEs at different points in time. We put a delay line in the instruction distribution
(top of Fig. 3). Successive PEs receive the same instruction (like in SIMD), but
in successive cycles. Fig. 4(b) shows the 4-tap filter schedule on the architecture,
with the instruction delay line activated. There is no communication conflict
in cycle 4. This architecture has the advantages (small code-size, simple com-
munication) of the LC-SIMD architecture, but overcomes the communication
problem.

The most important parameter for measuring performance in image process-
ing algorithms is the initiation interval (the interval between the start time of
successive iterations), which is the same (10 cycles in this example) in both cases
of Fig. 4 (only the latency of the schedule of Fig. 4 (b) is longer than Fig. 4 (a)).
Although this delay line solves the fundamental communication problem, it in-
troduces some other unexpected resource conflicts. E.g., in Fig. 4(b) PE0 and
PE2 use multiplexor S2 at the same time in cycle 6. We deal with these conflicts
in Section 4.

3.2 Updated architecture

There is still another problem with our proposed architecture as shown in Fig. 3.
If we have an SIMD processor which can operate on a whole (or part of a) video
line by using e.g. 320 PEs, it takes 320 cycles for PE319 to execute its first
instruction. This is often not acceptable, not only because of the extra latency.
It would also mean that we have to store more image lines. when PE319 still
operates on the first line, PE0 may already be far ahead in the image. Therefor,
we adapt the architecture as shown in Fig. 5. By adding multiplexors in the
instruction delay line each PE can be configured to receive either the instruction
delayed by the previous PE or the un-delayed instruction from the instruction
bus. This brings a major performance improvement (it also reduces conflict graph
and therefore, scheduling complexity). Suppose that the maximum neighborhood
communication in an algorithm is k, we then configure the multiplexors I0,

Fig. 5. Update of the RC-SIMD architecture, adding configurable instruction delay.

I1,.....I318 such that PEn receives the instructions with n mod k cycles delay.
Fig. 6 shows the instruction distribution when k = 4.

Fig. 6. Instruction distribution when the maximum neighborhood communication is 4.

3.3 Flexible clock frequency

Most segmented busses contain registers or latches at equidistant intervals. In
this way the clock frequency is upper bounded by the length of the maximum wire
segments between successive registers. In general, more registers imply shorter
wires and a higher clock frequency. There are no registers or latches in the com-
munication busses of our RC-SIMD architecture (Fig. 5). The clock frequency
is upper bounded by the longest delay through the segments and multiplexors
(the maximum neighborhood communication).

This shows an interesting novel aspect of our RC-SIMD architecture. By
changing the maximum neighborhood communication, it is possible to change the
clock frequency for different algorithms. For instance, if an algorithm needs less

communication, it is possible to reduce the maximum neighborhood communi-
cation and increase clock frequency to achieve better performance. Alternatively
we could reduce the voltage for lower energy consumption. The communication
network is reconfigurable and this can be exploited by the compiler. Our compiler
is parameterizable with respect to the maximum neighborhood communication
distance (k). If a longer communication distance (> k) is needed, our compiler
automatically inserts fetch and put instructions to segment communication (e.g.
if k = 6 and we need to communicate to the 11th neighbor, the compiler seg-
ments this communication into two communications with 6 and 5). We estimate
that for a 200 MHz clock in .13 micron technology, a maximum neighborhood
communication of 6 PEs is achievable.

4 Automatic scheduling

As illustrated in Section 3, our proposed RC-SIMD architecture can potentially
solve the fundamental communication problem explained in the introduction by
using different bus segments concurrently, while still operating in SIMD mode.
However, this causes other resource conflicts, as shown in Fig. 4(b). In cycle 6 of
the shown schedule PE0 and PE2 both require the same resource, multiplexor
S2 (also in cycle 7, between PE1 and PE3).

