

Sensing, Computing, Actuating

Sander Stuijk (s.stuijk@tue.nl)

SENSING TEMPERATURE, SELF-HEATING

(Chapter 2.1, 2.2, 5.11)

Engine coolant temperature sensor

3

https://www.youtube.com/watch?v=Q56k37FsRcA

TU/e

Applications

4

5 Applications

6

placement	excitation	physical effect	material	thermal sensor
contact	passive	thermal expansion	metal	bimetal
contact	active	resistive effect	metal	RTD
contact	active	resistive effect	semiconductor	silicon resistive
contact	active	resistive effect	polymer or ceramic	thermistor
contact	passive	thermoelectric effect	conductor	thermocouple
contact	active	PN junction	semiconductor	
non-contact	passive	pyroelectric effect	pyroelectric	pyroelectric
non-contact	active	ultrasound	piezoelectric	acoustic

• there are many other classification criteria: construction, linearity, reference point, ...

Temperature sensors

- temperature sensors are deceptively simple
 - resistive sensor a conductor connected to a voltage source
 - thermocouple any two dissimilar materials welded together at one end and connected to a micro-voltmeter
- temperature sensors can be used to measure other quantities, e.g.,

S	Quantity					
е	•	Acceleration / Vibration	Flow rate / Point velocity	Force		
n s	Resistive	Mass-spring + strain gage	Thermistor	Strain gage		
o r	Self-generating	Mass-spring + piezoelectric sensor	Thermal transport + thermocouple	Piezoelectric sensor		

complex sensors for radiation, pressure, position, level, and chemical reactions can be constructed on the basis
of temperature or temperature-difference sensors

8

placement	excitation	physical effect	material	thermal sensor
contact	passive	thermal expansion	metal	bimetal
contact	active	resistive effect	metal	RTD
contact	active	resistive effect	semiconductor	silicon resistive
contact	active	resistive effect	polymer or ceramic	thermistor
contact	passive	thermoelectric effect	conductor	thermocouple
contact	active	PN junction	semiconductor	
non-contact	passive	pyroelectric effect	pyroelectric	pyroelectric
non-contact	active	ultrasound	-	acoustic

- resistance of a material is defined as $R = \frac{V}{i}$
- resistance depends on geometrical factors $R = \rho \frac{l}{a}$
 - Iength of wire (I)
 - cross-sectional area (a)
- resistance depends on temperature $R = \rho \frac{l}{a} = \frac{m}{ne^2\tau} \frac{l}{a}$
 - number of free electrons (n)
 - mean time between collisions (τ)
- changing dimensions affect resistance (piezoresistive effect)
- changing temperature affect resistance (thermoresistive effect)
- resistive sensor can be used to sense changes in these quantities
 - only one quantity should be measured
 - other quantity should be kept constant or corrected for

10 Thermoresistive effect

specific resistivity of a material

$$\rho = \frac{m}{ne^2\tau}$$

- temperature dependency through
 - number of free electrons (n) in semiconductors
 - NTC behavior: $\uparrow T \rightarrow \uparrow n \rightarrow \rho \downarrow$
 - mean time between collisions (τ) in conductors
 - PTC behavior: $\uparrow T \rightarrow \downarrow \tau \rightarrow \rho \uparrow$

11 Resistance temperature detectors (RTDs)

- RTD is a temperature sensor build from metal (conductor)
 - specific resistivity of metal depends on time between collisions
 - positive temperature coefficient (PTC)
 - increasing temperature leads to increasing resistivity
- relation between temperature and resistance
 - $R_T = R_0 [1 + \alpha_1 (T T_0) + \alpha_2 (T T_0)^2 + \ldots + \alpha_n (T T_0)^n]$
 - T₀ reference temperature
 - R₀ resistance at T₀
- coefficients can be found using calibration
- example PT100 RTD
 - $\alpha_1 \approx 3.89 \cdot 10^{-3}/\text{K}, \alpha_2 \approx -5.83 \cdot 10^{-7}/\text{K}^2, \alpha_3 \approx 1.92 \cdot 10^{-7}/\text{K}^3$
 - almost linear relation between temperature and resistance

