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ANALOG-DIGITAL CONVERSION
(Chapter 2.7)



3 Example – pressure sensor
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strain gage sensor

▪ active sensor

▪ absolute sensor

▪ contact sensor

instrumentation amplifier

▪ signal amplification
excitation circuit

signal processing circuit

▪ bridge circuit

▪ remove error sources (e.g. temperature)

▪ remove offset voltage

▪ improve linearity

▪ improve sensitivity



4 Control system
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5 Analog signals and systems

▪ most physical signals are continuous

▪ speech and music signals, biomedical signals

▪ most communication signals that are broadcast through the air

▪ analog signal

▪ continuous in time

▪ continuous in value (amplitude)

▪ analog system

▪ works directly on analog signals

▪ circuits: resistors, capacitors, transistors, op-amps, … t

V

x(t) analog system y(t)



6 Digital systems

▪ digital systems

▪ computers, microprocessors, 

embedded processors, 

micro controllers, …

▪ digital signal

▪ discrete in time

▪ discrete in value

▪ advantages of digital systems compared to analog systems

▪ it is easier to process signals

▪ it is easier to store signals

▪ it is easier to transmit signals



7 Conversion to digital form

▪ limitations of digital systems

▪ cannot deal with continuous-time signals

▪solution: sample signal at regular time interval



8 Conversion to digital form

▪ limitations of digital systems

▪ cannot deal with continuous-time signals

▪solution: sample signal at regular time interval

▪ cannot store values with a continuous range

▪solution: approximate continuous value with digital value



9 Conversion to digital form

▪ analog signal digitized using ADC

▪ ADC determines resolution of sensor system

▪ resolution is smallest change in input which can be sensed

▪ 2-bit A/D converter (assume max input voltage = 4V)

▪ 22 = 4 levels

▪ resolution: 1V/bit

▪ 3-bit  A/D converter

▪ 23 = 8 levels

▪ resolution: 0.5V/bit
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10 Conversion to digital form

▪ analog signal digitized using ADC

▪ ADC determines resolution of sensor system

▪ resolution is smallest change in input which can be sensed

▪ how many bits should an A/D converter have to achieve a resolution of 3.5mV/bit if its maximal input voltage is 
4V?

▪ in general it holds that

▪ substituting values gives

𝑛 =
log

4𝑉
3.5 ⋅ 10−3𝑉/𝑏𝑖𝑡

log 2
= 11𝑏𝑖𝑡

𝑛 =
log

𝑉max
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑉/𝑏𝑖𝑡

log 2



11 Analog signals and digital systems

▪ digital system works on digitized samples of the signal

▪ connecting the analog and digital world

▪ S/H – sample and hold circuit

▪ ADC – analog to digital conversion

▪ DAC – digital to analog conversion

x[n]
digital system

y[n]

x[n]
digital system

y[n]
sensor actuatorADC DAC

y(t)x’(t)
S/H

x(t)



12 Weighted-resistor DAC

▪ what is the output voltage Vo of the weighted-
resistor DAC in terms of the input bits (digital 
data – bi)?

▪ Kirchhoff current law at node A

▪ use VA = 0 V

▪ relation voltage vi and bit bi

▪ output voltage

▪ output voltage proportional to digital data input to 
DAC
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13 Weighted-resistor DAC

▪ what is the output voltage Vo of the weighted-
resistor DAC when all bits are equal to 1?

▪ output voltage

▪ full-scale voltage (all bi = 1)

▪ use geometric series

▪ gives
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14 Weighted-resistor DAC

▪ what is the output voltage Vo of the weighted-
resistor DAC when all bits are equal to 1?

▪ full scale output voltage is smaller then vref

▪ error is negligible if n is large enough
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15 Ladder DAC

▪ different resistor values in weighted-resistor DAC hard to produce

▪ ladder DAC provides alternative with only two resistor values

▪ what is the output voltage Vo of 

the ladder DAC in terms of the 

input bits (digital data – bi)?
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16 Ladder DAC

▪ what is the output voltage Vo of the ladder DAC in terms of the input bits (digital data – bi)?

▪ apply KCL at node i

▪ for all nodes except nodes 0 

and n-1 this can be written as

▪ for node 0 holds
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17 Ladder DAC

▪ what is the output voltage Vo of the ladder DAC in terms of the input bits (digital data – bi)?

▪ for node n-1 holds

▪ it holds that

▪ hence
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18 Ladder DAC

▪ what is the output voltage Vo of the ladder DAC in terms of the input bits (digital data – bi)?

▪ summary

▪ for node i (except 0 and n-1) holds

▪ for node 0 holds

▪ for node n-1 holds

▪ combine these equations while using v’n-1=0
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19 Ladder DAC

▪ what is the output voltage Vo of the ladder DAC in terms of the input bits (digital data – bi)?

▪ combine these equations while using v’n-1=0

▪ sum these n equations
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20 Ladder DAC

▪ what is the output voltage Vo of the ladder DAC in terms of the input bits (digital data – bi)?

