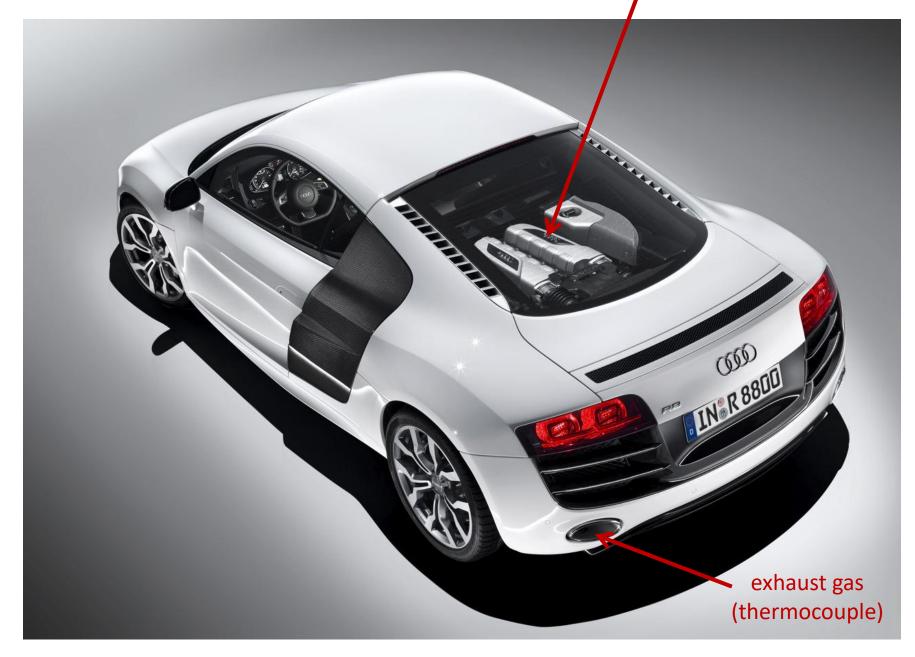


Sensing, Computing, Actuating

Sander Stuijk (s.stuijk@tue.nl)


THERMOELECTRIC EFFECT

(Chapter 5.11)

3 Thermocouple

cylinder head temperature (thermocouple)

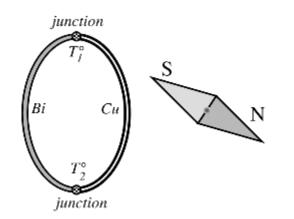
TU/e

Thermoelectric generator

- combustion engine in cars
 - 25% of potential energy turned into motion
 - 75% of potential energy wasted as heat
- Volkswagen

4

- 600W power generation
- 30% energy requirement of VW Golf
- 5% fuel saving

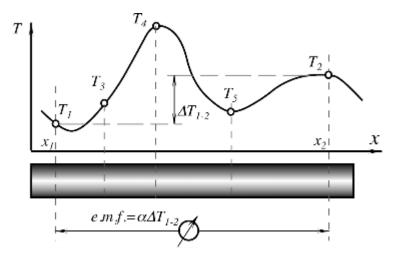


5

placement	excitation	physical effect	material	thermal sensor	
contact	passive	thermal expansion	metal	bimetal	
contact	active	resistive effect	metal	RTD	
contact	active	resistive effect	semiconductor	silicon resistive	
contact	active	resistive effect	polymer or ceramic	thermistor	
contact	passive	thermoelectric effect	conductor	thermocouple	
contact	active	PN junction	semiconductor		
non-contact	passive	pyroelectric effect	pyroelectric	pyroelectric	
non-contact	active	ultrasound	-	acoustic	

6 Thermocouple

- two dissimilar metallic junctions at different temperatures
- thermoelectric effect causes current in metals
- effect discovered by Thomas Seebeck in 1821
 - observation: magnetic field around metals
 - idea: metals magnetically polarized due to temperature gradient
 - named the effect "thermomagnetism"
- magnetization is actually caused by charge current
- current is due to the thermoelectric effect



Thermoelectric effect

thermoelectric effect is the direct conversion between a temperature difference and electric voltage

