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Abstract—This paper presents a partial-order re-
duction method for performance analysis of max-plus
timed systems. Amax-plus timed system is a network of
automata, where the timing behavior of deterministic
system tasks (events in an automaton) is captured in
(max,+) matrices. These tasks can be characterized in
various formalisms like synchronous data flow, Petri
nets, or real-time calculus. The timing behavior of the
system is captured in a (max,+) state space, calculated
from the composition of the automata. This state space
may exhibit redundant interleaving with respect to
performance aspects like throughput or latency. The
goal of this work is to obtain a smaller state space
to speed up performance analysis. To achieve this, we
first formalize state-space equivalence with respect to
throughput and latency analysis. Then, we present a
way to compute a reduced composition directly from
the specification. This yields a smaller equivalent state
space. We perform the reduction on-the-fly, without
first computing the full composition. Experiments show
the effectiveness of the method on a set of realistic
manufacturing system models.

I. Introduction and Related Work
Performance is one of the key aspects in the design

of complex systems. Besides having to meet functional
requirements, systems need to adhere to timing con-
straints, and optimize productivity, typically expressed
with throughput or latency metrics. Throughput describes
the system performance in the long run, for instance the
number of products produced by the system per hour.
Latency describes the temporal distance between certain
events, for instance the time between the start and end
of processing a product. Usually, system performance can
only be measured at a later stage in the development
process, once the system is assembled. A model-based
design approach to performance engineering [1] can be used
to address this issue. In such an approach, formal models
capture the system behavior under the various scenarios
of execution. Moreover, by adding timing information,
performance analysis techniques can be used to predict
the system performance at an early stage in the design
process. However, in many industrial applications, the
underlying timed state space of these models becomes large,
and performance analysis quickly becomes a bottleneck.

In this work, we introduce a new partial-order reduction
technique to speed up performance analysis of timed
systems. The reduction explores only a restricted number

of interleavings of concurrently enabled system operations
that use different sets of system resources. The ample
conditions on the reduction guarantee that the perfor-
mances properties of the original model are preserved in
the reduced model. Traditional partial-order techniques
typically consider local properties such as deadlocks, and
temporal properties formulated in logics like LTL\© (next-
time-free Linear-time Temporal Logic) [2] and CTL∗\©
(next-time-free Computation Tree Logic) [3].

There has been some initial work in applying partial-
order reduction techniques to timed systems. Bengtsson
et al. [4] apply standard partial-order reduction on timed
automata for reachability analysis. These automata execute
asynchronously, in their own local time scale, and synchro-
nize their time scales on communication transitions. This
work has been extended by Minea [5] to perform model
checking for an extension of LTL, that can express timing
relations between events. Yoneda et al. [6] investigated
partial-order reduction for timed Petri nets, that allows
the verification of similar timing relations. Theelen et al. [7]
apply ideas from partial-order reduction on Scenario-Aware
Data Flow models, where they use an independence relation
among actions to resolve non-deterministic choices that
have no impact on the performance metrics.
In this paper, we consider max-plus timed systems as

a formal model. Such systems are described by a set
of (max,+) automata [8] and a composition operator. A
(max,+) automaton is a conventional automaton, where
the timing semantics of each system task (event in an
automaton) is described by a (max,+) matrix. Such
a matrix captures the corresponding timing behavior,
induced by the corresponding action execution times and
action dependencies. Max-plus timed systems can express
the timing semantics of a broad range of specification
formalisms, such as Network Calculus [9], Real-Time
Calculus [10], Synchronous Data Flow [11], Scenario-Aware
Data Flow [12], and Timed-Event Graphs [13], [14], an
important subclass of timed Petri nets. A broad range of
industrial systems can be expressed using these formalisms.
To illustrate the concepts in this paper we use a speci-

fication framework [15] suitable for performance analysis
of manufacturing systems. It allows analysis of both
throughput and latency as performance metrics. System
tasks are described by activities, which consist of a set
of actions that execute on resources and dependencies
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among those actions. The timing behavior of each activity
is captured by a (max,+) matrix. A parallel composition of
(max,+) automata describes the order in which activities
can be executed. As composition operator, multi-party
synchronization [16] is used. From the system specification,
a timed (max,+) state space is derived that captures the
system behavior and the necessary timing information to
evaluate system throughput and latency. We use partial-
order reduction to compute a reduced composition of
(max,+) automata directly from the specification. From
the reduced composition a reduced state space is computed
that preserves performance properties.
Well-known partial-order reduction techniques include

the stubborn sets method of Valmari [17], the persistent
sets method of Godefroid [18], and the ample sets method
of Peled [19]. The idea in these methods is to exploit
information about the independence of certain activities
to reduce the size of the state space, while preserving the
properties of interest. In each state, only a subset of all
possible transitions is selected. In this work, we use ample
sets and the extension of cluster-based ample sets [20].

In the remainder of this paper, we first formally introduce
max-plus timed systems and define the properties of
interest. Then, we introduce a reduction function that
preserves the specified properties on the level of the state
space. Next, we introduce local conditions to compute a
reduced composition automaton directly from the network
of (max,+) automata. The reduced state space can be
computed from the reduced composition automaton. An
experimental evaluation shows the effectiveness of the
reduction technique.

II. Max-Plus Timed Systems
In the specification framework that we use [15], a system

is modeled in terms of resources that provide the actions
that the system can execute. Deterministic system tasks are
described by activities. An activity consists of a fixed set
of action instances and dependencies among those action
instances. A resource must be claimed before its actions
can be used. After execution of the actions, the resource
must be released. The timing information of each activity
is captured in a (max,+) matrix. This matrix describes
the release time of each system resource in terms of when
the resources are available at the start of executing the
activity. The availability times of resources are captured
in a (max,+) vector. Given such a resource availability
vector, we obtain the new resource availability vector
after execution of some activity by multiplying with the
corresponding (max,+) matrix.