If the PEs would operate independently, like in a VLIW, a parallel scheduler
can easily solve the resource conflicts. However, in our RC-SIMD architecture an
instruction arriving at PE0 arrives at PE2 two cycles later. Therefore, scheduling
operations on PE0 necessarily implies scheduling the same operations on PE2
two cycles later. These type of constraints are not handled by a parallel VLIW
scheduler. Furthermore, it is not necessary to treat the PEs independently (i.e.,
they only receive delayed or un-delayed instructions but in the same order). So
by modelling the resource constraints carefully for a scheduler, it is possible to
schedule only for a single PE and automatically derive the schedule for other
PEs. The overall schedule is still in the SIMD fashion (only a single instruction
stream is required) thus, it shares all the advantages of an SIMD.

Fig. 7. The resource model for a LD+2 operation.

4.1 Conflict model

To model the resource conflicts for the scheduler for a single PE, it is necessary
to consider which exact data communication resources (i.e., the multiplexors)

are used in each cycle. The resource model of a LD+2 instruction is shown in
Fig. 7. A node in this graph represents the use of a resource. Edges represent
timing dependencies. An edge with delay d implies that the destination node of
the edge has to be scheduled at least d cycles after the source node. Fig. 7 shows
that the nodes are all connected with edges with zero delay (LD+2 in PE0 uses
multiplexors S0 and S1 in the same cycle). Fig. 8 extends this conflict model to
include the resource use in the succeeding cycle. In Fig. 8, two extra resource
uses are added, S1 and S2. The edges with delay 1 and delay -1 together imply
that S1 and S2 are used at least and at most 1 cycle after S0 and S1, respectively.
This conflict model describes the following steps:

Fig. 8. The extended resource model for a LD+2 operation.

– At cycle n: Multiplexors S0 and S1 are set to pass the value from PE2 to
PE0, and PE0 loads the value from the bus.

– At cycle n+1: Multiplexors S1 and S2 are set to pass the value from PE3 to
PE1. PE1 loads the value from the bus, but this is not explicit in the conflict
model (because we only consider PE0 as mentioned earlier).

Similarly, multiplexors S2 and S3 are occupied at cycle n+2, S3 and S4 at
cycle n+3, and so on, till the maximum neighborhood communication.

Note that the conflict model should cover the conflicts over two segments of
the maximum neighborhood communication size in order to take into account
the resource conflicts over the borders of two segments of the maximum neigh-
borhood communication (for left or right communication). So given a maximum
neighborhood communication k, the scheduler now generates a conflict model
that considers conflicts up to 2k cycles, and the scheduler guarantees a valid
schedule for this particular configuration.

When all operations are scheduled on PE0, the schedule for all other PEs
is derived by applying the appropriate delay. It is guaranteed that no resource
conflict arises between the PEs, and the schedules for all PEs are valid. Fig. 9
shows the final valid schedule for our 4-tap filter. In Section 5 we use this conflict
model for our scheduler to schedule several image processing loop kernels.

4.2 Facts tools

Although the conflict model introduced in the previous section is suitable for
any resource-constrained scheduler, it fits very well with our in-house developed

Fig. 9. A valid schedule for a 4-tap filter in RC-SIMD.

Facts tool [4], which has been transferred to Silicon Hive [14] for application in
their core scheduler. The reason is that Facts has been developed in the past to
schedule for architectures and applications that are highly constrained with re-
spect to available resources (both computational and storage) and timing (both
throughput and latency). This is certainly the case for image processing appli-
cations running on SIMD architectures. Unlike a VLIW, for an SIMD, a NOP
on one processing element implies a NOP on all processing elements. In order
to obtain a high resource utilization, we apply software pipelining. Most sched-
ulers apply greedy scheduling techniques that are good for latency, but not for
throughput. We illustrate this with the scheduling example in Fig. 10(a). As-
sume that the Initiation Interval (II) should be 3 cycles, meaning a new iteration
should start every 3 cycles. Furthermore, the latency should not exceed 6 cycles.
This is modelled in the graph by a timing edge from the sink to the source with
delay -6. A PE in RC-SIMD architecture can perform a single ALU operation
in parallel with a single load from a bus. For educational purposes, we omit the
extensive conflict model from the previous section, and focus on scheduling a
single processing element.