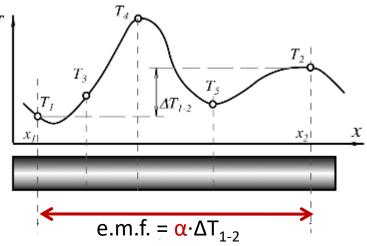
electric voltage (emf) < thermoelectric effect > temperature difference

- thermoelectric effect is reversible
- sensors based on this effect are passive sensors
- thermoelectric effect at atomic scale
 - temperature gradient causes charged carriers to move from hot to cold side
 - causes thermally induced current

Thermoelectric effect

8

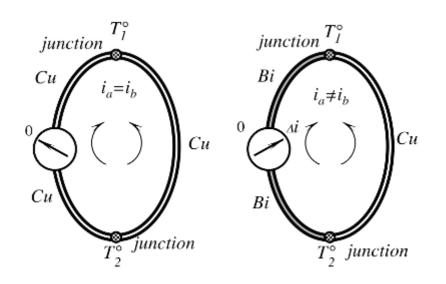
- thermoelectric effect applied to
 - measure temperature
 - generate electricity
 - cool objects
 - heat objects



TU/e

9 Seebeck effect

TU/e


- a metal bar with a non-uniform temperature
 - temperature difference leads to a current
 - current leads to an electric field
 - electric field results in voltage across the bar
- strength of electric field depends on material properties (α)
- temperature at intermediate points does not affect voltage

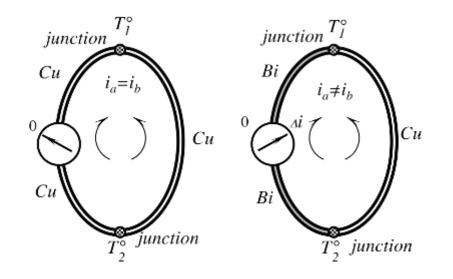
- voltage induced in metal bar can be measured
- measurement device becomes part of the circuit

10 Seebeck effect

- join two metal bars from the same material
 - electrical field in left and right arm produce equal currents
 - currents cancel each other
- join two metal bars from different material
 - currents in both arms do not cancel each other
 - difference between thermoelectric properties of materials can be measured
 - example: bismut (Bi), copper (Cu)

U/e

11 Seebeck effect

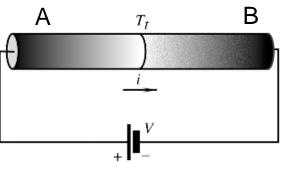

- current depends on many factors (e.g. resistance, shape, size)
- voltage depends only on materials and temperature difference
- thermally induced voltage of the junction (Seebeck potential)

 $V_{AB} = \alpha_{AB} \cdot \Delta T$

Seebeck coefficient

 $\alpha_{AB} = \alpha_A - \alpha_B$

- Seebeck coefficient is temperature dependent
- Seebeck potential is very small
 - copper-constantan has Seebeck potential of 41µV/K
- Seebeck effect results from
 - Peltier effect
 - Thomson effect


Peltier effect in single junction 12

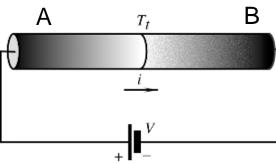
current passed through a junction causes heat to be produced or released depending on the direction of the current (Peltier effect)

- heat absorbed or released at the junction
 - current must be continuous at junction
 - Fermi level of materials at junction differ
 - electrons use or liberate energy (heat) when crossing junction
 - heat is absorbed or produced at the junction
- heat produced per unit time $Q_P = \pi_{AB}I$
- Peltier coefficient

 $\pi_{AB} = \pi_A - \pi_B = -\pi_{BA}$

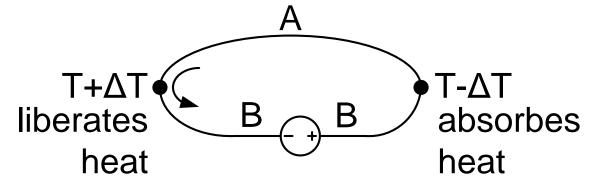
13 Peltier effect in single junction

current passed through a junction causes heat to be produced or released depending on the direction of the current (Peltier effect)
 A T. B