We use (max,+) algebra (see for instance [21]) to capture
the timing semantics of activities in a concise way. Two
essential characteristics of the execution of an activity
are synchronization, when an action inside an activity
waits until all preceding actions are finished, and delay,
when an action execution takes an amount of time before
it completes. These characteristics correspond well to
the (max,+) operators maximum (max) and addition
(+), defined over the set R−∞ = R ∪ {−∞}. Operators

(a) Activities A, B, C and D. Actions are from a till h, and the
action timings are given inside the nodes. Resources r1, r2 and
r3 are claimed (cl) and released (rl).

(b) Max-plus timed system.
Activities A, B, D have reward
0; C has reward 1.

(c) Composition of the
(max,+) automata. The
reduced composition is shown
with thick transitions.

Fig. 1. Running Example.

MA =

[
4 5 −∞
−∞ 3 −∞
−∞ −∞ 0

]
MB =

[
1 3 −∞
1 3 −∞
−∞ −∞ 0

]

MC =

[
0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 4

]
MD =

[
2 −∞ 3
−∞ 0 −∞

2 −∞ 3

]

Fig. 2. (max,+) matrices of activities A, B, C and D.

max and + are defined as usually in algebra, with the
additional convention that −∞ is the unit element of max:
max(−∞, x) = max(x,−∞) = x, and the zero-element of
+: −∞+ x = x+−∞ = −∞.

Since (max,+) algebra is a linear algebra, it can be
extended to matrices and vectors in the usual way. Given
matrix A and matrix B, we use A ⊗ B to denote the
(max,+) matrix multiplication. Given m×p matrix A and
p×n matrix B, the elements of the resulting matrix A⊗B
are determined by: [A⊗B]ij = pmax

k=1
([A]ik + [B]kj). For

any vector x, ‖x‖ = maxi[x]i denotes the vector norm of x.
For vector x, with ‖x‖ > −∞, we use norm(x) to denote
x−‖x‖, the normalized vector, such that

∥∥norm(x)
∥∥ = 0.

We use 0 to denote a vector with only zero-valued entries.
In this paper, we use the running example shown in

Fig. 1. This max-plus timed system consists of activities
A,B,C and D (see Fig. 1a), and three (max,+) automata
(see Fig. 1b). Fig. 1c shows the composition of the (max,+)
automata. Each activity has a corresponding (max,+)
matrix that captures the timing behavior, shown in Fig. 2.
Each matrix row represents the symbolic release time of a
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a c e

b d f

g h
T0 1 2 3 4 5 6

r3

r2

r1

Fig. 3. Gantt chart of activity sequence ABC when all resources are
initially available.

resource in terms of all system resources, which is denoted
by set R. Let R be a function that maps each activity
to the set of resources the activity uses. As an example,
consider the first row of matrixMA. This row describes the
release time of resource r1 ∈ R, expressed in terms of when
resources r1, r2 and r3 are available at the start of executing
A. In the execution of activity A, there is a timing delay
of 4 time units between the claiming of resource r1 and
the subsequent release of resource r1. Similarly, a delay
of 5 is present between the claiming of resource r2 and
the release of r1. There is no dependency between the
availability times of resource r3 and the release of resource
r1, indicated by −∞. This can also be seen in the structure
of activity A (Fig. 1a), since resource r3 is not involved in
the execution. For details on how to compute the (max,+)
matrices of activities, see [15].
The timing evolution of the system is expressed using

(max,+) matrix multiplication. Assume that all resources
are initially available, captured in vector 0. The new
availability times of the resources after executing activity
A with corresponding matrix MA are computed as follows:

MA ⊗ 0 =

 max(4 + 0, 5 + 0,−∞+ 0)
max(−∞+ 0, 3 + 0,−∞+ 0)
max(−∞+ 0,−∞+ 0, 0 + 0)

 =

5
3
0

 .
Resources r1 and r2 are available again after 5 and 3

time units respectively. The availability time of resource
r3 stays 0, since it is not used by activity A.

The timing semantics of an activity sequence is defined
in terms of repeated matrix multiplication. As an example,
consider the execution of activity sequence ABC, shown in
Fig. 3. The new resource availability vector after execution
of this sequence is computed as follows:

MC ⊗MB ⊗MA ⊗ 0 = [6, 6, 4]ᵀ.

To capture all possible activity orderings in the system,
we use (max,+) automata.

Definition 1 ((max,+) automaton (adapted from [8])). A
(max,+) automaton A is a tuple 〈S, ŝ,Act, reward,M, T 〉
where S is a finite set of states, ŝ ∈ S is the initial state, Act
is a nonempty set of activities, function reward : Act →
R≥0 quantifies the amount of progress per activity, function
M maps each activity to its associated (max,+) matrix
of size |R| ×|R|, and T ⊆ S × Act × S is the transition
relation. Let s A→ s′ be a shorthand for 〈s,A, s′〉 ∈ T . It
is assumed that A is deterministic, which means that for

any s, s′, s′′ ∈ S and A ∈ Act, s A→ s′ and s A→ s′′ imply
s′ = s′′.

Let A = 〈S, ŝ,Act, reward,M, T 〉 be a (max,+) automa-
ton. An activity A ∈ Act is said to be enabled in a state
s ∈ S if s A→ s′ for some s′ ∈ S. Set enabled(s) = {A ∈
Act | ∃s′ : s A→ s′} contains all activities enabled in s.
State s is a deadlock state if enabled(s) = ∅. Since A
is deterministic, for any activity A ∈ enabled(s), there
is a unique A-successor of s, denoted by A(s). For an
activity sequence A1 . . . An, the resulting state is defined
inductively as (A1)(s) = A1(s) if A1 ∈ enabled(s), and
(A1 . . . AnAn+1)(s) = An+1((A1 . . . An)(s)) if An+1 ∈
enabled((A1 . . . An)(s)). Otherwise, (A1 . . . An+1)(s) is un-
defined.
A (max,+) automaton is an ω-automaton [22] that

accepts infinite ω-words over Act. There are no specific
acceptance conditions on these words, so any infinite word
that conforms to a sequence of transitions starting in the
initial state is accepted. A possible behavior of the (max,+)
automaton is described in a run. An infinite run ρ of A is
an infinite, alternating sequence of states and activities:

ρ = s0A1s1A2s2A3 . . . such that s0 = ŝ

and si+1 = Ai+1(si) for all i ≥ 0.

