

Sensing, Computing, Actuating

Sander Stuijk (s.stuijk@tue.nl)

STEPPER MOTOR

(Chapter 8.1, 8.2, 8.7, 8.8)

3 Stepper motor

Control system

4

5 Stepper motor

- converts digital electrical signal to mechanical signal
 - fixed angular step per pulse
 - typical values: 2°, 2.5°, 5°, 7.5°, 15°
 - available in several horse power ratings
 - can track input signal up-to 1200 pulses/sec.

TU/e

Principle of operation

3 types of stepper motors

6

- variable-reluctance (VR) with soft-iron core (teeth on rotor)
- permanent-magnet (PM) with magnetized rotors
- hybrid (HB) combination of VR and PM

Permanent magnet step motor

- two-phase two-pole permanent magnet step motor
 - two phases \rightarrow two windings

7

• two-poles \rightarrow rotor has one permanent magnet

TU/e

dc voltage applied to both phases

8

- direction of current through windings A1 and A2 controlled with switches Q1, Q2, Q3, Q4
- direction of current through windings B1 and B2 controlled with switches Q5, Q6, Q7, Q8

	step 1	step 2	step 3	step 4
Q ₁ -Q ₂	ON (S ₁ =1)	ON (S ₁ =1)		
Q ₃ -Q ₄				
Q ₅ -Q ₆				
Q ₇ -Q ₈		ON (S ₂ =1)		

	step 1	step 2	step 3	step 4
Q ₁ -Q ₂	ON (S ₁ =1)	ON (S ₁ =1)		
Q ₃ -Q ₄				ON (S ₁ =-1)
Q ₅ -Q ₆				
Q ₇ -Q ₈		ON (S ₂ =1)	ON (S ₂ =1)	ON (S ₂ =1)

	step 1	step 2	step 3	step 4
Q ₁ -Q ₂	ON (S ₁ =1)	ON (S ₁ =1)		
Q ₃ -Q ₄				ON (S ₁ =-1)
Q ₅ -Q ₆				
Q ₇ -Q ₈		ON (S ₂ =1)	ON (S ₂ =1)	ON (S ₂ =1)

- switching step angle 45°
- 8 steps needed for complete revolution
- each alternating step two windings are energized (half stepping)
- direction of rotation reversed by reversing step switching sequence

Permanent magnet step motor

- example: two-phase six-pole permanent magnet motor
 - stator pitch $\Theta_s = 360^\circ / 4 = 90^\circ$
 - rotor pitch $\Theta_r = 360^\circ / 6 = 60^\circ$
 - full step angle $\Theta_{fs} = \Theta_s \Theta_r = 30^\circ$
 - half step angle $\Theta_{hs} = (\Theta_s \Theta_r) / 2 = 15^{\circ}$

- permanent magnet provides holding torque
 - rotor locks itself when coils are not energized
- direction of current needs to be reversed for each winding
 - requires transistor circuit
 - two solutions to this problem
 - use two windings per pole (one for each direction)
 - use variable magnet step motor

Variable reluctance step motor

- cylindrical soft-iron core with projected teeth
- operation

15

- energy specific stator coil (phase)
- rotor aligns to minimum reluctance path
- example: three-phase, 12 stator teeth, 8 rotor teeth VR step motor
 - stator pitch Θ_s = 360° / 12 = 30°
 - rotor pitch $\Theta_r = 360^\circ / 8 = 45^\circ$
 - full step angle Θ_{fs} = 15°
 - half step angle $\Theta_{hs} = 7.5^{\circ}$
 - half-step counter clock-wise step sequence 1-(1,2)-2-(2,3)-3-(3,1)-1

¹⁶ Driving circuit

TU/e

17 Driving circuit

- switching transistor
 - positive voltage on base energizes coil
 - emf is induced when current through coil stops
 - diode provides return path for current
- current pulse
 - presence of inductor causes delay in actual response
 - sufficient torque provided after 3τ (time constant)
 - pulse width should be 6-8τ

U/e

18

open-loop control of step motor

- translator distributes position pulse train to phases
- direction of rotation reversed with direction pulses
- missed pulse may cause erratic behavior of rotor

Control of a step motor

19

TU/e

closed-loop feedback control of step motor

- sensor needed to measure rotation
- incremental optical encoder often used for this purpose