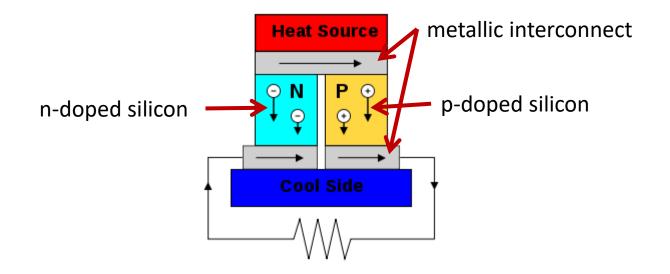
 $Q_P = \pi_{AB}I$

Peltier coefficient


 $\pi_{AB} = \pi_A - \pi_B = -\pi_{BA}$

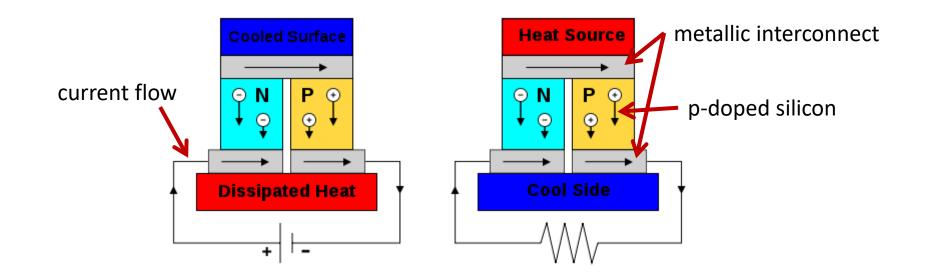
- what happens when the current is reversed?
 - Peltier coefficient changes sign
 - heat is no longer produced, but it is absorbed
- direction of current influences Peltier heating, but not Joule heating

14 Peltier effect in thermocouple


 current passed through a thermocouple circuit causes one junction to cool and the other junction to heat (Peltier effect)

- Peltier effect is independent of the origin of the current
 - induced by thermoelectric effect at junction
 - external source
- Peltier effect can be used to
 - cool or heat
 - generate electricity

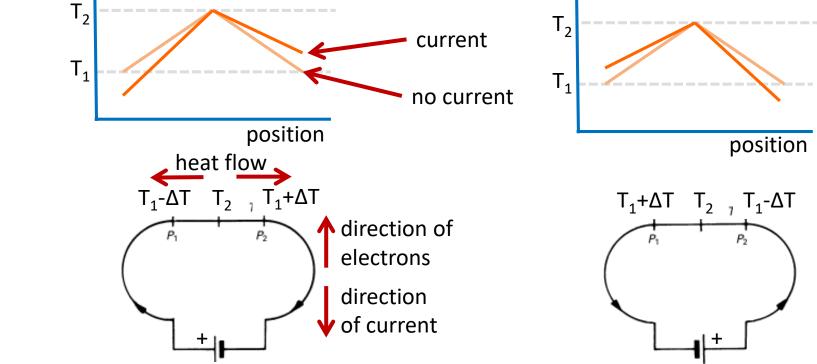
15 Peltier effect in silicon


- silicon has a large Seebeck coefficient
 - n-doped Si / p-doped Si junction has typically 0.3-0.6 mV/K
 - enables design of sensitive thermoelectric sensors in silicon
- Peltier generator converts thermal energy from heat source to electrical energy
 - heat source causes electrons and holes to move to cool side
 - electrons and holes create current through circuit

Peltier effect in silicon

16

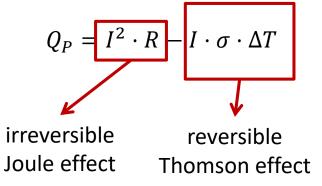
- silicon has a large Seebeck coefficient
 - n-doped Si / p-doped Si junction has typically 0.3-0.6 mV/K
 - enables design of sensitive thermoelectric sensors in silicon
- Peltier heat pump replaces circuit with power source
 - electrons move opposite to flow, holes move along the flow
 - both effects remove heat from one side of the device
 - direction of the current determines heating/cooling of surface