(a) (b)

Fig. 10. (a) Schedule example for Facts and (b) Incorrect schedule.

As indicated in Fig. 10(b), a greedy scheduler would schedule as follows: The
LD+2 at cycle 1, the LD+1 at cycle 2, and the ALU1 at cycle 3. Cycle 4 of
the first iteration coincides with cycle 1 of the second iteration, since we start a
new iteration every 3 cycles. So the LD-3 cannot be scheduled at cycle 4 since it
would coincide with the LD+2 of the next iteration. The LD-3 can also not be
scheduled at cycle 5 since it would coincide with the LD+1 of the next iteration.
So the LD-3 is scheduled at cycle 6, and the ALU2 at cycle 7. One iteration now
takes 7 cycles, thus violating our latency constraint of 6 cycles.

Our Facts scheduler is based on analyzing constraints rather than just greedy
scheduling. We do not give a full account of Facts’ constraint analysis capabil-
ities, but using the above example we demonstrate a few techniques that turn
out to be especially useful for the RC-SIMD architecture. The basic operation
of Facts is to compute minimal timing distances between instructions over paths
implied by edges in the data-flow graph (DFG). If a minimum timing distance
between two instructions is infeasible, it will be increased by one cycle. We
demonstrate this for the example above in three steps.

– Step 1: In the first step, we compute the distance in the DFG from LD+2
to LD-3 via the LD+1 and ALU1 instructions. This distance is 1+1+1=3
cycles. It is, however, not feasible to actually schedule the LD+2 and LD-3
exactly 3 cycles apart: because the Initiation Interval is 3, the LD-3 of the
first iteration coincides with the LD+2 of the second iteration, and we can
only perform one bus load per cycle. Since the minimum distance of 3 is
infeasible, it is increased to 4, see Fig. 11 (a).

(a) (b) (c)

Fig. 11. (a) DFG transform because of conflict LD+2 vs. LD-3, (b) DFG transform
because of conflict LD-3 vs. LD +1 and (c) Correct schedule.

– Step 2: In the second step, we compute the distance in the DFG from the
LD-3 to the LD+1 via the ALU2, sink, source, and LD+2 instructions. This
distance is 1+1-6+0+1=-3 cycles. It is however, not feasible to actually
schedule the LD-3 and the LD+1 exactly -3 cycles apart: again, the LD-3 of

the first iteration coincides with the LD+1 of the second iteration. Since the
minimum distance of -3 is infeasible, it is increased to -2 cycles, as indicated
in Fig. 11 (b).

– Step 3: In the last step, we simply combine the results of step 1 and 2. Using
the two added edges, we find a path from LD+2 via LD-3 to LD+1 of 4-2=2
cycles. We conclude that the LD+2 and LD+1 instructions should be at
least two cycles apart. Since there are no instructions to fill the gap, a gap
remains at cycle 2. The resulting schedule is depicted in Fig. 11 (c). It is
easy to verify that this schedule satisfies all constraints.

For a more extensive explanation of Facts we refer to [4]. Although we did
not demonstrate the constraint-analysis techniques in the context of the con-
flict model of the previous section (the DFG would not even fit on one page)
we hope that the reader understands that Facts treats all the resources in the
conflict model in a way similar to the LD+1, LD+2, and LD-3 instructions in
the example. Facts will find highly constrained software-pipelined schedules for
all processing elements in the RC-SIMD architecture, taking into account the
effects of the instruction delay-line, as well as the effects of communications that
cross neighborhood borders, as modelled in the previous section.

