

Sensing, Computing, Actuating

Sander Stuijk (s.stuijk@tue.nl)

THERMORESISTIVE SENSORS AND LINEARIZATION

(Chapter 2.9, 5.11)

3 Applications

placement	excitation	physical effect	material	thermal sensor
contact	passive	thermal expansion	metal	bimetal
contact	active	resistive effect	metal	RTD
contact	active	resistive effect	semiconductor	silicon resistive
contact	active	resistive effect	polymer or ceramic	thermistor
contact	passive	thermoelectric effect	conductor	thermocouple
contact	active	PN junction	semiconductor	
non-contact	passive	pyroelectric effect	pyroelectric	pyroelectric
non-contact	active	ultrasound	-	acoustic

Thermoresistive effect

- resistivity of (semi)conductors depends on temperature
- temperature can be found by measuring resistance
- specific resistivity of a material $\rho = \frac{m}{ne^2\tau}$
 - temperature dependency through
 - number of free electrons (n) in semiconductors
 - NTC behavior: $\uparrow T \rightarrow \uparrow n \rightarrow \rho \downarrow$
 - mean time between collisions (τ) in conductors
 - PTC behavior: $\uparrow T \rightarrow \downarrow \tau \rightarrow \rho \uparrow$

6 Resistance temperature detectors (RTDs)

• specific resistivity of a material $\rho = \frac{m}{ne^2\tau}$

- mean time between collisions (τ) in conductors
- number of free electrons (n) in semiconductors
- RTD metal temperature sensor
 - positive temperature coefficient (PTC)
- relation between temperature and resistance
 - $R = R_0 [1 + \alpha_1 (T T_0) + \alpha_2 (T T_0)^2 + \ldots + \alpha_n (T T_0)^n]$
 - T₀ reference temperature
 - R₀ resistance at T₀
- example PT100 RTD
 - $\alpha_1 \approx 3.89 \cdot 10^{-3}$ /K, $\alpha_2 \approx -5.83 \cdot 10^{-7}$ /K², $\alpha_3 \approx 1.92 \cdot 10^{-7}$ /K³
 - almost linear relation between temperature and resistance

Silicon resistive sensors

• specific resistivity of a material $\rho = \frac{m}{ne^2\tau}$

- $\hfill \hfill \hfill$
- number of free electrons (n) in semiconductors
- pure silicon
 - four electrons in outer ring
 - electrons in outer ring form covalent bonds with neighboring atoms
 - these electrons are responsible for current

Silicon resistive sensors

• specific resistivity of a material $\rho = \frac{m}{ne^2\tau}$

- mean time between collisions (τ) in conductors
- number of free electrons (n) in semiconductors
- pure silicon

- four electrons in outer ring
- electrons in outer ring form covalent bonds with neighboring atoms
- these electrons are responsible for current
- these electrons are at T = OK in valence band
- increasing energy moves electrons to conduction band

Silicon resistive sensors

• specific resistivity of a material $\rho = \frac{m}{ne^2\tau}$

- mean time between collisions (τ) in conductors
- number of free electrons (n) in semiconductors
- pure silicon

- temperature increase \rightarrow lower resistance (NTC behavior)
- n-doped silicon (Sb Stibium)
 - additional free electrons at given temperature which contribute to current
 - mean time between collisions dominates resistivity
 - device has PTC behavior

¹⁰ Silicon resistive sensor

- pure silicon has a negative temperature coefficient (NTC)
 - specific sensitivity ρ decreases when temperature increases
- doping with n-type impurity can change behavior to PTC
 - PTC behavior only in limited range (up-to 200°C)
 - above this temperature intrinsic behavior dominates

TU/e

11 Silicon resistive sensor

- silicon resistive sensor has typically a TCR of 0.7%/K
- non-linearity of the sensor is limited
- transfer function can be approximated with

 $R = R_0 [1 + \alpha_1 (T - T_0) + \alpha_2 (T - T_0)^2]$

- example KTY81-122 sensor
 - silicon resistive sensor with n-doping
 - range: -55°C to +150°C
 - high long-term stability: ±0.05K/year
 - almost linear transfer function
 - α₁ = 0.007847 (Ω/Ω)/K
 - $\alpha_2 = 1.874 \cdot 10^{-5} (Ω/Ω)/K^2$
 - resistance: 1kΩ at 25°C
 - sensitivity (at 25°C) ~ 7.9Ω/K

12 Thermistor

- thermistor comes from "thermally sensitive resistor"
- thermistors are made by mixing doped oxides of metals
 - Ieads to larger sensitivity then RTDs which use only metals
 - effect similar as seen in silicon resistive sensors
- temperature coefficient of thermistors
 - PTC when doping is heavy
 - NTC when doping is small
- only NTC thermistors are useful for precision temperature measurement

