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STEPPER MOTOR
(Chapter 8.1, 8.2, 8.7, 8.8)
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5 Stepper motor

▪ converts digital electrical signal to mechanical signal

▪ fixed angular step per pulse

▪ typical values: 2°, 2.5°, 5°, 7.5°, 15°

▪ available in several horse power ratings

▪ can track input signal up-to 1200 pulses/sec.



6 Principle of operation

▪ 3 types of stepper motors

▪ variable-reluctance (VR) with soft-iron core (teeth on rotor)

▪ permanent-magnet (PM) with magnetized rotors

▪ hybrid (HB) combination of VR and PM

stator

rotor



7 Permanent magnet step motor

▪ two-phase two-pole permanent magnet step motor

▪ two phases → two windings

▪ two-poles → rotor has one permanent magnet

N

S

B1 B2

A1

A2

permanent magnet 
core

coils

motor case

N

N N

S

A1

A2

B1 B2

phase 1

phase 2

direction of current 
determines poles



8 Permanent magnet step motor

▪ dc voltage applied to both phases

▪ direction of current through windings A1 and A2 controlled with switches Q1, Q2, Q3, Q4

▪ direction of current through windings B1 and B2 controlled with switches Q5, Q6, Q7, Q8
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9 Permanent magnet step motor
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11 Permanent magnet step motor

step 1 step 2 step 3 step 4
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12 Permanent magnet step motor

step 1 step 2 step 3 step 4
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13 Permanent magnet step motor

step 1 step 2 step 3 step 4

Q1-Q2 ON (S1=1) ON (S1=1)

Q3-Q4 ON (S1=-1)

Q5-Q6

Q7-Q8 ON (S2=1) ON (S2=1) ON (S2=1)

▪ switching step angle 45°

▪ 8 steps needed for complete revolution

▪ each alternating step two windings are energized (half stepping)

▪ direction of rotation reversed by reversing step switching sequence 



14 Permanent magnet step motor

▪ example: two-phase six-pole permanent magnet motor

▪ stator pitch Θs = 360° / 4 = 90°

▪ rotor pitch Θr = 360° / 6 = 60°

▪ full step angle Θfs = Θs  - Θr = 30°

▪ half step angle Θhs = (Θs  - Θr) / 2= 15°

▪ permanent magnet provides holding torque

▪ rotor locks itself when coils are not energized

▪ direction of current needs to be reversed for each winding

▪ requires transistor circuit

▪ two solutions to this problem

▪use two windings per pole (one for each direction)

▪use variable magnet step motor



15 Variable reluctance step motor

▪ cylindrical soft-iron core with projected teeth

▪ operation

▪ energy specific stator coil (phase)

▪ rotor aligns to minimum reluctance path

▪ example: three-phase, 12 stator teeth, 8 rotor teeth VR step motor

▪ stator pitch Θs = 360° / 12 = 30°

▪ rotor pitch Θr = 360° / 8 = 45°

▪ full step angle Θfs = 15°

▪ half step angle Θhs = 7.5°

▪ half-step counter clock-wise 

step sequence

1-(1,2)-2-(2,3)-3-(3,1)-1



16 Driving circuit

▪ switching transistor

▪ positive voltage on base energizes coil

▪ electromotive force is induced when current through coil stops

▪ diode provides return path for current
coil

+

-

pulse

V

A1 A2

Q1

Q2Q3

Q4

V

B1 B2

Q5

Q6Q7

Q8



17

3τ

95%

Driving circuit

▪ switching transistor

▪ positive voltage on base energizes coil

▪ emf is induced when current through coil stops

▪ diode provides return path for current

▪ current pulse

▪ presence of inductor causes delay in actual response

▪ sufficient torque provided after 3τ (time constant)

▪ pulse width should be 6-8τ
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18 Control of step motor

▪ open-loop control of step motor

▪ translator distributes position pulse train to phases

▪ direction of rotation reversed with direction pulses

▪ missed pulse may cause erratic behavior of rotor
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19 Control of a step motor

▪ closed-loop feedback control of step motor

▪ sensor needed to measure rotation

▪ incremental optical encoder often used for this purpose
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DIGITAL TRANSDUCERS
(Chapter 5)