17 Thermoelectric effects

- thermoelectric effect is the direct conversion between temperature difference and electric voltage
- thermoelectric effect is explained by the Seebeck effect
 - temperature difference between two junctions of two dissimilar metals causes a current (Seebeck effect)
- Seebeck effect is explained by the Peltier and Thomson effect
 - amount of heat produced or consumed in a junction is proportional to the temperature at the junction and current through the junction (Peltier effect)

TU/e

18 Thomson effect


Thomson effect explains heat absorption or liberation in a homogeneous conductor with a non-homogeneous temperature

- heat absorbed when charges flow from cold to hot point
 - charge and heat flow in opposite directions
- heat liberated when charges flow from hot to cold point
 - charge and heat flow in same direction

TU/e

heat produced along wire

- ΔT temperature gradient along the wire
- σ Thomson coefficient of material
 - can be positive or negative depending on the material
 - proper selection of materials will yield highest response
- amount of produced or consumed heat along a homogeneous conductor with a temperature gradient is proportional to the current (Thomson effect)

20 Thermoelectric effects

- thermoelectric effect is the direct conversion between temperature difference and electric voltage
- thermoelectric effect is explained by the Seebeck effect
 - temperature difference between two junctions of two dissimilar metals induces a current (Seebeck effect)
- Seebeck effect is explained by the Peltier and Thomson effects
 - amount of heat produced or consumed in a junction is proportional to the temperature at the junction and current through the junction (Peltier effect)
 - amount of heat produced or consumed along a homogeneous conductor with a temperature gradient is proportional to the current (Thomson effect)

21 Thermoelectric effects

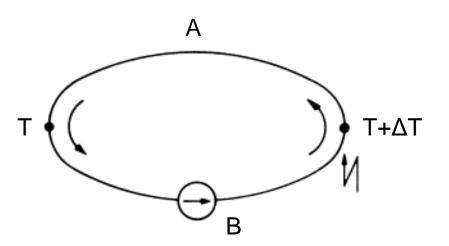
- two metals A and B with junctions at T and T + Δ T
- current I small enough to ignore Joule heating
- thermally induced voltage (Seebeck potential) $V_{AB} = \alpha_{AB} \cdot \Delta T$
- thermoelectric power

 $V_{AB} \cdot I = \alpha_{AB} \cdot \Delta T \cdot I$

converted thermal energy

 $Q_P = Q_{P,Peltier} + Q_{P,Thomson}$

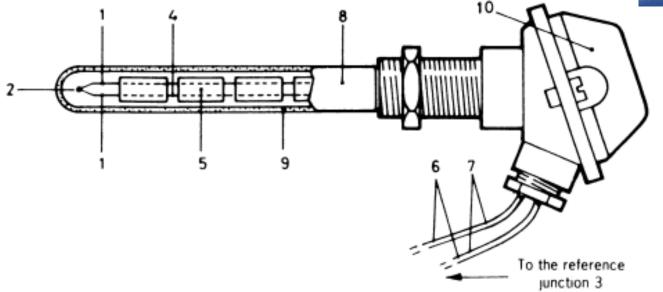
$$Q_P = \pi_{AB}(T + \Delta T)I - \pi_{AB}(T)I + \sigma_{AB}(\Delta T)I$$


power balance requires

 $\alpha_{AB} \cdot \Delta T \cdot I = \pi_{AB}(T + \Delta T)I - \pi_{AB}(T)I + \sigma_{AB}(\Delta T)I$