Temperature coefficient of resistance

assume linear temperature/resistance relation for an RTD sensor

 $R_T = R_0 [1 + \alpha (T - T_0)]$

12

α_T is called the temperature coefficient of resistance (TCR)

$$\alpha_T = \frac{R_T - R_0}{(T - T_0)R_T}$$

- TCR indicates relative change in resistance per unit temperature (between temperature T and a reference temperature T₀)
- TCR is often called relative sensitivity
- PTC devices: TCR decreases when temperature increase (why?)
 - fractional increase in resistance decreases with increasing temperature
 - Imits usability of PTC devices at higher temperatures

Temperature coefficient of resistance

example – PT100 sensor

13

- $R_0 = 100\Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C, $R_T = R_0[1 + \alpha_0(T T_0)]$
- what is the sensitivity of this sensor?

what are TCR at 25°C and 50°C? (use 0°C as reference)

- A) 0.389 Ω/K, 0.00389 /K, 0.00389 /K
- B) 0.389 Ω/K, 0.00355 /K, 0.00326 /K
- C) 0.389 Ω/K, 0.00326 /K, 0.00355 /K
- D) 0.355 Ω/K, 0.00355 /K, 0.00326 /K

Temperature coefficient of resistance

example – PT100 sensor

- $R_0 = 100\Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C, $R_T = R_0[1 + \alpha_0(T T_0)]$
- what is the sensitivity of this sensor?
- sensitivity is the slope of the resistance-temperature curve
- resistance-temperature curve is straight line
- sensitivity

14

- what are TCR at 25°C and 50°C? (use 0°C as reference)
 - TCR (at 25°C)

$$S = \alpha_0 R_0 = \alpha_{25} R_{25} = \alpha_{50} R_{50} = 0.00389 (\Omega/\Omega)/K \cdot 100\Omega = 0.389\Omega/K$$

$$\Rightarrow \alpha_{25} = \frac{\alpha_0 R_0}{R_{25}} = \frac{\alpha_0 R_0}{R_0 [1 + \alpha_0 (25^0 C - 0^0 C)]} = \frac{\alpha_0}{1 + \alpha_0 (25^0 C)}$$
$$\alpha_0 R_0 = \alpha_{25} R_{25} = \frac{0.00389(\Omega/\Omega)/K}{1 + 0.00389/K(25^0 C)} = 0.00355(\Omega/\Omega)/K$$

- TCR (at 50°C) $\alpha_{50} = \frac{\alpha_0}{1 + \alpha_0(50^oC)} = 0.00326(\Omega/\Omega)/K$
- TCR decreases for increasing temperature

¹⁵ Self-heating in RTDs

- current must be passed through sensor to measure resistance
- power will be dissipated in the RTD creating heat (self-heating)

- effect of self-heating reduced by thermal dissipation to environment
 - heat dissipation factor δ (W/K) depends on
 - surrounding fluid
 - velocity of the fluid

• temperature error given by
$$\Delta T = \frac{P_D}{\delta} = \frac{I^2 R}{\delta}$$

self-heating error can be limited by dimensioning the current I

¹⁶ Self-heating in RTDs

example – PT100 sensor R(T)=R₀[1+ α_0 (T-T₀)]

- $R_0 = 100\Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C
- $\delta = 6 \text{mW/K}$ (in air), $\delta = 100 \text{mW/K}$ (in still water)
- sensor used in range [0°C, +100°C]

- what is the maximal current through the sensor to keep the self-heating error below 0.1°C when emerged in air?
 - provide a numerical answer

example – PT100 sensor R(T)=R₀[1+ α_0 (T-T₀)]

- $R_0 = 100\Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C
- $\delta = 6 \text{mW/K}$ (in air), $\delta = 100 \text{mW/K}$ (in still water)
- sensor used in range [0°C, +100°C]

what is the maximal current through the sensor to keep the self-heating error below 0.1°C when emerged in air?

• temperature PT100 above environment
$$\Delta T = \frac{P_D}{\delta} = \frac{I^2 R}{\delta}$$

- self-heating error maximal when resistance is maximal
 - maximal self-heating at +100°C
 - resistance $R(100^{\circ}C) = 100\Omega[1 + 0.00389/^{\circ}C \cdot 100^{\circ}C] = 139 \Omega$

example – PT100 sensor R(T)=R₀[1+ α_0 (T-T₀)]

- $R_0 = 100\Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C
- $\delta = 6 \text{mW/K}$ (in air), $\delta = 100 \text{mW/K}$ (in still water)
- sensor used in range [0°C, +100°C]

what is the maximal current through the sensor to keep the self-heating error below 0.1°C when emerged in air?