Given run ρ, let ρ[..i] denote the prefix s0A1 . . . si, and
let ρ[i, j] = siAi+1 . . . sj denote a run fragment from state
si until sj . Furthermore, let ρ[i] denote state si in ρ.

We use the term (max,+) automaton to emphasize that
the timing semantics of the automaton is expressed in
(max,+) algebra. Note that the original definition in [8]
does not consider rewards, but this extension is considered
for instance in Weakly-Consistent Scenario-Aware Data
Flow [23]. It allows for a refined, explicit specification
of progress. A max-plus timed system is defined as a
composition of (max,+) automata. In our framework we
use multi-party synchronization as composition operator,
which is defined in the following way.

Definition 2 (Multi-party synchronization). Given
(max,+) automata A1 = 〈S1, ŝ1,Act1, reward1,M1, T1〉
and A2 = 〈S2, ŝ2,Act2, reward2,M2, T2〉, we define
the multi-party synchronization A1 ‖ A2 = 〈S1 ×
S2, 〈ŝ1, ŝ2〉,Act1∪Act2, reward1∪reward2,M1∪M2, T12〉,
where

T12 =


〈s1, s2〉

A→12 〈s′1, s′2〉 if A ∈ Act1 ∩Act2,

s1
A→1 s

′
1, s2

A→2 s
′
2

〈s1, s2〉
A→12 〈s′1, s2〉 if A ∈ Act1 \Act2, s1

A→1 s
′
1

〈s1, s2〉
A→12 〈s1, s

′
2〉 if A ∈ Act2 \Act1, s2

A→2 s
′
2.

Definition 3 (Max-plus timed system). A max-plus timed
systemM is described byM = A1 ‖ · · · ‖ An with (max,+)
automata Ai and multi-party synchronization operator ‖. It
is assumed that all matrices have the same dimensions of
|R| ×|R|, and that the reward functions agree for the same
activities.



6

The composition of all the individual automata is again
an automaton. Fig. 1c shows the composition of the
automata shown in Fig. 1b. Each (max,+) automaton
can be interpreted as a normalized (max,+) state space
that captures all the accepted runs, and contains all the
necessary information to evaluate performance properties.

Definition 4 (Normalized (max,+) state space
(adapted from [12])). Given (max,+) automaton
A = 〈S, ŝ,Act, reward,M, T 〉 with matrices of size
|R| ×|R|, we define the normalized (max,+) state space
S = 〈C, ĉ,Act,∆,M,w1, w2〉 as follows:
• set C = S × R−∞|R| of configurations that consists of
a state and a normalized (resource availability) vector;

• initial configuration ĉ = 〈ŝ,0〉;
• a labeled transition relation ∆ ⊆ C × Act ×
C that consists of the transitions in the set
{〈〈s,γ〉, A, 〈s′, norm(γ′)〉〉 | s A−→ s′∧γ′ = M(A)⊗γ};

• function w1 that assigns a weight w1(c, A, c′) =
reward(A) to each transition 〈c, A, c′〉 ∈ ∆;

• function w2 that assigns a weight w2(c, A, c′) =∥∥M(A)⊗ γ
∥∥ to each transition (c, A, c′) ∈ ∆. This

weight indicates the total added execution time to the
complete schedule.

We define the set of enabled activities and runs in a
(max,+) state space in a similar way as in a (max,+)
automaton. The state space of A1 ‖ · · · ‖ An is computed
in two steps. First, we compute the composition, and
subsequently we compute the corresponding state space.
Fig. 4 shows the state space of the max-plus timed system of
Fig. 1. In some cases, this state space might be infinite [12].
The state space is guaranteed to be finite, if for every
activity sequence u allowed by the (max,+) automaton
and any k ≥ 0, there is some m > k such that the matrix
Mu(k) ⊗ · · · ⊗Mu(m−1) contains no entries −∞ [12]. We
can make the following observation.

Proposition 5. Given (max,+) automaton A and corre-
sponding (max,+) state space S, S is finite iff each resource
is used by at least one activity in any cycle in A.

In the (max,+) automaton shown in Fig. 1c, each
cycle involves activities A,B,C, and D. Together, these
activities use all three resources r1, r2, and r3. Therefore,
the corresponding state space shown in Fig. 4 is finite.

The behavior of a (max,+) automaton S is captured by
set R(S) of all allowed runs. A run ρ ∈ R(S) is an infinite,
alternating sequence of configurations and activities:

ρ = c0A1c1A2c2A3 . . . such that c0 = ĉ

and ci+1 = Ai+1(ci) for all i ≥ 0.

Given run ρ, we define run prefix ρ[..i] = c0A1 . . . ci,
run fragment ρ[i, j] = ciAi+1 . . . cj from configuration
ci until cj , and ρ[i] = ci. We also define vector γ̄n =
(
⊗n

k=1 M(Ak))⊗ 0, which is the resulting resource avail-
ability vector after executing activities A1 . . . An without
normalization. These vectors can be derived from the
normalized (max,+) state space.

Theorem 6. Let S be a (max,+) state space, and ρ =
c0A1c1A2c2A3 . . . be a run in S. Then, for each n ≥ 0 it
holds that γ̄n =

∑n−1
k=0 w2(ck, Ak+1, ck+1) + γn.