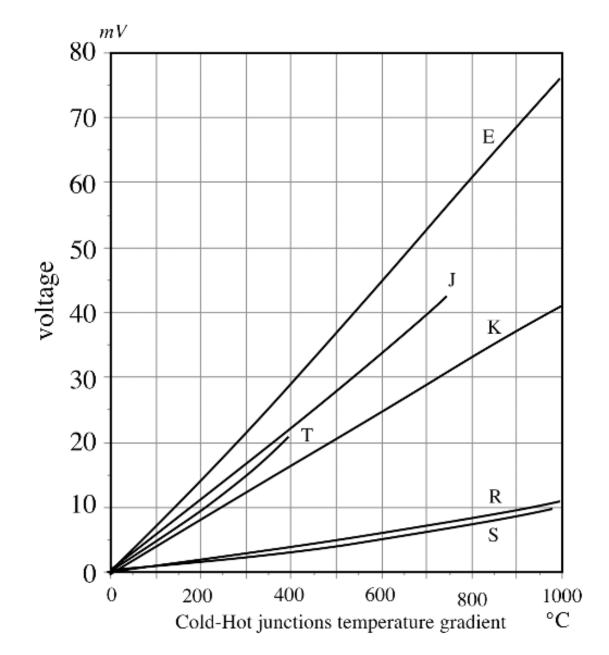
$$\Rightarrow \alpha_{AB} \cdot \Delta T = \pi_{AB}(T + \Delta T) - \pi_{AB}(T) + \sigma_{AB}(\Delta T)$$

 $\Rightarrow \alpha_{AB} = \pi_{AB} + \sigma_{AB}$


Seebeck effect results from Peltier and Thomson effect

²² Thermocouple assemblies

- thermocouple assembly consists of
 - sensing element (junction)
 - protective tube (ceramic or metallic)
 - insulated thermocouple wires (isolate sensor)
 - terminations (connections)



TU/e

Junction materials (+/-)	Sensitivity (at 25°C) (µV/°C)	Full-range output (mV)	Error (°C)	Temperature range (°C)	Туре
Copper / constantan	40.9	26.0	±1.0	-184 to 400	Т
Iron / constantan	51.7	43.0	±2.2	-184 to 760	J
Chromel / alumel	40.6	56.0	±2.2	-184 to 1260	K
Chromel / constantan	60.9	75.0	±1.0	0 to 982	E
Silicon / aluminium	446	51.8	±2.2	-40 to 150	

- many types have a very low sensitivity
- silicon is special
 - small temperature range
 - larger sensitivity
- error due to temperature dependence of Seebeck coefficient

Transfer function of a thermocouple

TU/e

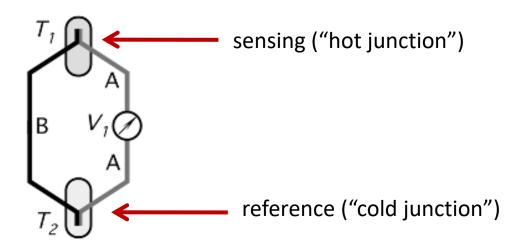
Transfer function of a thermocouple

- Seebeck potential can be approximated by
 - $V_{AB} \approx C_1 (T_1 T_2) + C_2 (T_1^2 T_2^2) \approx (T_1 T_2) [C_1 + C_2 (T_1 + T_2)]$
 - C₁, C₂ constants depending on material
- Seebeck potential depends on
 - temperature difference
 - absolute temperature
- error reduced by selecting a thermocouple with small C₂
 - $C_2 \approx 0.036 \mu V/K^2$ for a T-type thermocouple
- Seebeck coefficient
 - not dependent on nature of thermocouple (e.g. welded, pressed)
 - depends only on the temperature and materials at the junction

26 Thermocouple

example – J-type thermocouple

- one junction at 0°C and other at 45°C
- sensitivity 51.7μV/K
- what is the open circuit voltage?
 - $V = 51.7 \mu V/^{\circ}C \cdot (45^{\circ}C 0^{\circ}C) = 2.3 \text{ mV}$