21 Optical sensors

▪ optical sensors are widely used for position and displacement sensing

▪ advantages

▪ no loading effects

▪ relative long operating distances

▪ insensitive to magnetic fields and electrostatic interference

▪ optical sensor consists of 

▪ light source

▪ photo detector

▪ light guidance device



22 Optical sensors

▪ grating sensor is an optical displacement transducer

▪ two overlapping gratings serve as a light-intensity modulator

▪ operation

▪ incoming light beam strikes first grating

▪ grating passes 50% of light towards second, moving grating

▪ depending on the alignment between the grating a fraction of the light can pass through this second grating

▪ intensity of passed light is sensed with photo-detector



23 Optical sensors

▪ full-scale displacement is equal to size of an clear (opaque) sector

▪ gives trade-off between sensitivity and dynamic range

▪ large sensitivity requires small opaque sector (pitch)

▪ large dynamic range (displacement) requires large pitch

▪ grating principle is used in rotating and linear encoders

▪ two types of encoders are distinguished

▪ incremental position encoders (left)

▪ absolute position encoders (right)



24 Optical sensors

▪ incremental encoders produce a pitch when rotated for one pitch

▪ absolute encoders produce a binary value encoding position

▪ incremental encoders can use one or two optical channels

▪ one channel allows sensing of movement

▪ two channels allows sensing of movement and direction

▪use time difference between detectors a and b to determine direction (CW – clock-wise or CCW – counter-
clock-wise)



25 Hall effect sensor

ignition and fuel 
injection timing
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26 Hall effect sensor

▪ effect discovered in 1879 by Edward Hall

▪ effect exists in all conducting materials

▪ used extensively in sensing position, displacement, and magnetic fields

▪ effect based on interaction between

▪ moving electric carriers (i.e., electrons in metals or holes in semiconductors)

▪ external magnetic field

▪ electron moving through magnetic field is subject to sideways Lorentz force

▪ q – electronic charge (1.6x10-19C)

▪ B – magnetic field

▪ v – speed of an electron (v = μEL)

▪ μ – carrier mobility

▪ EL – longitudinal electrical field

𝐅 = 𝑞v × 𝐁



27 Hall effect sensor

▪ Lorentz force causes charge carriers to accumulate on one side

▪ electrons in conductors to right

▪ holes in semiconductor to left

▪ force results in a transversal electrical field 

▪ electrical field balances force exerted by magnetic field

▪ transverse Hall potential

▪ i – primary current

▪ N – free electrons per unit volume

▪ c – speed of light

▪ d – thickness of the conductive strip

▪ α – angle between magnetic field and strip

𝑉𝐻 =
1

𝑁𝑐𝑞

𝑖𝐵

𝑑
sin 𝛼

α



28 Hall effect sensor

▪ transverse Hall potential

▪ factor 1/Ncq is material dependent and is called Hall coefficient

▪ polarity of VH depends on direction of current and magnetic field

▪ magnitude of VH depends on magnetic field strength (linear) and angle (non-linear)

▪ how to use device as sensor?

▪ move magnetic object to/from sensor device (change B)

▪ rotate magnetic object at fixed distance (change α)

𝑉𝐻 =
1

𝑁𝑐𝑞

𝑖𝐵

𝑑
sin 𝛼



29 Hall effect sensor

▪ sensor packaged in four terminal housing

▪ two control terminals

▪ two output terminals

▪ cross indicates direction of magnetic field

▪ field moves away from viewer

▪ equivalent model for sensor

▪ two control resistances Ri

▪ two output resistances Ro

▪ Hall effect voltage VH



30 Hall effect sensor

▪ characteristics of a semiconductor Hall effect sensor

▪ Hall coefficient (sensitivity) is small (60μV/Gauss)

▪ most sensed fields are smaller then 1x104G

▪ Hall voltage can be as small as a few μV

▪ Hall voltage must often be amplified before processing

▪ sensitivity and resistance are temperature dependent

▪ same polarity for both effects in semiconductor

▪ different polarities in metals (allows compensation)



31 Hall effect sensor

▪ two types of sensors

▪ linear sensor

▪ threshold sensor

▪ linear sensor

▪ basic hall effect sensor

▪ voltage regulator to create constant control current

▪ amplifier to enlarge Hall voltage (why an offset voltage?)

▪ threshold sensor

▪ linear sensor

▪ Schmitt trigger with build-in hysteresis



32 Hall effect sensor

threshold sensor

linear (rotation) sensor