• temperature PT100 above environment
$$\Delta T = \frac{P_D}{\delta} = \frac{I^2 R}{\delta}$$

• relation between current and temperature $I = \sqrt{\frac{\Delta T \cdot \delta}{R}}$

• max current in air
$$I = \sqrt{\frac{(0.1^{\circ}C) \cdot (0.006W/K)}{139\Omega}} = 2.1mA$$

• max current in water
$$I = \sqrt{\frac{(0.1^{\circ}C) \cdot (0.1W/K)}{139\Omega}} = 8.5mA$$

19

example – PT100 sensor R(T)=R₀[1+ α_0 (T-T₀)]

- $R_0 = 100 \Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C
- sensor used in range [0°C, +100°C]
- $\delta = 6 \text{ mW/K}$ (in air), $V_r = 5 \text{ V}$, $R_2 = 1 \text{ k}\Omega$
- what is the maximal self-heating error (resolution) of this sensor?
 - temperature PT100 above environment $\Delta T = \frac{P_D}{\delta} = \frac{I^2 R_1}{\delta}$
 - current I depends on resistance R₁ and temperature T

$$I = \frac{V_r}{R_1 + R_2} = \frac{V_r}{R_0 (1 + \alpha_0 (T - T_0)) + R_2}$$

- maximal current when T = 0°C, but minimal resistance
- temperature error depends on power dissipation
 - maximal power dissipation when T = 100°C
 - maximal self-heating error occurs when T = 100°C

20

example – PT100 sensor R(T)=R₀[1+ α_0 (T-T₀)]

- $R_0 = 100 \Omega$, $\alpha_0 = 0.00389 (\Omega/\Omega)/K$ at 0°C
- sensor used in range [0°C, +100°C]
- $\delta = 6 \text{ mW/K}$ (in air), $V_r = 5 \text{ V}$, $R_2 = 1 \text{ k}\Omega$
- what is the maximal self-heating error (resolution) of this sensor?
 - temperature PT100 above environment $\Delta T = \frac{P_D}{\delta} = \frac{I^2 R_1}{\delta}$ maximal self-heating error occurs when T = 100°C

U/e

21 Lead-wire resistance

- lead wires are not perfect conductors (lead-wire resistance)
- resistance of the wires will affect measured voltage

temperature error due to lead-wire resistance when interface circuit provides constant current i

$$R = 2R_L + PT100 \Rightarrow \Delta R = 2R_L$$
$$\Delta T = \frac{\Delta R}{S} \Rightarrow \Delta T = \frac{2R_L}{S}$$

- example PT100
 - PT100 has resistance of 107.8Ω at 20° C and S = $0.389\Omega/K$
 - assume $R_L = 1\Omega$
 - $\Delta T = +5.1^{\circ}C \rightarrow$ interface circuit measures temperature of 25°C
 - measured temperature 25% above actual temperature

22 Lead-wire resistance

- lead wires are not perfect conductors (lead-wire resistance)
- resistance of the wires will affect measured voltage

- lead wire resistance can be cancelled with 4-wire sensing method
 - interface circuit has high impedance

 $V_{out} = V_{PT100}$

- 4-wire sensing method requires stable current source
- 6-wire sensing method can be used with stable voltage source

23 Summary - Resistive temperature detectors (RTDs)

- temperature-resistance relation $R_T = R_0 [1 + \alpha (T T_0)]$
- α_T is called the temperature coefficient of resistance (TCR)

$$\alpha_T = \frac{dR_T/dT}{R_T} = \frac{R_T - R_0}{(T - T_0)R_T}$$

- TCR indicates relative change in resistance per unit temperature (between two reference temperatures)
- TCR is not equal to the sensitivity
- several error sources influencing accuracy
 - lead-wire resistance (R_L)
 - self-heating (R_T)
 - non-linearity (R_T)
 - loading effect (R_m)

24 Interface circuits

- interface circuits can be used to
 - increase sensor sensitivity
 - cancel lead-wire resistance
 - linearization of the sensor output
 - Iimit self-heating
 - compensate for error sources (e.g. strain or temperature)
 - set output voltage at reference point
 - amplify sensor output for use with AD-converter
 - ...