Proof. Proof by induction over n. First consider the base
case n = 0. Then, γ̄0 = γ0 = 0. Now, consider the
induction step. As induction hypothesis assume γ̄n =∑n−1
k=0 w2(ck, Ak+1, ck+1) + γn. Then:

n∑
k=0

w2(ck, Ak+1, ck+1) + γn+1

=
n−1∑
k=0

w2(ck, Ak+1, ck+1) + w2(cn, An+1, cn+1) + γn+1

= {Def. 4}
n−1∑
k=0

w2(ck, Ak+1, ck+1) +
∥∥M(An+1)⊗ γn

∥∥+

M(An+1)⊗ γn −
∥∥M(An+1)⊗ γn

∥∥
=
n−1∑
k=0

w2(ck, Ak+1, ck+1) +M(An+1)⊗ γn

= {c+M ⊗ γ = M ⊗ (γ + c)}

M(An+1)⊗

n−1∑
k=0

w2(ck, Ak+1, ck+1) + γn


= {induction hypothesis}

M(An+1)⊗

(
n⊗
k=1

M(Ak))⊗ 0


= (

n+1⊗
k=1

M(Ak))⊗ 0

= ¯γn+1

Example 7. Consider the normalized (max,+) state space
shown in Fig. 4, and the execution of activity sequence
ABC starting from the initial state. This corresponds to
some run ρ that starts with run fragment ρ[0, 3] =

〈s1,

0
0
0

〉 A,5−−→ 〈s2,

 0
−2
−5

〉 B,1−−→ 〈s3,

 0
0
−6

〉 C,0−−→ 〈s4,

 0
0
−2

〉.
The vector in each configuration without normalization can
now be computed using Theorem 6; γ̄0 = γ0 = 0 and

γ̄1 = 0 + 5 + [0,−2, 5]ᵀ = [5, 3, 0]ᵀ

γ̄2 = 0 + 5 + 1 + [0, 0,−6]ᵀ = [6, 6, 0]ᵀ

γ̄3 = 0 + 5 + 1 + 0 + [0, 0,−2]ᵀ = [6, 6, 4]ᵀ.
Fig. 3 shows the same availability times of 6,6, and 4 for
resources r1, r2, and r3 after executing ABC.

III. Partial-order reduction for performance
analysis

In this section we present a partial-order reduction
technique that preserves throughput and latency properties.
We first define throughput and latency.
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〈s1,



0
0
0


〉 〈s8,



−4
−4
0


〉

〈s2,




0
−2
−5


〉

〈s6,




0
0
−3


〉

〈s7,



−1
−1
0


〉

〈s3,




0
−2
−8


〉

〈s4,




0
−2
−4


〉

〈s3,




0
0
−6


〉

〈s5,




0
−2
−1


〉

〈s4,




0
0
−2


〉

〈s1,




0
−4
0


〉 〈s5,




0
−5
0


〉

〈s2,




0
−5
−4


〉

〈s8,



−4
−8
0


〉

〈s1,




0
−2
0


〉

〈s8,



−4
−6
0


〉

〈s2,




0
−3
−4


〉

〈s5,




0
−3
0


〉

〈s6,




0
0
−1


〉

〈s4,




0
0
−1


〉

〈s7,



−3
−3
0


〉

〈s4,




0
−2
−2


〉

〈s3,




0
−2
−6


〉

〈s3,




0
0
−5


〉

C, 4

A, 5

B, 3

B, 0

A, 1

A, 5

C, 1

C, 0

A, 4

B, 1

C, 0

C, 0

B, 1

D, 2

D, 2

A, 4 C, 0

C, 4 A, 0

B, 1

B, 1

B, 1

B, 1

C, 3

B, 0

B, 0

A, 2

A, 5

C, 0

D, 2

D, 2

B, 1

B, 1

C, 0

C, 4

A, 4

A, 0

C, 0

Fig. 4. Normalized (max,+) state space of the (max,+) automaton shown in Fig. 1c. The reduced state space is shown with thick transitions.
Transitions are annotated with the corresponding activity and w2 value. Activity C has reward 1, and activities A, B, and D have reward 0.

Throughput: We quantify the throughput of a run as
the ratio between the total reward (sum of w1 weights)
and the total execution time (sum of w2 weights).

Definition 8 (Ratio value of a run). The ratio of a run
ρ = c0A1c1A2c2A3 . . . is the ratio of the sums of weights
w1 and w2, defined as follows

Ratio(ρ) = lim sup
l→∞

∑l
i=0 w1(ci, Ai+1, ci+1)∑l
i=0 w2(ci, Ai+1, ci+1)

.

We define the ratio value of a run fragment ρ[i, j] as

Ratio(ρ[i, j]) =
∑j
k=i w1(ck, Ak+1, ck+1)∑j
k=i w2(ck, Ak+1, ck+1)

.

The system throughput is determined by the possible
ratio values over all infinite runs on some state space S. We
can quantify a guarantee on the throughput of the system
by the minimum ratio value achieved by any of those runs:

τmin(S) = min
ρ∈R(S)

Ratio(ρ).

If S is finite, each infinite run eventually reaches a
recurrent configuration. Each reachable simple cycle in this
state space allows for a periodic execution of the system.
Since S has a finite number of simple cycles (no repetition
of transitions is allowed), we can determine the minimum
ratio value of the graph from a minimum cycle ratio (MCR)
analysis [24]. The minimum cycle ratio (MCR) over all the
cycles in S, say cycles(S), is defined in the following way:

MCR(S) = min
c∈cycles(S)

Ratio(c) = τmin(S).

Example 9 (Cycle ratio). Consider the normalized
(max,+) state space S shown in Fig. 4. Recall that activity
C has a reward of 1, and activities A,B, and D have a
reward of 0. In this way, the ratio relates to the number
of C occurrences per time unit. The minimum cycle ratio
MCR(S) = 3/8, which can for instance be found in the
following cycle corresponding to the execution of (CBAD)ω:

〈s1,

 0
−4
0

〉 C,4−−→ 〈s8,

−4
−8
0

〉 B,0−−→ 〈s7,

−3
−3
0

〉 A,2−−→ 〈s4,

 0
−2
−2

〉.
D, 2

The other periodic executions where B precedes A, i.e.
(BACD)ω and (BCAD)ω, have the same minimum cycle
ratio value.