13 NTC thermistor

- transfer function $R_T = R_0 e^{B(1/T 1/T_0)}$
 - T₀ reference temperature
 - R_0 resistance at T_0 (typically at 25°C)
 - B (or β) characteristic temperature of the material

- characteristic temperature is material and temperature dependent
 - relation B and T can be approximated as linear (small error)
 - two-point calibration can be used to find B in certain range

$$B_{T_0/T_1} = \frac{\ln(R_1/R_0)}{(1/T_1 - 1/T_0)}$$

• R₀ - resistance at T₀
• R₁ - resistance at T₁

example

calibration data

R = 5000Ω at 25°C, R = 1244Ω at 60°C

what is the characteristic temperature from 25°C to 60°C?

$$B_{25/60} = \frac{\ln\left(\frac{1244\Omega}{5000\Omega}\right)}{\frac{1}{(273+60)K} - \frac{1}{(273+25)K}} = 3944K$$

- characteristic temperature is material and temperature dependent
 - relation B and T can be approximated as linear (small error)
 - two-point calibration can be used to find B in certain range

$$B_{T_0/T_1} = \frac{\ln(R_1/R_0)}{(1/T_1 - 1/T_0)}$$

- R₀ resistance at T₀
- R₁ resistance at T₁
- temperature coefficient of resistivity (TCR)
 - TCR is often called relative sensitivity $\alpha = \frac{dR_T/dT}{R_T} = \frac{1}{R_T} \frac{d(R_0 e^{B(1/T - 1/T_0)})}{dT} = -\frac{B}{T}$
 - non-linear R-T dependency
 - sensitive for low temperatures
 - sensitivity decreases quickly when temperature increases
 - typical: $\alpha = -8\%/^{\circ}C$ (at cold side), $\alpha = -2\%/^{\circ}C$ (at hot side)

- characteristic temperature is material and temperature dependent
 - relation B and T can be approximated as linear (small error)
 - two-point calibration can be used to find B in certain range

$$B_{T_0/T_1} = \frac{\ln(R_1/R_0)}{(1/T_1 - 1/T_0)}$$

- R₀ resistance at T₀
- R₁ resistance at T₁
- temperature coefficient of resistivity (TCR)

$$\alpha = \frac{dR_T/dT}{R_T} = \frac{1}{R_T} \frac{d(R_0 e^{B(1/T - 1/T_0)})}{dT} = -\frac{B}{T^2}$$

- example Siemens thermistor
 - B = 4000K
 - TCR (at 25°C): α = -4.5%/K
 - thermistor has a 12.5x larger TCR as a PT100 RTD
 - why do we prefer a large TCR?
 - Iarger TCR means larger sensitivity

NTC thermistor

17 NTC thermistor – models

- two-parameter model $R_T = R_0 e^{B(1/T 1/T_0)}$
 - model also known as simple model
 - provides accuracy of ±0.7°C for 70°C range
 - error due to non-linear relation B and T
- three or four parameter models exist
 - provide higher accuracy
 - more calibration points needed

example - alternative thermistor model

$$R_T = Ae^{B/T}$$

18

• what value does A have when B = 4200K and $R_T = 100k\Omega$ at 25°C?

$$R_{25} = Ae^{B/T_{25}} \Longrightarrow A = \frac{R_{25}}{e^{B/T_{25}}} = \frac{100k\Omega}{e^{4200K/(273K+25K)}} = 0.0757\Omega$$

- what is the TCR of this device at 0°C and 100°C?
- at (0°C = 273K) it holds that

$$\alpha_0 = -\frac{B}{T^2} = \frac{-4200K}{(273K)^2} = -0.0564/K$$

at (100°C = 373K) it holds that

$$\alpha_{100} = \frac{-4200K}{(373K)^2} = -0.0302/K$$

(relative) sensitivity decreases with increasing temperature

- relation between temperature and resistance is highly non-linear
- sensor will be connected to interface circuit

ΓU/e

$$V_{0} \bigcirc V_{m} \land V_{m} \land V_{m} \land V_{m} = \frac{R_{T}}{R + R_{T}} v \quad R_{o} = \frac{RR_{T}}{R + R_{T}} \\ R_{T} = R_{0} e^{B\left(\frac{1}{T} - \frac{1}{T_{0}}\right)} \end{cases} \Rightarrow R_{o} = \frac{RR_{0}}{\operatorname{Re}^{-B\left(\frac{1}{T} - \frac{1}{T_{0}}\right)} + R_{0}} = \frac{RR_{0}}{\operatorname{Re}^{B\left(\frac{1}{T_{0}} - \frac{1}{T}\right)} + R_{0}}$$