/e

RESISTIVE SENSORS

(Ch 2.8)

26 Resistive sensors

- resistance of resistive sensor $R = R_0 f(x)$
 - f(x) fractional change in resistance (with f(0) = 1)
- resistance of linear resistive sensor $R = R_0(1 + x)$
 - range of x depends on type of sensor
 - [-1, 0] linear potentiometer
 - [1, 10] RTDs
 - [0.00001, 0.001] strain gauges
 - [1, 100] NTC thermistors
 - [1, 10000] switching PTC thermistors
- requirements on signal conditioners for resistive sensors
 - electric voltage or current must be applied
 - supply and output voltage/current are limited by self-heating

- sensor driven by current source
- deflection measurement with current source
 - feedback loop enforces constant current

$$I_r = \frac{V_r}{R_r}$$

output of a linear sensor

$$v_o = I_r R = \frac{V_r}{R_r} R_0 (1+x)$$

- choose $R_0 = R_r$ then
- output consists of offset and (small) fluctuation around offset

 $v_o = V_r(1+x) = V_r + xV_r$

J/e

example – circuit for temperature measurement [20°C,100°C]

- measure temperature with 0.1°C resolution (self-heating < 0.1°C)</p>
- PT 100 sensor (R_0 =100 Ω and α =0.00389 $\Omega/\Omega/K$ at 0°C)
- dissipation factor δ = 40mW/K in 0.4m/s water
- reference voltage V_r = 5V

28

- what resistance should R_r have to get a sensitivity of 1mV/°C?
 - provide a numerical answer

example – circuit for temperature measurement [20°C,100°C]

- measure temperature with 0.1°C resolution (self-heating < 0.1°C)
- PT 100 sensor (R_0 =100 Ω and α =0.00389 $\Omega/\Omega/K$ at 0°C)
- dissipation factor δ = 40mW/K in 0.4m/s water
- reference voltage V_r = 5V

29

- what resistance should R_r have to get a sensitivity of 1mV/°C?
- temperature resolution limited by self-heating

$$\frac{l_r^2 R}{\delta} = \left(\frac{V_r}{R_r}\right)^2 \frac{R}{\delta} = \Delta T < 0.1^{\circ}C$$

maximal dissipation at 100°C, condition is thus

$$\left. \begin{array}{l} R_r > V_r \sqrt{\frac{R_{100}}{\delta \cdot (0.1^{\circ}C)}} \\ R_{100} = R_0 \left(1 + \alpha (T - T_0) \right) \\ = 100\Omega (1 + 0.00389 \cdot 100^{\circ}C) \\ = 138.9\Omega \end{array} \right\} \Rightarrow R_r > (5V) \sqrt{\frac{138.9\Omega}{(40mW/K) \cdot (0.1^{\circ}C)}} = 932\Omega$$

example – circuit for temperature measurement [20°C,100°C]

- measure temperature with 0.1°C resolution (self-heating < 0.1°C)
- PT 100 sensor (R_0 =100 Ω and α =0.00389 $\Omega/\Omega/K$ at 0°C)
- dissipation factor δ = 40mW/K in 0.4m/s water
- reference voltage V_r = 5V

30

- what resistance should R_r have to get a sensitivity of 1mV/°C?
- output voltage of the sensor

$$v_o = \frac{V_r}{R_r} R_0 (1+x) = \frac{V_r}{R_r} R_0 (1+\alpha T)$$

to get sensitivity of 1 mV/°C, R_r should be

$$S = \frac{dv_o}{dT} = \frac{V_r}{R_r} R_0 \alpha \implies R_r = \frac{V_r R_0 \alpha}{S} = \frac{(5V)(100\Omega)(0.00389/K)}{1mV/K} = 1945\Omega$$

sensor output has also an offset (output not 0V at 20°C)

$$R_{20} = 107.8\Omega \Rightarrow V_{offset} = \frac{V_r}{R_r} R_{20} \approx 277 mV$$

31 Interface circuits

- resistance of linear resistive sensor: $R(x) = R_0(1+x)$
 - range of x depends on type of sensor
- requirements on signal conditioners for resistive sensors
 - electric voltage or current must be applied
 - supply and output voltage/current are limited by self-heating

- voltage excitation
 - when does maximal self-heating error occur?
 - when is sensitivity maximal?
 - when is non-linearity error minimized?