Latency: In general, latency is the time delay between
a stimulus and its effect. In the context of max-plus timed
systems, we define the latency in terms of the temporal
distance that separates the resource availability times of
a resource at the start of two activities Asrc and Asnk.
In the state space, consider some run ρ = c0A1c1A2 . . .
with ci = 〈si,γi〉 containing run fragment ρ[i, j + 1] =
ciAi+1 . . . cjAj+1cj+1, with Ai+1 = Asrc and Aj+1 = Asnk.
Then we define the start-to-start latency λ between the
resource availability times of resource r in γi and γj as

λ(ρ, i, j, r) = [γ̄j ]r − [γ̄i]r.

Example 10 (Latency). Consider again the execution of
activity sequence A ·B ·C starting from configuration c0 in
the (max,+) state space shown in Fig. 4. Suppose we want
to compute the start-to-start latency between the resource
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a

(a) Before transformation

sa a

(rl, cl) (rl, rl)

(b) After transformation

Fig. 5. Adaptation of an activity to measure the start time of action
a in terms of the availability time of resource rl.

availability times of r1 in γ̄0 (start of activity A) and γ̄2
(start of activity C). Recall from Example 7 that γ̄0 = 0
and γ̄2 = [6, 6, 0]ᵀ. The latency is now computed as

λ(ρ, 0, 2, r1) = [γ̄2]r1 − [γ̄0]r1 = [

6
6
0

]r1 − [

0
0
0

]r1 = 6.

The above focuses on resources. The temporal distance
between the start of two actions can also be determined
from the resource availability times in the state space,
by slightly adapting the corresponding activities that
contain the actions. Assume action instances a and f in
activities Asrc and Asnk. To determine the start-to-start
latency between a and f , we slightly transform activities
Asrc and Asnk. We illustrate the approach for Asrc, the
transformation for Asnk is analogous. First, we add a new
action sa to Asrc, using the same resource as a, that does
not take time. We remove the incoming dependencies from
a and add them to sa. Then we add a dependency from
sa to a. Next, we add a new resource rl and a dependency
from the claim node of resource rl to sa, and from sa to
the release node of rl. In this way, we encode the start time
of action a in terms of the resource availability of resource
rl. The transformation is illustrated graphically in Fig. 5.
We assume that the occurrences of Asrc and Asnk

activities are related. In any run, for any k > 0, the k-th
occurrence of Asrc is paired with the k-th occurrence of
Asnk. We refer to such a pair of related activities as a
source-sink pair. Let getOccurrence(ρ,A, k) be a function
that returns the index of the k-th occurrence of activity
A in run ρ. The start-to-start latency for resource r in
ρ with source-sink pair Ai+1 = Asrc and Aj = Asnk in
run fragment ρ[i, j + 1], is now equal to λ(ρ, i, j, r). The
maximum start-to-start latency in a run is now obtained
by looking at all source-sink pairs:

λmax(ρ,Asrc, Asnk, r) = sup
k>0

λk(ρ) where

λk(ρ) = λ(ρ, i, j, r),
i = getOccurence(ρ,Asrc, k), and
j = getOccurence(ρ,Asnk, k).

Definition 11 (Latency). Given normalized (max,+) state
space S, the maximum start-to-start latency of resource r
with source-sink pair Asrc, Asnk in S is found by taking the
maximum latency over all runs in the state space:

λmax(S) = sup
ρ∈R(S)

λmax(ρ,Asrc, Asnk, r).

Ratio Independence: In the state space, there can be
redundancy with respect to multiple runs that have the
same ratio value. Part of this redundancy is caused by the
interleaving of activities that have no mutual influence. We
reduce the size of the state space by removing redundant
interleaving of ratio-independent activities.

Definition 12 (Ratio independent). Let
S = 〈C, ĉ,Act,∆,M,w1, w2〉 be a (max,+) state space,
c ∈ C be a configuration, and A,B ∈ enabled(c) be
activities enabled in c. Activities A and B are ratio
independent in c iff if they satisfy the following conditions:
1) if A,B ∈ enabled(c), then B ∈ enabled(A(c)),

A ∈ enabled(B(c)), and AB(c) = BA(c);
2) wi(c, A,A(c)) + wi(A(c), B,AB(c)) =

wi(c,B,B(c)) + wi(B(c), A,BA(c)) for i ∈ {1, 2};
3) R(A) ∩R(B) = ∅.
Two activities are ratio dependent if they are not ratio

independent.

The first property is the classical notion of independence:
in every configuration where A and B are both enabled,
the execution of one activity cannot disable the other
activity, and the resulting configuration after executing
both activities in any order is the same. The second
property requires that the sum of the weights w1 and
w2 of the corresponding transitions of A and B is the same.
The third property requires that activities A and B do not
share resources.

Reduced state space: In the remainder of this section,
we formalize an ample reduction on a (max,+) state space
that preserves throughput and latency.

Definition 13 (State space reduction function). A re-
duction function reduce for a (max,+) state space S =
〈C, ĉ,Act,∆,M,w1, w2〉 is a mapping from C to 2Act such
that reduce(c) ⊆ enabled(c) for each configuration c ∈ C.
We define the reduction of S induced by reduce as the small-
est (max,+) state space S ′ = 〈C ′, ĉ′,Act′,∆′,M ′, w′1, w′2〉
that satisfies the following conditions:
• C ′ ⊆ C, ĉ′ = ĉ, Act′ = Act, ∆′ ⊆ ∆, M ′ = M ;
• for every c ∈ C ′ and A ∈ reduce(c), (c, A,A(c)) ∈ ∆′,
w′1(c, A,A(c)) = w1(c, A,A(c)), and w′2(c, A,A(c)) =
w2(c, A,A(c)).