TU/e

example - resistance-temperature characteristic of sensor circuit

R₀ = 25kΩ, B = 4000K, R=18500Ω

- sensor circuit has smaller non-linearity error compared to thermistor
- reduction in non-linearity error is not for free... (why?)
 - sensor circuit has smaller sensitivity compared to thermistor
 - Inearity and sensitivity form a trade-off

• sensitivity for temperature change of sensor circuit: $\frac{dR_o}{dT}$

$$\left. \begin{array}{l} R_o = \frac{RR_T}{R + R_T} \\ R_T = R_0 e^{B(1/T - 1/T_0)} \end{array} \right\} \Rightarrow \frac{dR_o}{dT} = \frac{R^2}{(R + R_T)^2} \frac{dR_T}{dT}$$

- sensitivity of R_o is non-linear
- sensitivity for temperature change of thermistor: $\frac{dR_T}{dT}$
- comparing sensitivity of sensor circuit and thermistor

$$\frac{R^2}{(R+R_T)^2} < 1 \qquad \Rightarrow \frac{dR_o}{dT} < \frac{dR_T}{dT}$$

- sensor circuit has lower sensitivity compared to thermistor alone
- non-linearity error will also be smaller

comparing sensitivity of sensor circuit and thermistor

$$\frac{R^2}{(R+R_T)^2} < 1 \qquad \Rightarrow \frac{dR_o}{dT} < \frac{dR_T}{dT}$$

- sensor circuit has lower sensitivity compared to thermistor alone
- non-linearity error will also be smaller

- Inearity in range [T₁, T₃] can be improved in measurement range by choosing R
 - constraints $T_1 - T_2 = T_2 - T_3$ $R_{01} - R_{02} = R_{02} - R_{03}$ it holds that

$$R_o = \frac{RR_T}{R + R_T}$$

solving R_o for R gives

 $\frac{RR_{T1}}{R+R_{T1}} - \frac{RR_{T2}}{R+R_{T2}} = \frac{RR_{T2}}{R+R_{T2}} - \frac{RR_{T3}}{R+R_{T3}} \Rightarrow R = \frac{R_{T2}(R_{T1}+R_{T3}) - 2R_{T1}R_{T3}}{R_{T1}+R_{T3} - 2R_{T2}}$

- the expression is independent from the model of R_T
- this technique can be used for any nonlinear resistive sensor
- method minimizes non-linearity near the adjusting points

- minimize non-linearity near specific point in measurement range
- use circuit

U/e

objective

equivalent resistance of circuit shows inflection point around temperature T₀ and slope m

what value should R1 and R2 have to fulfill the objective?

homework exercise with this lecture

current through NTC thermistor causes self-heating similar to RTDs

- PL is the thermal loss to the environment $P_L = \delta(T_S T_a) = \delta \cdot \Delta T$
 - T_s, T_a thermistor, ambient temperature
 - δ heat dissipation factor
- power consumption of the thermistor

$$P_D = V_T \cdot i = i^2 \cdot R_T = \delta \cdot \Delta T + C \frac{dT_S}{dt} \rightarrow \text{heat accumulation rate}$$

heat loss rate

- C thermal capacity (mass x specific heat)
- steady-state condition

$$\frac{dT_S}{dt} = 0 \quad \Rightarrow V_T \cdot i = \delta \cdot \Delta T \Rightarrow \Delta T = \frac{V_T \cdot i}{\delta} = \frac{i^2 \cdot R_T}{\delta} = \frac{P_D}{\delta}$$

current through NTC thermistor causes self-heating similar to RTDs

- self-heating can be minimized by minimizing current through R_T
 - use small supply voltage
 - use large series resistor in front of R_T
 - use sensor with small duty-cycle voltage source

TU/e

voltage-current characteristic for a thermistor in still air at 25°C

³³ NTC thermistor – self-heating

voltage-current characteristic for a thermistor in still air at 25°C

- self-heating can lead to thermal run-away and destruction of sensor
- some applications use self-heating to get maximal voltage drop across sensor (e.g. flow rate sensor)

voltage-current characteristic for a thermistor in still air at 25°C

- small current (negligible heating) use Ohm's law to find temperature
- increasing current: $I\uparrow \rightarrow P_D\uparrow \rightarrow \Delta T\uparrow \rightarrow R_T \downarrow \rightarrow V_T\downarrow$

- example wind chill factor
 - when cycling on a cold day, your hands are colder then when standing still
 - air flow causes the hands of the cyclist to cool down
 - by measuring the temperature of his hands, the cyclist can get a good measure of the air flow

construction

- three tubes immersed into a moving medium
- two tubes contain temperature detectors (R₀ and R_s)
- detectors thermally coupled to medium
- detectors thermally isolated from structural elements
- mass equalizer ensures that medium moves through the detectors without turbulence

operation

- detector R₀ measures the temperature of the flowing medium
- medium heated with heater
- detector R_s measures the elevated temperature