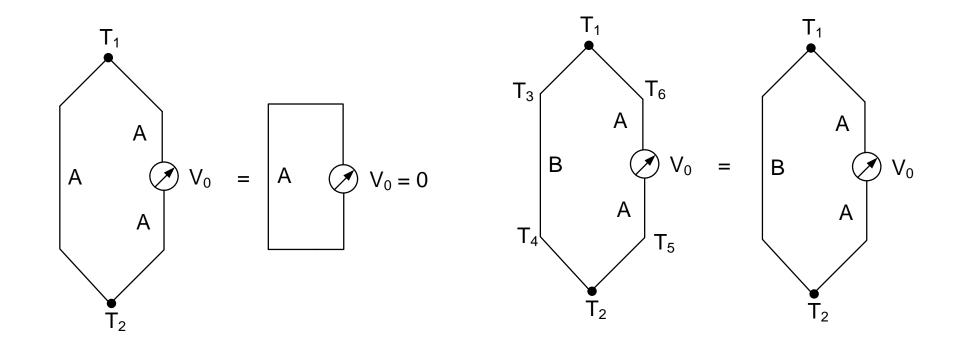

example – J-type thermocouple

- circuit with one junction at 10°C generates 5mV output voltage
- sensitivity 51.7µV/K
- what is the temperature at the measuring junction?
 - using specified sensitivity we find T = 107°C or T = -87°C
 - correct answer depends on polarity of junctions

27 Thermocouple

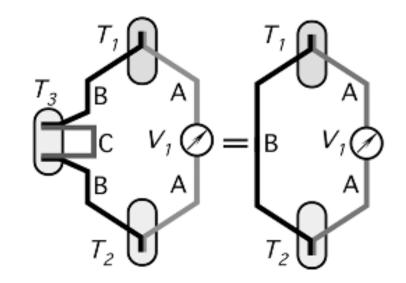
- Thermocouple versus RTD
 - (+) broader measurement range (-270°C to 3000°C)
 - (+) robust, simple to use
 - (+) no self-heating problem (usable in gas measurement)
 - (+) accepts long connection wires
 - (-) lower sensitivity (μ V/°C)
 - (-) known reference temperature needed

- temperature difference between two thermocouple junctions leads to a voltage between the open ends of the circuit
 - junctions of different materials lead to different sensitivity
 - voltage is proportional to the temperature difference
 - reference junction must be at known, constant temperature

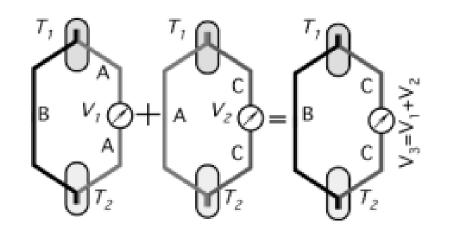

- operation of thermocouples governed by three thermoelectric laws
- thermoelectric laws simplify the analysis of thermocouple circuits
- useful as practical systems may contain more than just two junctions

²⁹ Thermoelectric laws

 law of homogeneous circuits: thermoelectric current cannot be maintained in a homogeneous circuit by heat alone

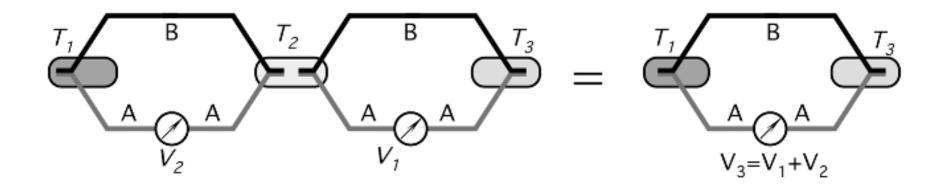

ΓU/e

- implications
 - junctions of different materials must be used
 - single conductor will never cause a Seebeck potential
 - intermediate temperatures do not influence Seebeck potential

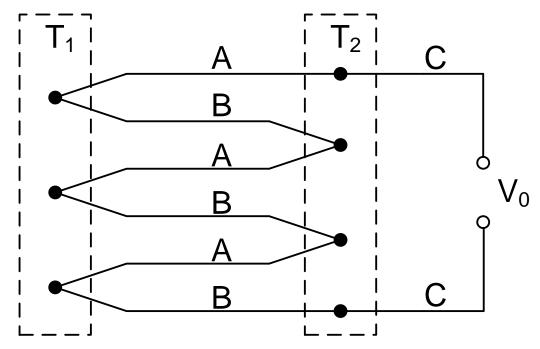


 law of intermediate metals: algebraic sum of all Seebeck potentials in a circuit composed by several different materials remains zero when the whole circuit is at a uniform temperature U/e

