Sensing, Computing, Actuating Lecture 7 - AD/DA conversion

Exercise 1: Electronic control unit

Electronic control units (ECUs) are commonly used in modern vehicles. The are used to control one or more of the electrical systems or subsystems inside a vehicle. The are often used to control for example the airbags, engine, and powertrain of a car. Other applications of ECUs are shown in Figure 1. Some modern cars contain up-to 80 ECUs and it is expected that this number will increase even further in the future. A micro-processor is often used at the heart of an ECU. Figure 2 shows the block diagram of the Freescale MPC5634M ECU. This ECU uses contains several micro-processors that can be used to run the digital signal processing and control algorithms that are needed to control the operation of a vehicle. These micro-processors process data that has been read by sensors. Typically, the sensors deliver an analog signal while the processor operates on a digital data stream. To connect these two components, the analog sensor value should first be digitized. For this purpose, the ECU contains an analog-to-digital converter (ADC). The ECU shown in Figure 2 contains two ADCs that are both able to perform an analog-to-digital conversion with a 12 -bit resolution within $1 \mu \mathrm{~s}$. Hence, these ADCs can both output 1 million samples per second. They are based on the idea of successive approximation.

Figure 1: Applications of electronic control units (ECUs).

Figure 2: Electronic control unit (ECU) with ADC.
(a) A 5-bit DA converter has a voltage output. For a binary input of 10100, an output voltage of 12 mV is produced. What is the output voltage when the binary input is 11100 ?

Answer: The binary input 10100 is equivalent to the decimal number 20. The output voltage is 12 mV , hence

$$
\text { resolution }=12 \mathrm{mv} / 20=0.6 \mathrm{mV} / \text { digit }
$$

The binary input 11100 is equivalent to the decimal number 28 . The output voltage is therefore equal to:

$$
28 \cdot 0.6 \mathrm{mV} / \text { digit }=16.8 \mathrm{mV}
$$

(b) An 8-bit DA converter has a step size of 5 mV . What is the full-scale output voltage (i.e., maximal output voltage) of the DA converter?

Answer: An 8-bit system has $2^{8}=256$ levels. The lowest level has an output voltage of 0 V . The highest level is $255\left(2^{8}-1=255\right)$ steps higher, hence:

$$
\text { full scale output }=255 \cdot 5 \mathrm{mV}=1.275 \mathrm{~V}
$$

Figure 3: DA converter using summing op-amp.
(c) Show that the output voltage v_{o} of the DA converter shown in Figure 3 is equal to:

$$
v_{o}=-\left(v_{d}+0.5 v_{c}+0.25 v_{b}+0.125 v_{a}\right)
$$

Answer: Since the op-amp is used in feedback, it holds that $v_{x}=0 \mathrm{~V}$. Using Kirchhoff current law at this junction yields:

$$
\frac{v_{d}}{1 k \Omega}+\frac{v_{c}}{2 k \Omega}+\frac{v_{b}}{4 k \Omega}+\frac{v_{a}}{8 k \Omega}+\frac{v_{o}}{1 k \Omega}=0
$$

Solving this equation yields:

$$
v_{o}=-\left(v_{d}+0.5 v_{c}+0.25 v_{b}+0.125 v_{a}\right)
$$

(d) What is the resolution of the DA converter shown in Figure 3?

Answer: The digital inputs accept a resolution of 0 V or 5 V . The number 0001 (only LSB high) shows the smallest step the DA converter can make which is called the resolution of the DA converter. It is equal to:

$$
\text { resolution }=|0.125 \cdot 5 \mathrm{~V}|=0.625 \mathrm{~V}
$$

Figure 4: Alternative DA converter.
(e) What is the weight (contribution) of each input bit in the output voltage of the DA converter shown in Figure 4?

Answer: For input d:

$$
v_{d}=-\frac{1 \cdot 10^{3} \Omega}{2 \cdot 10^{3} \Omega} \cdot 5 \mathrm{~V}=-2.5 \mathrm{~V}
$$

For input c:

$$
v_{c}=0.5 \cdot v_{d}=-1.25 \mathrm{~V}
$$

For input b:

$$
v_{b}=0.5 \cdot v_{c}=-0.625 \mathrm{~V}
$$

For input a:

$$
v_{a}=0.5 \cdot v_{b}=-0.313 \mathrm{~V}
$$

Figure 5: Successive approximation ADC.
(f) Figure 5 shows a successive approximation ADC that uses an 8 -bit DAC which has a conversion range of 0 V to 5.12 V . Draw the ADC transfer curve (binary input versus v_{i}) showing all relevant values.

Answer: The resolution of the ADC is equal to:

$$
\frac{\text { range }}{2^{N}-1}=\frac{5.12 \mathrm{~V}}{2^{8}-1}=20 \mathrm{mV}
$$

The ADC transfer function looks as follows:

(g) Assume that $v_{i}=1.64 \mathrm{~V}$. Draw the DAC output (labels and levels) and its binary input for the first five bits tested. (Hint: calculate the weight of each bit.)

Answer: Weights of LSB bit: $b_{0}=5.1 \mathrm{~V} / 255$ steps $=20 \mathrm{mV}$. With each bit, the weight doubles and so does the output voltage. Hence, the weight of the other bits is equal to: $b_{1}=40 \mathrm{mV}, b_{2}=80 \mathrm{mV}, b_{3}=160 \mathrm{mV}, b_{4}=320 \mathrm{mV}, b_{5}=640 \mathrm{mV}, b_{6}=1.28 \mathrm{~V}, b_{7}=2.56 \mathrm{~V}$.

bit tested	binary input	output voltage DAC	comparator output	tested bit is
b_{7}	10000000	2.56 V	low	low
b_{6}	01000000	1.28 V	high	high
b_{5}	01100000	$1.28 \mathrm{~V}+0.64 \mathrm{~V}=1.92 \mathrm{~V}$	low	low
b_{4}	01010000	$1.28 \mathrm{~V}+0.32 \mathrm{~V}=1.60 \mathrm{~V}$	high	high
b_{3}	01011000	$1.28 \mathrm{~V}+0.32 \mathrm{~V}+0.16 \mathrm{~V}=1.76 \mathrm{~V}$	low	low
b_{2}	01010100	$1.28 \mathrm{~V}+0.32 \mathrm{~V}+0.08 \mathrm{~V}=1.68 \mathrm{~V}$	low	low

(h) What is the main advantage of a successive approximation ADC over a dual-slope ADC?

Answer: The conversion is performed much faster and intermediate (lower resolution) conversions are available during the conversion process.