Definition 14 (Ample conditions state space). Let ample
be a reduction function on a (max,+) state space that
satisfies the following conditions:
(R1) Non-emptyness condition: if enabled(c) 6= ∅,

then ample(c) 6= ∅.
(R2) Ratio-dependency condition: For any configura-

tion c0 ∈ C ′ and run c0A1c1A2 . . . Amcm with m ≥ 1
in S, if activity Am and some activity in ample(c0)
are ratio dependent in c0, then there is an index i with
1 ≤ i ≤ m with Ai ∈ ample(c0).

Example 15. Consider initial configuration c0 = 〈s1,0〉
in the state space shown in Fig. 4. Activities A and B are
ratio dependent in c0 (they do not satisfy condition 1 in
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Def. 12) and ratio independent with activity C. Ample sets
{A,B} and {C} both satisfy conditions (R1) and (R2).

Condition (R2) implies that starting from some config-
uration ci, any activity in ample(ci) remains enabled as
long as no activity in ample(ci) has been executed.

Lemma 16 (adapted from [25, Lemma 8.15]). Let ρ[i, j] =
ciBici+1 . . . Bjcj be a run fragment in S. If ample(ci)
satisfies condition (R2) and {Bi, . . . , Bj} ∩ ample(ci) = ∅,
then all activities A ∈ ample(ci) are ratio-independent of
{Bi, . . . , Bj , }. In addition, we have A ∈ enabled(ck) for
i < k ≤ j.

Conditions (R1) and (R2) ensure that for each run in the
(max,+) state space we can find an equivalent run in the
reduced (max,+) state space. First we define equivalence
of run prefixes. Two run prefixes are equivalent iff their
corresponding activity sequences can be obtained from each
other by repeatedly commuting adjacent ratio-independent
activities.

Definition 17. Activity sequences v, w ∈ Act∗ are consid-
ered equivalent [26], denoted v ≡ w, iff there exists a list of
activity sequences u0, u1, . . . un, where u0 = v, un = w, and
for each 0 ≤ i < n, ui = ūABû and ui+1 = ūBAû for some
ū, û ∈ Act∗ and ratio-independent activities A,B ∈ Act.

Given prefix ρ[..m] = c0A1 . . . Amcm of some run ρ, let
ρm denote the activity sequence A1 . . . Am.

Definition 18. Prefixes ρ[..m] and σ[..m] of runs ρ and σ
are equivalent, denoted ρ[..m] ≡ σ[..m], iff ρm ≡ σm.

Throughput is defined as a limit on prefix ratios of
infinite runs. To define equivalence of runs in terms of
throughput, we need to consider run prefixes with a
bounded difference in activities following those prefixes.

Definition 19 (Equivalence of runs). Let ρ and σ be two
runs. We define ρ � σ iff there exists a c ∈ N such that for
all n ≥ 0 it holds that ρ �n σ, where ρ �n σ is defined if
there exists some k ≥ n, run prefixes ρ[..k] and ρ̂[..k] with
ρ̂k ≡ ρk such that ρ̂k = σn · τ for some τ , and k − n ≤ c.
Runs ρ and σ are equivalent, denoted ρ ≡ σ, iff ρ � σ and
σ � ρ.

If a reduction satisfies conditions (R1) and (R2), then
for each run in the full (max,+) state space we can find
an equivalent run in the reduced (max,+) state space.

Theorem 20 (Equivalent runs). Let S =
〈C, ĉ,Act,∆,M,w1, w2〉 be a finite normalized (max,+)
state space, and S ′ be the reduced (max,+) state space
induced by reduction function ample. If ample satisfies
conditions (R1) and (R2), then for each run ρ ∈ R(S),
there exists a run σ ∈ R(S ′) with ρ ≡ σ.

Proof. Let ρ ∈ R(S) be some run in S. Now, we need to
show that there exists an equivalent run σ ∈ R(S ′) such
that ρ � σ and σ � ρ.
First, we show that there exists a run σ ∈ R(S ′) such

that ρ � σ with c = |C|. To this end, we first define σn

recursively as follows:

σ0 = ε

σn+1 = σn ·A,where A ∈ ample(ρ[n]) is the first
such activity in ρ[n..].

We now prove that such an activity A can be found
in ρ[n..] = cnB1cn+1B2 . . ., with cn = ρ[n]. Let R′ ⊆ R
denote the set of resources used by activities in ample(cn),
i.e. R′ =

⋃
A∈ample(cn) R(A). Since the normalized (max,+)

state space is finite, eventually we always reach a cycle.
By Corollary 5, there is at least one activity on this cycle
that uses one of the resources in R′ that is also used by
some activity A ∈ ample(cn). Let A = Bm be the first
such activity.
Let σn for each n ≥ 0 be constructed using this proce-

dure, and let σ =
⊔
n≥0 σn. We now prove that ρ �n σ

for all n ≥ 0 by induction on n. As a base case, consider
n = 0. Then, obviously σ0 = ρ0 = ε satisfies ρ �0 σ. As
induction hypothesis assume that ρ �n σ. This means that
there exists a k ≥ n, and ρ̂k ≡ ρk such that ρ̂k = σn · τ for
some τ , and k−n ≤|C|. In the construction, we find some
l ≥ n+ 1, such that σn+1 = σn ·A, τ ′ = B1 . . . Bm−1 and
ρ̃l = σn+1 · τ ′. By Lemma 16, A = Bm ∈ ample(cn), and
Bm is ratio-independent with B1 . . . Bm−1, which means
that AB1 . . . Bm−1 ≡ B1 . . . Bm−1A. The value of m (and
subsequently also the length of τ ′) is bounded by the max-
imum simple cycle length in the state space, i.e. m ≤|C|.
Since σn ≡ ρ̂n and AB1 . . . Bm−1 ≡ B1 . . . Bm−1A, we
have that ρ̃l ≡ ρl. By the principle of induction, ρ �n σ
for all n ≥ 0.
Since ρ �n σ for all n ≥ 0, run σ satisfies ρ � σ. The

fact that σ � ρ, follows from the observation that each run
σ ∈ R(S ′) is also a run in R(S). Therefore, we have shown
that for each run ρ ∈ R(S), there exists a run σ ∈ R(S′)
such that ρ ≡ σ.