5 Evaluation

In Section 3 and 4, we explained the RC-SIMD architecture and its scheduler.
In this section, we evaluate RC-SIMD respect to performance and area.

5.1 Cycle count comparison

To compare the proposed architecture with an LC-SIMD architecture (like XE-
TAL and IMAP) and an FC-SIMD (like Imagine), we selected several frequently
used communication kernels from image processing applications (FFT, convolu-
tion, sub-sampling, and Haar filter) [3]. We use a modified version of the Facts
tools which includes the resource conflict model for multiplexors (We assumed
maximum 6 neighborhood communication in our template and the clock fre-
quency is the same in all architectures).

Table 1. Cycle-count improvement, comparing LC-SIMD, FC-SIMD and RC-SIMD.

Table 1 shows the results of implementing 4 kernels on different SIMD archi-
tectures (LC-SIMD, FC-SIMD and RC-SIMD architectures). The second column
of Table 1 represents the number of operations per pixel for each of these ker-
nels; columns 3 to 5 show the number of cycles per pixel when these kernels
are implemented on LC-SIMD, FC-SIMD, and RC-SIMD, respectively. The im-
plementation of these kernels on an LC-SIMD architecture (Fig. 1) leads to a
communication overhead, because of the limited access to the direct neighbors
only (6’th column in Table 1). This overhead decreases the performance in the
kernels. The proposed RC-SIMD architecture in Fig. 5 solves this problem by
providing access to remote neighbors. The last column of Table 1 shows that
RC-SIMD schedules have a better cycle-count than LC-SIMD schedules, with
an average improvement of 21%. From a cycle-count point of view, an FC-SIMD
has hardly any advantage over RC-SIMD, at least not for the used kernels.

We have also implemented the FFT kernel on RC-SIMD, which is not possible
to be implemented efficiently on an LC-SIMD like XETAL and IMAP (because
each PE may require access to other PEs at different distances at the same time,
e.g., one requires access to PE+2 while another one to PE+3). To compare RC-
SIMD with an FC-SIMD (like Imagine), we implemented a radix-2 FFT butterfly,
decimation in frequency [2], with 1024 points. The implementation shows that
RC-SIMD has less than 8% cycle ((28 − 26)/26) overhead in comparison to an
FC-SIMD.

Note that the required conflict model extensions add less than 5% to the
scheduling time.The schedule time is less than 2 minutes for each benchmarks
(on an Intel Pentium processor running at 1.70 GHz).

(a) (b) (c)

Fig. 12. (a) Example for dependency loop kernel, (b) schedule for the LC-SIMD and
(c) schedule for RC-SIMD with initiation interval 6.

5.2 Dependency kernels

Some SIMD image processing kernels require that, each PE gets the result of one
of its immediately preceding instructions from some distance PEs. For example,
in Fig. 12 (a), to execute instruction n5, each PE needs to load the result of n4
from the PE located 4 PEs to its right. Fig. 12(b) shows the schedule of this loop
kernel when it is implemented on an LC-SIMD. It needs 9 cycles (instead of 6
cycles) to start the next iteration (i.e., its initiation interval is equal to 9), each
PE requires to shift 3 times to access the result from its direct neighbor. In RC-
SIMD, PE0, for instance, needs to wait 4 cycles to load the result of instruction
n4 in PE4 (because of the delay line in the instruction bus, see Fig. 5). However,
our scheduler can solve this problem by finding a schedule (Fig. 12(c)) with an
initiation interval of 6 cycles (equal to the number of instructions). This gives the
same throughput as an FC-SIMD. The only disadvantage is that in RC-SIMD,
the latency of each iteration is 12 cycles. This is usually less important in image
processing kernels.

(a) (b) (c)
Fig. 13. The multiplexor area overhead for each PE in (a) LC-SIMD, (b) FC-SIMD,
(c) RC-SIMD.

