

Sander Stuijk (s.stuijk@tue.nl)

DISPLAYS

(not covered in the book, slide courtesy of Gerard de Haan)

3 Displays

TU/e

Emissive matrix-type display

We need an array of lamps that we can control individually:

- Can we make them small enough?
- A lot of dimmers...
- What about color? Separate lamp for every color?
- Will they react quickly enough?

Yes, we can! It is called an LED display

Huge array of individual solid-state lamps

09090090 00000000 00000000 00000000 00000000 00000000

With a physical phenomenon that allows us to modulate the transparency of a layer we do not need many individual lamps

This is called a transmissive matrix-type display (also: light-valve)

LCD principle - a transmissive matrix-type display

- A layer of liquid crystals can change the polarization of light passing through it
- Depends on voltage across the layer
- When sandwiched between polarizing filters the amount of light from a backlight can be modulated

- Reflective matrix-type displays use the ambient light and a spatial modulator (light-valve panel)
- Using a half-transparent mirror AND a backlight, we get a transflective matrix-type display, e.g. used in mobile phones and cars

2D Scanning with a single powerful modulated light source
Should be quick though to prevent flickering...

- 1D array with 9 LEDs rotating

Many physical phenomena to generate light

- Black-body radiation (Incandescent lamp)
- Photoluminescence (FL-lamp)
- Phosphorescence (glow-in-the-dark toys)
- Electroluminescence (LED, OLED, SS-laser)
- Many more...

All applicable in matrix and scanning type of display

But how do we make adjustable color?

- Color is that aspect of visual perception that allows us to distinguish differences between two fields of view caused by differences in the spectral composition of the radiant energy emitted by these fields of view

- the retina has two type of receptors, rods and cones
- we perceive color only with the cones, at higher brightness levels
- rods and cones are at the back of the retina, the nerves are at front

Three types of cones: L (63\%), M (32\%) and S (5\%)

Spectral sensitivity of rods and cones

We perceive the same colour whenever the different types of cones are stimulated in the same ratio. The spectrum can then be different!

The eye's response to blue much weaker than to red and green

$\lambda(n \mathrm{n})$

- Illumination, e.g. by sunlight
- Reflection by object
- Spectrum of daylight
- Convolution of daylight with colored object and.
- Color sensitivity of cones...
- Gives perceived color

- The perceived color is determined by the number of photons on each of the three types of cones
- Cones are photon-counters with build in spectral filter
- Specific spectral distribution already lost at retina
- Two different spectral distributions may appear as the same color under a given illuminant
- Species with more (birds, retiles) or less (most mammals) primaries exist

The same colour perception is caused by a mix of light with 650 nm and 530 nm and no 440 nm

- Used in displays and in fluorescent lamps
- Based on red, green and blue primary = RGB-model, sometimes white added for improved efficiency (RGBY)
- Primaries defined by emission of phosphors or LEDs (lamps, CRT, PDP, OLED), or color filters (LCD)
- Only 3 primary colors required to create every color sensation

- Used in printing and photography
- Based on cyan, magenta and yellow primary = CMY-model
- Sometimes black primary added because combination of C, M and Y often results in dark brown instead of black = CMYK-model

BLUE LV
SCREEN

Shadow-mask (colour CRT)

Matrix display panel

- Superposition in the high-end camera:
- Split the light from the lens with a prism and...
- Use separate (CCD-) sensors for the red, green and blue image
- Colour sequential used in slide scanners
- Scan the slide with red, green and blue light (filters) successively
- Spatial synthesis in economy cameras (home-video)
- Deposit colour filters on individual cells of a (CCD-) imaging device (Bayer pattern)

The human eye - resolution (how many pixels?)

The image is spatially sampled by the retina!

Measuring the limits of vision

- "Contrast grating" used to analyze contrast sensitivity . Can vary:
- Spatial frequency (bar spacing) - cycles per deg (c/deg)
- Contrast (amplitude)
- Orientation

- We can resolve about 30 cycles/degree
- At 6 times picture height, viewing angle is about 10 degrees
- The finest pattern on the screen is $10 * 30=300$ cycles
- Sampling theorem: we need at least 600 samples (lines)
- Is this conclusion correct?
- What is the sampling theorem?

We have a continuous signal
We sample it to obtain a discrete representation
Sampling theorem: we can reconstruct the continuous signal from its discrete representation, provided it contained no frequencies above half the sampling frequency

Experiments: we can distinguish about 200 levels in an image
We shall use 8 bit representation of luminance

More pictures/second affects:

- Motion portrayal
- Flicker

- The flicker threshold shifts to higher frequencies in the periphery of the vision field
- Allows us to rapidly recognize approaching danger
- The upper limit of the temporal contrast sensitivity curve determines how many pictures/second we need
- To prevent visible flicker
- For motion portrayal a lower threshold
- TV needs less pictures/second than a PC-monitor
- Because of smaller viewing angle

Video is time discrete in the temporal domain

More pictures/second affects:

- Motion portrayal
- Flicker

Object tracking with the eye

Position on screen

A moving ball on the retina of the tracking eye

Position on screen

- A display image is projected on a moving target (retina of the eye)
- If the eye moves substantially while the pixel is shown, the pixel size increases (blur)
- A pixel is only valid at a single point in space AND time, spatial or temporal spreading or mis-positioning degrades quality
- If pixels are not shown simultaneously, there relative position is modified by the eye movement
- A single TV-image need not be complete, if soon enough complementary information is shown (interlace, colour sequential display)
- The quality of individual images is irrelevant: Photography \neq Video!

Display hold time

The eye smoothly follows a moving object that remains stationary during the display

Two phenomena with the same result, i.e. motion blur:

Scanning Backlight

hold time, $t_{i}<$ frame period, T

hold time, t_{i} < frame period, T

This is what it looks like

Solution 2 for motion: change picture rate

- Shortening the light emission time of each frame decreases motion blur (insert black frames)

Blur of BFI same as MC picture-rate doubling

- But with half intensity and reduced contrast!

1. Pulsing backlight

2. Shorten picture time (more pictures/second)

3. Sharpening dependent on object velocity