▪ sum these n equations

▪ use vi = -bi vref

▪ output voltage is identical to result for the weighted-resistor DAC

▪ result realized with fewer resistor values (easier to manufacture)
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21 Analog signals and digital systems

▪ digital system works on digitized samples of the signal

▪ connecting the analog and digital world

▪ S/H – sample and hold circuit

▪ ADC – analog to digital conversion

▪ DAC – digital to analog conversion

x[n]
digital system

y[n]

x[n]
digital system

y[n]
sensor actuatorADC DAC

y(t)x’(t)
S/H

x(t)



22 Analog to digital conversion

▪ several different ADC implementations are used in practical system

▪ most important characteristics

▪ time needed for conversion

▪ amount of hardware needed

▪ three commonly used types and their differences (speed, area)

▪ flash ADC (fastest, large)

▪ dual-slope ADC (slow, small)

▪ successive approximation ADC (fast, medium)



23 Flash ADC

▪ resistive divider with 2N resistors

▪ divider provides reference voltages

▪ comparators output 1 when vi above reference voltage or 0 otherwise

▪ code at output of comparators known as digital thermometer code

▪ decoder translates code to digital value (using inverters and NAND gates)

▪ pro’s and con’s

▪ fast

▪ many comparators required
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24 Dual-slope ADC

▪ dual-slope ADC based operation of RC integrating circuit

▪ what is the output voltage vo(t) of the integrating circuit?

▪ it holds that voltage VA = 0

▪ input voltage vi is constant over time

▪ using KCL

▪ slope of curve proportional to input voltage vi
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25 Dual-slope ADC

▪ operation

▪ initially capacitor C is discharged (zero voltage)

▪ voltage vs applied to input of switch

▪ start conversion signal applied

▪ timer reset to zero

▪ output register reset to zero

▪ voltage vs applied to integrating circuit
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26 Dual-slope ADC

▪ operation

▪ after time t1 (n1 clock cycles)

▪ switch input integrating circuit to -vref

▪ clear timer and start timing (counting) again

▪ capacitor is discharging

▪ zero detector (comparator) detects zero crossing and stops timer at time t2 (n2 clock cycles)
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27 Dual-slope ADC

▪ vo of integrating circuit

▪ at t1 it holds

▪ at t2 it holds

▪ vref and n1 are fixed; vs proportional to n2

Power 

supply

-vref
+

-
R

vA
C

Control logic unit

S/H output 

vs Output register Digital 

output

Clock

Data valid signal

Start conversion

Zero detector Timer

Complete conversion

Switching control

0

V

Time t

vc

t1 t2

𝑣𝑜(𝑡) = 𝑣𝑜(0) −
𝑣𝑖 ⋅ 𝑡

𝑅𝐶

−𝑣𝑐 = 0 −
𝑣𝑠 ⋅ 𝑡1
𝑅𝐶

⇔ 𝑣𝑐 =
𝑣𝑠 ⋅ 𝑡1
𝑅𝐶

0 = −𝑣𝑐 +
𝑣𝑟𝑒𝑓 ⋅ 𝑡2

𝑅𝐶
⇔ 𝑣𝑐 =

𝑣𝑟𝑒𝑓 ⋅ 𝑡2

𝑅𝐶

ቑ ⇒ 𝑣𝑠 ⋅ 𝑡1 = 𝑣𝑟𝑒𝑓 ⋅ 𝑡2 ⇔ 𝑣𝑠 = 𝑣𝑟𝑒𝑓
𝑡2
𝑡1

= 𝑣𝑟𝑒𝑓
𝑛2
𝑛1

=
𝑣𝑟𝑒𝑓

𝑛1
𝑛2



28 Successive-approximation ADC
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30 Analog signals and digital systems

▪ digital system works on digitized samples of the signal

▪ connecting the analog and digital world

▪ S/H – sample and hold circuit

▪ ADC – analog to digital conversion

▪ DAC – digital to analog conversion

x[n]
digital system

y[n]

x[n]
digital system

y[n]
sensor actuatorADC DAC

y(t)x’(t)
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x(t)



31 Sample and hold circuit

▪ analog to digital conversion takes time

▪ continuous signal may change value during conversion process

▪ stable (constant) value must be provided to ADC

▪ solution: use sample and hold circuit



32 Sample and hold circuit

▪ concept

▪ charge holding capacitor to voltage of analog signal

▪ requirements

▪ charging needs to be done quickly

▪ charge needs to stay on capacitor during ADC
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33 Sample and hold circuit

▪ requirement: charging needs to be done quickly

▪ charging time constant

▪capacitance C fixed because of holding requirement (typically ~100 pF)

▪ to get a small τs, the source resistance Rs must be small

▪ use voltage follower with low output impedance

▪output voltage

▪op-amp has low output impedance
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34 Sample and hold circuit

▪ requirement: charge needs to stay on capacitor during ADC

▪ circuit connected to holding capacitor must have high input impedance

▪ use voltage follower which has high input impedance
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35 Analog signals and digital systems

▪ S/H – sample and hold circuit

▪ ADC – analog to digital conversion

▪ DAC – digital to analog conversion

x[n]
digital system

y[n]
sensor actuatorADC DAC

y(t)x’(t)
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