Theorem 21 (Equivalent runs have the same throughput).
Let ρ and σ be runs. If ρ ≡ σ, then Ratio(ρ) = Ratio(σ).

Proof. Since ρ ≡ σ, by Def. 19, we have ρ �n σ for n ≥ 0.
This means that there exists a k ≥ n, and run ρ̂ such that
ρ̂k = σn · τ for some τ , and k − n ≤ c.

The maximum difference between wi(ρn) and wi(σn) for
i ∈ {1, 2} and any n ≥ 0 is bounded by the maximum total
wi sum of suffix τ , whose length is bounded by c. Let ki
denote the maximum total wi sum of τ , i.e. the maximum
total wi sum over all simple cycles in the graph:

wi(ρn) ≤ wi(σn) ≤ wi(ρn) + ki for some ki ≥ 0.

Since lim supn→∞ wi(ρn) = ∞ for i ∈ {1, 2}, the
constant ki can be ignored, and we obtain the following
result:

Ratio(ρ) = lim sup
n→∞

w1(ρn)
w2(ρn) = lim sup

n→∞

w1(σn)
w2(σn) = Ratio(σ).

Theorem 22 (Equivalent runs have the same latency). Let
ρ, σ ∈ R(S). Let Asrc and Asnk be any source-sink pair, and
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let r be the resource for which we want to calculate the start-
to-start latency. If ρ ≡ σ, then λmax(ρ,Asrc, Asnk, r) =
λmax(σ,Asrc, Asnk, r).

Proof. Consider any source-sink pair instance k in run ρ
with latency λk(ρ) = λ(ρ, i, j, r) = [γ̄j ]r − [γ̄i]r for some
0 ≤ i < j. Furthermore, let λk(σ) = λ(σ,m, n, r) for some
0 ≤ m < n.
The order of Asrc and Asnk activities in σ is the same

as in run ρ, since R(Asrc) ∩ R(Asnk) 6= ∅ and activities
Asrc and Asnk are ratio-dependent in any configuration.
The corresponding run fragments ρ[i, j] and σ[m,n] start
with the k-th occurrence of Asrc and end with the k-th
occurrence of Asnk.
Let l = max(j, n). Since ρ ≡ σ, also ρ �l σ and there

exists some ρ̂ and k ≥ l such that ρk ≡ ρ̂k = σl · τ for some
τ . Prefix ρ̂k is obtained from ρ by repeatedly commuting
ratio-independent activities. We need to show that each
such swap has no influence on the latency of source-sink
pair instance k. Let A,B be any pair of such activities,
ratio-independent in some configuration cs.

First, consider the case where both A and B are different
from Asrc and Asnk. Let γ̄j be the resource vector of
interest. Assume that s ≤ j, since for s > j, obviously
the swap has no impact on the value. Since A,B are ratio-
independent, their matrices commute, and therefore the
value of γ̄j remains the same:

γ̄j =
j⊗

k=1
M(Ak)⊗ 0

=
j⊗

k=s+2
M(Ak)⊗M(As+1)⊗M(As)⊗

s−1⊗
k=1

M(Ak)⊗ 0

=
j⊗

k=s+2
M(Ak)⊗M(As)⊗M(As+1)⊗

s−1⊗
k=1

M(Ak)⊗ 0.

Now assume a swap of activities Asrc and B, ratio-
independent in configuration cs. Assume that Asrc = Aρs+1
in run ρ, and B = Aσs+1 in run σ. We need to show
that [γ̄s]r = [ ¯γσs+1]r, where ¯γσs+1 is the resource vector
after executing B from configuration cs. Since Asrc and B
are ratio-independent, resource r is not used by B. This
means that the resource availability time before and after
executing B stays the same for resource r. This implies
that [γ̄s]r = [ ¯γσs+1]r. A similar reasoning can be used for
the case where Asnk and B are swapped, and when B
is executed first in run ρ instead of in run σ. Since the
resource availability vectors corresponding to the start of
the k-th occurrences of Asrc and Asnk are the same, we
conclude that λk(ρ) = λk(σ) for any k ≥ 0. It follows that
λmax(ρ,Asrc, Asnk, r) = λmax(σ,Asrc, Asnk, r).

From Theorems 20-22, it immediately follows that a safe
reduction preserves throughput and latency aspects.

Corollary 23. Let S be a finite normalized (max,+) state
space, and S ′ the reduced (max,+) state space induced
by reduction function ample. If ample satisfies conditions

(R1) and (R2), then τmin(S) = τmin(S ′) and λmax(S) =
λmax(S ′).

Reduced (max,+) automata composition: We want to
perform the partial-order reduction at the level of (max,+)
automata, rather than at the level of the (max,+) state
space. To achieve this goal, we introduce the notion of
resource independence at the level of a (max,+) automaton.
This notion is used in the ample conditions on reductions
of a (max,+) automaton.

Definition 24 (Resource-independent activities). Given
(max,+) automaton A = 〈S, ŝ,Act, reward,M, T 〉 and
state s ∈ S, activities A,B ∈ enabled(s) are resource
independent in s if they satisfy the following conditions:

• B ∈ enabled(A(s)) and A ∈ enabled(B(s));

• AB(s) = BA(s);

• R(A) ∩R(B) = ∅.

Two activities are resource dependent, if they are not
resource independent.

If two activities are resource independent in some state
in the (max,+) automaton, then they are also ratio
independent in the corresponding configurations in the
underlying state space. When two activities are resource
independent, it holds that R(A) ∩R(B) = ∅. In this case
their corresponding (max,+) matrices commute, which
means that MA ⊗MB = MB ⊗MA. As a result, the
resulting normalized vector after multiplication is the
same, and the sum of the weights w1 and w2 is the same,
independent of the execution order.