- implication
 - materials may be connected in the circuit without affecting the output of the circuit as long as the new junctions are kept at the same temperature



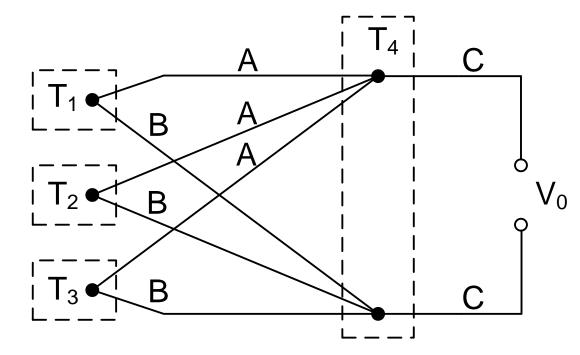
- law of intermediate metals: algebraic sum of all Seebeck potentials in a circuit composed by several different materials remains zero when the whole circuit is at a uniform temperature
- corollary
 - thermal relation between metals B and C follows from the relation between A and B and the relation between A and C
- implication
 - not all material combinations need to be known
 - use single material as reference


U/e

- Iaw of intermediate temperatures:
 - two junctions at T₁ and T₂ produce Seebeck voltage V₂
 - two junction at T₂ and T₃ produce Seebeck voltage V₁
 - then temperatures T_1 and T_3 will produce $V_3 = V_1 + V_2$
- implications
 - calibration can be done at reference temperature T₂ and device can used with different reference temperature T₃

33 Thermocouples in series

thermocouple laws allow analysis of circuits like


output voltage multiple of single thermocouple

$$V_o = \alpha_{AB}(T_2 - T_1) + \alpha_{AB}(T_2 - T_1) + \alpha_{AB}(T_2 - T_1) = 3 \cdot \alpha_{AB}(T_2 - T_1)$$

- circuit know as thermopile
- amplifies output voltage without use of operational amplifier

34 Thermocouples in parallel

thermocouple laws allow analysis of circuits like

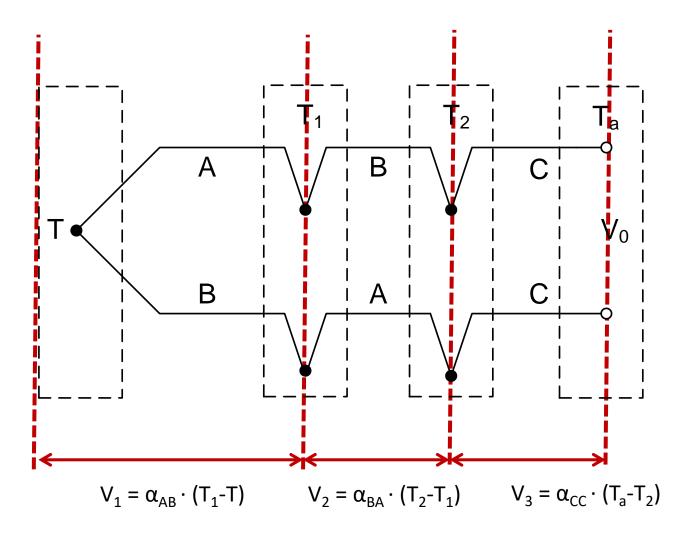
output voltage proportional to the average temperature

$$W_o = \alpha_{AB} \frac{(T_4 - T_1) + (T_4 - T_2) + (T_4 - T_3)}{3}$$

TU/e

example – simulate reference temperature of 0°C

 three types of wires (A, B, C) combined into thermocouples with two intermediate temperatures T₁ and T₂ and temperature T at measurement junction



what relation must T₁ and T₂ have such that the output voltage only depends on T?

