

Sander Stuijk (s.stuijk@tue.nl)

INDUCTIVE SENSORS / DEMODULATION

(Chapter 2.5, 2.6, 2.10, 5.4)

Linear Variable Differential Transformer

- Linear Variable Differential Transformer (LVDT)
- two secondary coils in series-opposition
- linear relation between output voltage and core displacement
- operation based on mutual inductance

- assume sinusoidal excitation of primary circuit

$$
v_{1}(t)=V_{1} \sin (\omega t)
$$

- output voltage of secondary circuit
$v_{o}(t)=S_{\omega} \cdot x \cdot V_{1} \sin (\omega t+\phi)$
- S_{ω} - sensitivity at frequency ω
- x - displacement of the core from center
- ϕ - phase shift (in voltage) from primary to secondary circuit
- S_{ω} and ϕ depend on
- load R_{L} of measurement circuit
- excitation frequency ω
- phase shift can be compensated

- output signal of LVDT is amplitude modulated ac signal

- amplitude of x recovered
- sign of x not recovered
- output signal of LVDT is amplitude modulated ac signal
- carrier amplifier and coherent detector

Phase-sensitive (synchronous) demodulation

- excitation voltage of the sensor

$$
v_{e}(t)=V_{e} \cos \left(2 \pi \cdot f_{e} \cdot t\right)
$$

- output of the sensor (assume no phase shift input/output voltage)

$$
v_{o}(t)=S_{\omega} \cdot x(t) \cdot v_{e}(t)
$$

- assume measured object is moving

$$
x(t)=X \cos \left(2 \pi \cdot f_{x} \cdot t+\phi_{x}\right)
$$

- output voltage then equal to

$$
\begin{aligned}
v_{o}(t) & =S_{\omega} X V_{e} \cos \left(2 \pi \cdot f_{x} \cdot t+\phi_{x}\right) \cos \left(2 \pi \cdot f_{e} \cdot t\right) \\
& =\frac{S_{\omega} V_{e} X}{2}\left(\cos \left(2 \pi\left(f_{e}-f_{x}\right) t-\phi_{x}\right)+\cos \left(2 \pi\left(f_{e}+f_{x}\right) t+\phi_{x}\right)\right)
\end{aligned}
$$

$$
\cos (A) \cos (B)=\frac{1}{2}(\cos (A+B)+\cos (A-B))
$$

Phase-sensitive (synchronous) demodulation

- output of the sensor (=input to detector)

$$
v_{o}(t)=\frac{S_{\omega} V_{e} X}{2}\left(\cos \left(2 \pi\left(f_{e}-f_{x}\right) t-\phi_{x}\right)+\cos \left(2 \pi\left(f_{e}+f_{x}\right) t+\phi_{x}\right)\right)
$$

- frequency spectrum (double-sideband signal)
- detector must recover $x(t)=X \cos \left(2 \pi \cdot f_{x} \cdot t+\phi_{x}\right)$
- maximal displacement of object (X)

- frequency with which object changes direction (f_{x})
- phase shift of moving object $\left(\phi_{x}\right)$

Phase-sensitive (synchronous) demodulation

- multiplier inputs

$$
\begin{aligned}
& v_{r}(t)=V_{r} \cos \left(\omega_{r} t+\phi_{r}\right) \\
& v_{o}(t)=S_{\omega} \cdot x(t) \cdot v_{e}(t)=S_{\omega} x(t) \cdot V_{e} \cos \left(\omega_{e} t+\phi_{e}\right)
\end{aligned}
$$

- signals have same phase $\left(\phi_{r}=\phi_{e}\right)$
- output of the multiplier

$$
v_{p}(t)=v_{r}(t) \cdot v_{o}(t)=\frac{V_{r} V_{e}}{2} S_{\omega} x(t)\left[\cos \left(\left(\omega_{e}-\omega_{r}\right) \cdot t\right)+\cos \left(\left(\omega_{e}+\omega_{r}\right) \cdot t\right)\right]
$$

- frequency of the signals are equal $\left(\omega_{r}=\omega_{\mathrm{e}}\right)$

$$
v_{p}(t)=\frac{V_{r} V_{e}}{2} S_{\omega} x(t)\left[1+\cos \left(2 \omega_{e} t\right)\right]
$$

- output of low-pass filter

$$
v_{d}(t)=L P F\left\{v_{p}(t)\right\}=\frac{V_{r} V_{e}}{2} S_{\omega} x(t)
$$

- output of demodulator equal to $\mathrm{x}(\mathrm{t})$ (except for scaling factor)

Phase-sensitive (synchronous) demodulation

- coherent detector output

$$
v_{d}(t)=\frac{V_{r} V_{e}}{2} S_{\omega} x(t)
$$

- signal $x(t)$ does not have to be a sinusoid
- band-limited input signal
- sensor excitation signal
- sensor output signal
- reference signal

- multiplier output signal

- coherent detector output

$$
v_{d}(t)=\frac{V_{r} V_{e}}{2} S_{\omega} x(t)
$$

- signal $\mathrm{x}(\mathrm{t})$ does not have to be a sinusoid
- band-limited input signal
- multiplier output signal
- LPF frequency response
- detector output

- output of sensor may contain interference (e.g. from power line)
- signal $x(t)$ and interference signal
- band-limited input signal
- sensor output signal
- multiplier output signal

- detector output

- interference may be part of output signal
- attenuation of interference may be limited by LPF response
- amplitude response LPF

$$
\left|\frac{V_{d}}{V_{p}}\right|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{c}}\right)^{2}}}
$$