5.3 Area estimation

In order to compare the area of the three considered SIMD architectures (LC-
SIMD, FC-SIMD, and RC-SIMD), we use the area model which is proposed in [5].
The area of an LC-SIMD (Fig. 13(a)) includes the area of PEs and multiplexors
for acquiring the data from direct neighbors (Eq. 1) (A and N represent area
and number).

ALC−SIMD = NPE ∗ APE + NPE ∗ Amux2 (1)

The area of an FC-SIMD (Fig. 13(b)) includes the area of PEs and the area
of a crossbar switch (Eq. 2)(growing with (NPE)2).

AFC−SIMD = NPE ∗ APE + NPE ∗ AmuxNpe (2)

The area of RC-SIMD includes the area of PEs, multiplexors for data commu-
nication between PEs, delay registers in the instruction path, and multiplexors
in the instruction path (Eq. 3) (Fig. 13(c)).

ARC−SIMD = NPE ∗ APE + 2 ∗ NPE ∗ Amux2+
(NPE − 1)(Adelay−register + Amux2)

(3)

The used parameters for the area model are described in Fig. 14(a) [15]. We
assume PEs are the same for all architectures. The first PE in RC-SIMD does
not need a delay register and multiplexor in the instruction bus.

Fig. 14(b) shows the area-overhead (Eq. 4) of an FC-SIMD and RC-SIMD in
comparison with an LC-SIMD (the horizontal axis shows the number of PEs in
each architecture).

overheadFC−SIMD = (AFC−SIMD − ALC−SIMD)/ALC−SIMD

overheadRC−SIMD = (ARC−SIMD − ALC−SIMD)/ALC−SIMD
(4)

When the number of PEs equals 1, Fig. 14 (b) shows that all architectures
have the same area (because communication between PEs is not needed). The
LC-SIMD and FC-SIMD cover a smaller area than RC-SIMD when the number
of PEs is less than 8 PEs because of the delay line and the multiplexors in the
instruction bus. When the number of PEs increases to more than 8, Fig. 14(b)
shows that RC-SIMD has at most 10% overhead compared with an LC-SIMD,
but the overhead of FC-SIMD increases to more than 100% when the number
of PEs gets larger than 64 (because the area of a crossbar switch grows with
(NPE)2).

(a) (b)

Fig. 14. (a) Parameters used in the area model (CMOS 0.18) (b) Area overhead (com-
pared to an LC-SIMD).

6 Conclusions

In this paper, we studied the communication bottleneck present in currently
available SIMD architectures. The problem comes from the limited access to

other PEs in the SIMD architecture. Although this bottleneck can be solved by
over-dimensioning the communication architecture, as in a fully connected SIMD
(FC-SIMD), it leads to an increase in the communication area, low interconnect
utilization, and scalability problems.

We introduced a novel architecture with segmented data communication
busses, and with a delay-line in the instruction distribution which enables to
time-interleave bus accesses by the processing elements. The area of this archi-
tecture is almost the same as the cheapest, locally connected SIMD (LC-SIMD),
while its performance is nearly the same as the most expensive FC-SIMD.

We showed that this new architecture poses some irregular resource con-
straints that available schedulers cannot directly cope with. However, a carefully
constructed resource conflict model enables available schedulers to generate valid
schedules for RC-SIMD. Furthermore, we demonstrated a reconfigurable version
of the architecture that allows to exploit the maximum neighborhood commu-
nication in an algorithm. Experiments on industrially relevant image processing
kernels show that for RC-SIMD our scheduler generates code requiring on aver-
age 21% fewer cycles than LC-SIMD architectures, while the area overhead of
our architecture (compared to an LC-SIMD) is at most 10%.

As part of future work we are interested to add (compiler controlled) delay
and energy models, enabling the comparison of RC-SIMD with other SIMD
architectures on these important aspects as well. Furthermore, for extremely
intensive and non-local communicating kernels we will consider to add multiple
segmented data communication busses.