DIGITAL TRANSDUCERS

(Chapter 5)

- optical sensors are widely used for position and displacement sensing
- advantages
 - no loading effects
 - relative long operating distances
 - insensitive to magnetic fields and electrostatic interference
- optical sensor consists of
 - light source
 - photo detector
 - Iight guidance device

- grating sensor is an optical displacement transducer
- two overlapping gratings serve as a light-intensity modulator
- operation
 - incoming light beam strikes first grating
 - grating passes 50% of light towards second, moving grating
 - depending on the alignment between the grating a fraction of the light can pass through this second grating
 - Intensity of passed light is sensed with photo-detector

- full-scale displacement is equal to size of an clear (opaque) sector
- gives trade-off between sensitivity and dynamic range
 - Iarge sensitivity requires small opaque sector (pitch)
 - Iarge dynamic range (displacement) requires large pitch
- grating principle is used in rotating and linear encoders
- two types of encoders are distinguished
 - incremental position encoders (left)
 - absolute position encoders (right)

- incremental encoders produce a pitch when rotated for one pitch
- absolute encoders produce a binary value encoding position
- incremental encoders can use one or two optical channels
 - one channel allows sensing of movement
 - two channels allows sensing of movement and direction
 - use time difference between detectors a and b to determine direction (CW clock-wise or CCW counterclock-wise)

26 Hall effect sensor

- effect discovered in 1879 by Edward Hall
- effect exists in all conducting materials
- used extensively in sensing position, displacement, and magnetic fields
- effect based on interaction between
 - moving electric carriers (i.e., electrons in metals or holes in semiconductors)
 - external magnetic field
- electron moving through magnetic field is subject to sideways Lorentz force $\mathbf{F} = q_{V} \times \mathbf{B}$
 - q electronic charge (1.6x10-19C)
 - B magnetic field
 - v speed of an electron (v = µEL)
 - μ carrier mobility
 - EL longitudinal electrical field

27 Hall effect sensor

- Lorentz force causes charge carriers to accumulate on one side
 - electrons in conductors to right
 - holes in semiconductor to left
- force results in a transversal electrical field
- electrical field balances force exerted by magnetic field
- transverse Hall potential

$$V_H = \frac{1}{Ncq} \frac{iB}{d} \sin a$$

- i primary current
- N free electrons per unit volume
- c speed of light
- d thickness of the conductive strip
- α angle between magnetic field and strip

transverse Hall potential

$$V_H = \frac{1}{Ncq} \frac{iB}{d} \sin \alpha$$

- factor 1/Ncq is material dependent and is called Hall coefficient
- polarity of V_H depends on direction of current and magnetic field
- magnitude of V_H depends on magnetic field strength (linear) and angle (non-linear)

how to use device as sensor?

- move magnetic object to/from sensor device (change B)
- rotate magnetic object at fixed distance (change α)

²⁹ Hall effect sensor

- sensor packaged in four terminal housing
 - two control terminals
 - two output terminals
 - cross indicates direction of magnetic field
 - field moves away from viewer
- equivalent model for sensor
 - two control resistances R_i
 - two output resistances R_o
 - Hall effect voltage V_H

characteristics of a semiconductor Hall effect sensor

Control current	3 mA	
Control resistance, Ri	2.2 kΩ	
Control resistance versus temperature	+0.8%/°C	
Differential output resistance, R ₀	4.4 k Ω	
Output offset voltage	5.0 mV (at B = 0 G)	
Sensitivity	60 µV/G	
Sensitivity versus temperature	+0.1%/°C	
Overall sensitivity	20 V/ΩkG	
Maximum magnetic flux density, B	Unlimited	

- Hall coefficient (sensitivity) is small (60µV/Gauss)
 - most sensed fields are smaller then 1x10⁴G
 - Hall voltage can be as small as a few μV
 - Hall voltage must often be amplified before processing
- sensitivity and resistance are temperature dependent
 - same polarity for both effects in semiconductor
 - different polarities in metals (allows compensation)

Hall effect sensor 31

- two types of sensors
 - linear sensor
 - threshold sensor
- linear sensor
 - basic hall effect sensor
 - voltage regulator to create constant control current
 - amplifier to enlarge Hall voltage (why an offset voltage?)

-200

- threshold sensor
 - Inear sensor
 - Schmitt trigger with build-in hysteresis

TU/e