TU/e

still medium

- heat dissipated from heater to both detectors
- heat moves out of the heater by thermal conduction and gravitational convection
- heater is closer to R_s then to R₀
 - R_s will register a higher temperature then R₀

³⁹ Thermal flow sensors

- moving medium
 - heat dissipation increased due to forced convection
 - increasing flow rate, leads to the higher heat dissipation
 - this leads to a lower temperature registered by R_s
- thermal flow sensor measures the heat loss and converts it into the flow rate of the medium

40

- non-linear relation between flow velocity v and temperature difference
- relation between flow velocity v and temperature difference

 $v = \frac{K}{\rho} \left(\frac{dQ}{dt} \frac{1}{T_s - T_0} \right)^{1.87}$

- K calibration constant, ρ density of the medium, Q heat transfer
- Q depends on dissipation factor (velocity)

flow velocity, v

U/e

- heater can be integrated into R_s by using it in self-heating mode
- relation between voltage across self-heating detector (e) and velocity of the flow (v) given by

 $\nu = \frac{K}{\rho} \left(\frac{e^2}{R_S} \frac{1}{T_s - T_0} \right)^{1.87}$

- K calibration constant
- ρ density of the medium

 relation between voltage across self-heating detector (e) and velocity of the flow (v) suggests two method to measure flow

 $v = \frac{K}{\rho} \left(\frac{e^2}{R_S} \frac{1}{T_s - T_0} \right)^{1.87}$

method 1

• voltage (e) and resistance of detector R_s are kept constant and temperature difference is outputted

method 2

• temperature difference is kept constant by a control circuit which regulates voltage (e) of the heater

- voltage (e) is output of the sensor
- method 2 is easier to realize in miniature sensors

Thermal flow sensors – method 1

- thermal flow sensor can be placed in a bridge circuit
- bridge is imbalanced at low flow rate
 - high output voltage

- increasing flow heats detector R_s
 - its temperature comes closer to temperature of R₀
 - balances the bridge and decreases the output voltage
- voltage outputted by the sensor depends
 - on the flow velocity
 - on the medium

47 PTC thermistors

- PTC thermistor NTC behavior till some temperature (point m)
- PTC thermistors show abrupt change in resistance
 - switch occurs around Curie temperature TC
 - temperature coefficient of resistivity (TCR) can be 200%/°C
- transfer function is not suitable for precision temperature measurement

example – PTC thermistor

PTC thermistor modeled with

$$R_T = R_{25} \cdot \left(\frac{273.15K + T}{298.15K}\right)^{2.3}$$

- what is the TCR for this PTC thermistor at 25°C?
- TCR is defined as

 $\frac{dR/dT}{R}$

derivative of the given equation yields

$$\frac{dR_T}{dT} = 2.3 \cdot R_{25} \cdot \left(\frac{273.15K + T}{298.15K}\right)^{1.3} \cdot \frac{1}{298.15K}$$

at 25°C it holds that

$$\frac{dR_T}{dT}\Big|_{T=25^{\circ}C} = 2.3 \cdot R_{25} \cdot \left(\frac{273.15K + 25}{298.15K}\right)^{1.3} \cdot \frac{1}{298.15K} = \frac{2.3}{298.15K} \cdot R_{25} = (0.0077 \cdot R_{25})/K$$

example – PTC thermistor

PTC thermistor modeled with

$$R_T = R_{25} \cdot \left(\frac{273.15K + T}{298.15K}\right)^{2.3}$$

- what is the TCR for this PTC thermistor at 25°C?
- therefore

$$TCR(25^{\circ}C) = \frac{dR/dT}{R} \bigg|_{T=25^{\circ}C} = \frac{dR/dT}{R_{25}} \cdot 100\% = 0.77\%/K$$

• % is used to indicate the fractional change in resistance when a unit change in the temperature occurs

application: circuit protection

short circuit of load causes PTC

to get very large resistance

- current in circuit goes to zero
- circuit "resets" itself when short circuit is removed
- PTC characteristic provides build-in protection against overheating
 - overheating will increase resistance
 - increasing resistance will decrease current
 - decreasing current will decrease self-heating

U/e

- 51 Comparing NTC, PTC thermistors and RTDs
 - NTC thermistors versus RTDs
 - (+) higher resistivity (small lead-wire error)
 - (+) higher sensitivity (up-to 1000x)
 - (-) larger self-heating effect
 - (-) smaller operating range
 - (-) higher non-linearity
 - (-) lower accuracy (±0.7°C)

U/e

PTC versus NTC

- (+) build-in self-protection against overheating
- (-) complex temperature-resistance relation (partially NTC behavior)
- (-) smaller operating range (some types only usable as switch)
- (-) not suitable for precision temperature measurement