Acknowledgment: The authors would like to thank Patrick Groeneveld for his
support in the area estimation part.

References

1. Anteneh Abbo and Richard Kleihorst. Smart Cameras: Architectural Challenges.
In Proceedings of Advanced Concepts for Intelligent Vision Systems (ACIVS),
pages 6–13, Gent, Belgium, September 2002.

2. E.Oran Brigham. The fast Fourier transform and its applications. Prentice Hall
International, 1988.

3. Wouter Caarls, Pieter Jonker, and Henk Corporaal. Benchmarks for SmartCam
Development. In Proceedings of Advanced Concepts for Intelligent Vision Systems
(ACIVS), pages 81–86, Gent, Belgium, September 2003.

4. Koen van Eijk, Bart Mesman, A. Alba Carlos Pinto, Qin Zhao, Marco Bekooij, Jef
van Meerbergen, and Jochen Jess. Constraint Analysis for Code Generation: Basic
Techniques and Applications in Facts. ACM Transactions on Design Automation
of Electronic Systems, 5(4):774–793, Octobor 2000.

5. Hamed Fatemi, Henk Corporaal, Twan Basten, Richard Kleihorst, and Pieter
Jonker. Designing Area and Performance Constrained SIMD/VLIW Image
Processing Architectures. In Proceedings of Advanced Concepts for Intelligent
Vision Systems (ACIVS), pages 689–696, Antwerp, Belgium, September 2005.
Springer-Verlag, Berlin, Germany, 2005.

6. J.R. Fischer and J.E. Dorband. Applications of the MasPar MP-1 at
NASA/Goddard. In Proceedings of COMPCON, pages 278–282, San Francisco,
CA, February 1991. IEEE Computer Society.

7. Yoshihiro Fujita, Sholin Kyo, Nobuyuki Yamashita, and Shin’ichiro Okazaki. A
10 GIPS SIMD Processor for PC-based Real-Time Vision Applications — Archi-
tecture, Algorithm Implementation and Language Support. In Proceedings of the
Computer Architectures for Machine Perception (CAMP), pages 22–32, Washing-
ton, DC, USA, October 1997. IEEE Computer Society.

8. Patrick Gelsinger. Microprocessors for the New Millennium: Challenges, Oppor-
tunities and New Frontiers. In Proceedings of International Solid-State Circuits
Conference (ISSCC), pages 22–25, San Francisco, CA, February 2001. IEEE Com-
puter Society.

9. H.P. Hofstee. Power Efficient Processor Architecture and The Cell Processor.
In Proceedings of 11th International Conference on High-Performance Computer
Architecture (HPCA), pages 258–262, San Francisco, CA, February 2005. IEEE
Computer Society.

10. R.M Michael Hord. The ILLIAC IV, the first supercomputer. Computer Science
Press, 1982.

11. Kai Hwang and Faye Briggs. Computer Architecture and Parallel Processing.
McGraw-Hill, USA, 1984.

12. Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, Peter Mattson,
Jinyung Namkoong, John D. Owens, Brian Towles, and Andrew Chang. Imagine:
Media Processing with Streams. IEEE Micro, 21(2):35–46, April 2001.

13. David J. Kuck. A Survey of Parallel Machine Organization and Programming.
ACM Comput. Surv, 9(1):29–59, 1977.

14. Silicon Hive. http://www.siliconhive.com.
15. T.H Szymanski, Honglin Wu, and A. Gourgy. Power complexity of multiplexer-

based optoelectronic crossbar switches. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions, 13:604–617, May 2005.

16. TriMedia Technologies. http://www.semiconductors.philips.com.
17. S. A. Zenios and R. A. Lasken. The connection machines CM-1 and CM-2: solving

nonlinear network problems. In Proceedings of the 2nd International Conference
on Supercomputing (ICS), pages 648–658, Saint Malo, France, 1988.