- ω_{c} - corner frequency
- output voltage due to interference

$$
\left|v_{d}\right|_{i}=\frac{V_{r} V_{i}}{2 \sqrt{1+\left(\frac{\omega_{e}-\omega_{i}}{\omega_{c}}\right)^{2}}}
$$

$$
v_{i}(t)=V_{i} \cos \left(\omega_{i} t\right)
$$

- normal mode rejection ratio (NMRR)

$$
N M R R=20 \log \left|\frac{v_{d}\left(\omega_{e}\right)}{v_{d}\left(\omega_{i}\right)}\right|=10 \log \left[1+\left(\frac{\omega_{e}-\omega_{i}}{\omega_{c}}\right)^{2}\right] \approx 20 \log \left[\frac{\left|\omega_{e}-\omega_{i}\right|}{\omega_{c}}\right]
$$

- reflects capability of filter to reject interference
- approximation valid when $\omega_{\mathrm{i}} \ll \omega_{\mathrm{e}}$

Interference

- example - select frequencies for coherent detector
- measure 5 Hz signal with amplitude error < 1 LSB for 8 bit ADC
- 40 dB attenuation for 50 Hz interference at input of demodulator
- which excitation and corner frequencies should be used?
- amplitude error should be less than $1 / 2^{8}$
- corner frequency should be

$$
\frac{1}{\sqrt{1+\left(\frac{2 \pi \cdot 5 H z}{2 \pi \cdot f_{c}}\right)^{2}}}>1-\frac{1}{2^{8}} \Rightarrow f_{c}>\frac{5 \mathrm{~Hz}}{\sqrt{\left(\frac{2^{8}}{2^{8}-1}\right)^{2}-1}}=56.4 \mathrm{~Hz}
$$

- NMMR(50Hz) $=40 \mathrm{~dB}$, hence

$$
40 d B=20 \cdot \log \left[\frac{f_{e}-50 \mathrm{~Hz}}{56.4 \mathrm{~Hz}}\right] \Rightarrow f_{e}=5.69 \mathrm{kHz}
$$

- excitation frequency may be too high for practical circuit
- use bandwidth filter in front of coherent detector
- use high-order LPF filter

Phase-sensitive (synchronous) demodulation

- multiplier at the center of the PSD
- analog multipliers are expensive
- two solutions for multiplier

- use (anti-)logarithmic amplifiers
- use symmetrical square wave as reference

Phase-sensitive (synchronous) demodulation

- multiplier at the center of the PSD
- analog multipliers are expensive
- two solutions for multiplier

- use (anti-)logarithmic amplifiers
- use symmetrical square wave as reference

pro's and con's of LVDTs
(+) non-contact sensor (no friction)
(+) infinitesimal resolution
(+) solid and robust construction
(+) no hysteresis (mechanical and magnetic)
(+) output impedance is very low
$(-)$ sensitive to stray magnetic fields (interference)
(-) complex signal processing required
- similar construction and operation as LVDT

- output of (unloaded) RVDT
$V_{o}=S_{\omega} \alpha V_{1}$
- linear relation between core rotation and output voltage
- linear measurement range limited to $\pm 20^{\circ}$
- measuring full rotation is not possible

Variable transformer

- mutual inductance

$$
M_{12}=N_{2} \frac{\Phi_{2}}{i_{1}}
$$

- flux linked by secondary winding

$$
\Phi_{2}=\mathbf{B} \cdot \mathbf{S}=B S \cos \alpha=\mu H S \cos \alpha=\mu \frac{N_{1} i_{1}}{l} S \cos \alpha
$$

- B - magnetic flux density
- S - secondary cross section
- H - magnetic field strength
- μ - magnetic permeability of the core
- I - length of primary winding
- mutual inductance is equal to

$$
M_{12}=N_{2} N_{1} \frac{\mu}{l} S \cos \alpha=M \cos \alpha
$$

- mutual inductance has relation with angle

Variable transformer

- mutual inductance

$$
M_{12}=N_{2} N_{1} \frac{\mu}{l} S \cos \alpha=M \cos \alpha
$$

- what is the voltage on the secondary winding?
- consider open-circuit situation
- voltage on primary winding

$$
v_{1}=V_{p} \sin (\omega t)
$$

- current through primary winding

$$
i_{1}=I_{p} \cos (\omega t)
$$

- voltage on secondary winding

$$
\begin{aligned}
& v_{2}=M_{12} \frac{d i_{1}}{d t} \\
& \Rightarrow V_{2}=s I_{1} M_{12}=s I_{p} M \cos (\alpha) \cos (\omega t)=k \cos (\alpha) \cos (\omega t)
\end{aligned}
$$

- amplitude of output voltage depends on angle between windings
- rotor winding acts as primary winding
- two stator windings at 90° act as secondary windings
- voltage on primary winding

$$
v_{i}=V_{p} \sin (\omega t) \Rightarrow i_{i}=I_{p} \cos (\omega t)
$$

- induced voltages on secondary windings

$$
\begin{aligned}
& v_{01}=K \cos (\omega t) \cos (\alpha) \\
& v_{02}=K \cos (\omega t) \sin (\alpha)
\end{aligned}
$$

- output voltage is product of
- measured object (α)
- excitation voltage (v_{i})
- outputs differ by 90° phase difference

	0°	90°	180°	
$v_{01}[\mathrm{~V}]$	1	0	-1	0
$\mathrm{v}_{02}[\mathrm{~V}]$	0	-1	0	1

- bridge rectifier can be used to recover angle between $0^{\circ} \leq \alpha \leq 90^{\circ}$
- phase sensitive detector needed to recover angle in all quadrants
- how to supply v_{i} to the rotor?
- use brushes or slips (friction, wear)
- brushless transformer (preferred)

- how to supply v_{i} to the rotor?
- use brushes or slips (friction, wear)
- brushless transformer (preferred)