TU/e

example – simulate reference temperature of 0°C

three thermocouples formed

example – simulate reference temperature of 0°C

three thermocouples formed

 $V_1 = \alpha_{AB} \cdot (T_1 - T)$ $V_2 = \alpha_{BA} \cdot (T_2 - T_1)$ $V_3 = \alpha_{CC} \cdot (T_a - T_2)$

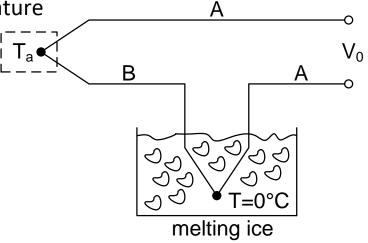
- output voltage V_o is equal to
 V_o = V₁ + V₂ + V₃ (law of intermediate metals)
- it holds

 $\alpha_{AB} = -\alpha_{BA}$ $\alpha_{cc} = 0$ (law of homogeneous circuits)

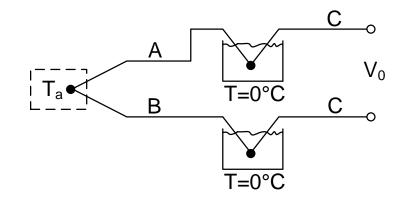
output voltage V_o is thus equal to

 $\mathsf{V_o} = \alpha_{\mathsf{AB}} \cdot (\mathsf{T_1}\text{-}\mathsf{T}) - \alpha_{\mathsf{AB}} \cdot (\mathsf{T_2}\text{-}\mathsf{T_1}) = \alpha_{\mathsf{AB}} \cdot (2\mathsf{T_1} - \mathsf{T_2} - \mathsf{T})$

38

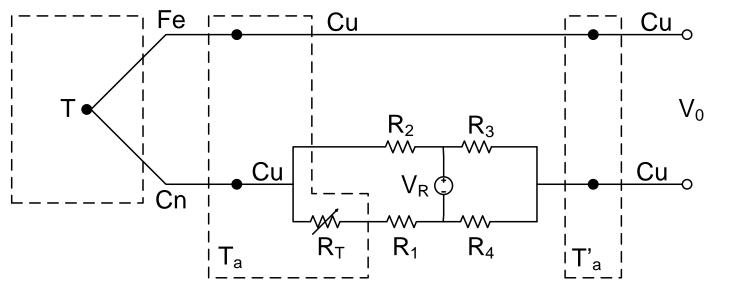

example – simulate reference temperature of 0°C

- output voltage V_o is thus equal to $V_o = \alpha_{AB} \cdot (T_1 - T) - \alpha_{AB} \cdot (T_2 - T_1) = \alpha_{AB} \cdot (2T_1 - T_2 - T)$
- requirement: V_o only depends on T
- requirement fulfilled when $2T_1 = T_2$
- circuit simulates references temperature of 0°C through controlled temperatures T₁ and T₂

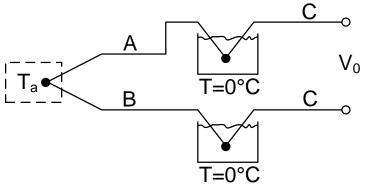

³⁹ Thermocouple circuit

reference junction must be kept at constant, known temperature

- water-ice bath or boiling water
- requires frequent maintenance
- one of the wires must be very long

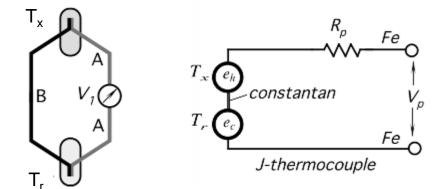


- Iaw of intermediate metals solves wiring problem
 - fixed reference still needed



40 Thermocouple circuit

- reference junction at ambient temperature
- circuit directly compensates for temperature fluctuations


- law of intermediate metals solves wiring problem
 - fixed reference still needed

TU/e

41 Thermocouple output

equivalent electrical circuit for a thermocouple

- R_p internal resistance or the thermocouple
- e_h , e_c model Seebeck potential of hot and cold junction
- V_p Seebeck potential at terminals of the thermocouple
- thermocouple requires cold junction at reference temperature