32 Voltage divider – self-heating error

- sensor driven by voltage source
 - sensor: R
 - Ioad resistance: R_r
- when does maximal self-heating error occur?
- power consumption by sensor

$$P = \left(\frac{V_r}{R + R_r}\right)^2 R$$

maximal power consumption occurs when

$$\frac{dP}{dR} = 2\frac{V_r}{R+R_r}\frac{-V_r}{(R+R_r)^2}R + \left(\frac{V_r}{R+R_r}\right)^2 = \left(\frac{V_r}{R+R_r}\right)^2\frac{R_r - \underline{R}}{R+R_r} 0 \quad \Rightarrow R_r = R$$

- self-heating error is maximal when R_r = R
- power consumption is then equal to

$$P = \left(\frac{V_r}{R_r + R_r}\right)^2 R_r = \frac{V_r^2}{4R_r}$$

Voltage divider – self-heating error

- example dimension voltage divider for temperature measurement
- measure temperature from 0°C to 100°C
- PT 100 sensor (R_0 =100 Ω and α =0.00389 $\Omega/\Omega/K$ at 0°C)
- maximal power dissipation in sensor is 1mW
- voltage source Vr = 5V

33

- what resistance Rr must be used for this voltage divider?
 - provide a numerical answer

Voltage divider – self-heating error

- example dimension voltage divider for temperature measurement
- measure temperature from 0°C to 100°C
- PT 100 sensor (R_0 =100 Ω and α =0.00389 $\Omega/\Omega/K$ at 0°C)
- maximal power dissipation in sensor is 1mW
- voltage source Vr = 5V
- what resistance Rr must be used for this voltage divider?
- power dissipation in sensor

$$\left(\frac{V_r}{R+R_r}\right)^2 R < 1mW$$

maximal dissipation when R=Rr

$$\left(\frac{V_r}{R_r + R_r}\right)^2 R_r < 1mW \implies R_r > \frac{V_r^2}{4 \cdot 0.001W} = \frac{(5V)^2}{4 \cdot 0.001W} = 6.25k\Omega$$

- sensor range is from 100Ω to 139Ω
- always R < Rr, thus power dissipation always below limit

Voltage divider – linearity

- measure fractional change in resistance x
 - sensor: $R = R_0(1+x)$

35

- Ioad resistance: R_r = R₀k
- output voltage of the circuit

$$v_o = \frac{R}{R_r + R} V_r = \frac{R_0(1+x)}{R_0 k + R_0(1+x)} V_r = \frac{1+x}{k+1+x} V_r$$

response becomes linear when R_r >> R (i.e. k >> 1+x)

U/e

increasing k is good for linearity, but what about sensitivity?

36

TU/e

Voltage divider – sensitivity

- measure fractional change in resistance x
 - sensor: $R = R_0(1+x)$
 - Ioad resistance: R_r = R₀k
- sensitivity

37

$$S = \frac{dv_o}{dx} = \frac{d}{dx} \left(\frac{1+x}{k+1+x} V_r \right) = \frac{(k+1+x) - (1+x)}{(k+1+x)^2} V_r = \frac{k}{(k+1+x)^2} V_r$$

maximal sensitivity

$$\frac{dS}{dk} = 0 \quad \Rightarrow \frac{d}{dk} \left(\frac{k}{(k+1+x)^2} V_r \right) = 0$$

$$\Rightarrow \frac{(k+1+x)^2 - 2k(k+1+x)}{(k+1+x)^4} = \frac{x+1-k}{(k+1+x)^3} = 0 \quad \Rightarrow k = x+1$$

- maximal sensitivity reached when R = R_r
- same situation as when self-heating error is maximal
- maximal transfer of power (at R = R_r) leads to
 - maximal sensitivity and maximal self-heating

use quotient rule $\frac{d}{dx}\frac{j(x)}{h(x)} = \frac{j'(x)h(x) - j(x)h'(x)}{(h(x))^2}$

TU/e

TU/e

- for many sensors x < 1</p>
 - sensitivity largest for k = 1
 - sensitivity may be considered constant if maximal value of x << 1</p>

38_

³⁹ Voltage divider – output voltage

- maximal sensitivity when k = 1
- output voltage

TU/e

offset voltage present in output