If two activities are resource independent, then they are
ratio independent in the underlying state space.

We show the relation between resource independence and
ratio independence in a number of steps. First we show that
if for activities A and B it holds that R(A) ∩ R(B) = ∅,
then their corresponding (max,+) matrices commute.

Definition 25 (Commuting matrices). Two (max,+)
matricesMA andMB are said to commute ifMA⊗MB =
MB ⊗MA.

Lemma 26. Let A and B be activities with corresponding
matrices MA and MB. If R(A) ∩ R(B) = ∅, then MA ⊗
MB = MB ⊗MA.

If the (max,+) matrices of two activities commute, then
the resulting normalized vector in the (max,+) state space
is the same.

Lemma 27. Consider (max,+) matrices MA,MB and
vector γ. If MA and MB commute, then the resulting
normalized vector after multiplication in the normalized
(max,+) state space is the same.
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Proof.

norm(MB ⊗ norm(MA ⊗ γ))
= MB ⊗ (MA ⊗ γ − ‖MA ⊗ γ‖)
−
∥∥MB ⊗ (MA ⊗ γ − ‖MA ⊗ γ‖)

∥∥
= MB ⊗MA ⊗ γ − ‖MA ⊗ γ‖
− ‖MB ⊗MA ⊗ γ‖+ ‖MA ⊗ γ‖

= MB ⊗MA ⊗ γ − ‖MB ⊗MA ⊗ γ‖
= {using MA ⊗MB = MB ⊗MA}
MA ⊗MB ⊗ γ − ‖MA ⊗MB ⊗ γ‖

= { same steps in reverse direction }
norm(MA ⊗ norm(MB ⊗ γ)).

Given resource-independent activities, the sum of the
weights for both w1 and w2 after execution are the same,
independent of the execution order.

Lemma 28. Let c be a configuration and A,B be resource-
independent activities. Then, the sum of weights w1 and w2
of the paths after execution of both A and B starting from c
is the same, independent of the relative order of A and B.

Proof. For weight w1: trivial. For weight w2:

w2(c, A,A(c)) + w2(A(c), B,AB(c))
= ‖MA ⊗ γ ‖ + ‖MB ⊗ norm(MA ⊗ γ) ‖
= ‖MA ⊗ γ ‖ + ‖MB ⊗ (MA ⊗ γ − ‖MA ⊗ γ ‖) ‖
= {using MA ⊗ (γ − c) = MA ⊗ γ − c}
‖MA ⊗ γ ‖ + ‖MB ⊗MA ⊗ γ − ‖MA ⊗ γ ‖‖

= {using ‖ γ − c ‖= ‖ γ ‖ − c}
‖MB ⊗MA ⊗ γ ‖

= ‖MA ⊗MB ⊗ γ ‖
= { same steps in reverse direction }
w2(c,B,B(c)) + w2(B(c), A,BA(c)).

Theorem 29. Given are a (max,+) automaton A =
〈S, ŝ,Act, reward,M, T 〉 and state s ∈ S with activities
A,B ∈ enabled(s). Consider any configuration c = 〈s,γ〉
in the underlying normalized (max,+) state space. If A
and B are resource-(in)dependent in s, then they are ratio-
(in)dependent in c.

Proof. Assume that A and B are resource independent in
s. To prove that A and B are ratio independent in c, we
show that the three conditions stated in Def. 12 hold. The
first part of condition 1 follows directly by independence of
A and B. The second part requires a unique configuration
c′ = 〈s′,γ′〉 after executing A and B in arbitrary order.
The fact that the same state s′ is reached follows from
the independence of A and B, and that the same resource
availability vector γ′ is reached follows from Lemma 27.
Condition 2 requires that the sum of the weights for both
w1 and w2 is the same, independent of the execution order.

This follows from Lemma 28. Condition 3 requires that A
and B have no resources in common, which follows directly
from the definition of resource independence.
The proof for the case that A and B are resource

dependent is analogous.

A reduction function on a (max,+) automaton is defined
in the following way.

Definition 30 ((max,+) automaton reduction function).
A reduction function reduce for a (max,+) automaton A =
〈S, ŝ,Act, reward,M, T 〉 is a mapping from S to 2Act such
that reduce(s) ⊆ enabled(s) for each state s ∈ S. We
define the reduction of A induced by reduce as the smallest
(max,+) automaton A′ = 〈S′, ŝ′,Act′, reward′,M ′, T ′〉 that
satisfies the following conditions:
• S′ ⊆ S, ŝ′ = ŝ, Act′ = Act, T ′ ⊆ T ;
• for every s ∈ S′ and A ∈ reduce(s), 〈s,A,A(s)〉 ∈ T ′,
reward′(A) = reward(A), and M ′(A) = M(A).

Given reduction function ampleA on a (max,+) automa-
ton A = 〈S, ŝ,Act, reward,M, T 〉, we define reduction
function ampleS on the corresponding (max,+) state
space S = 〈C, ĉ,Act,∆,M,w1, w2〉 in the following way:
for any c ∈ C with c = 〈s, γ〉 and s ∈ S, define
ampleS(c) = ampleA(s).

Lemma 31. Let A = 〈S, ŝ,Act, reward,M, T 〉 be any
(max,+) automaton with corresponding state space S =
〈C, ĉ,Act,∆,M,w1, w2〉. Let ampleA be an ample reduction
on A that yields A′ with corresponding state space S ′. Let
ampleS be an corresponding ample reduction on S that
yields state space Ŝ, then Ŝ = S ′.

Proof. To illustrate the approach, consider the following
figure.

A A′

S S ′Ŝ

ampleA

ampleS
=

For each s ∈ S, it holds that enabledS′(s) = ampleA(s).
For each configuration c ∈ C with c = 〈s, γ〉 we
have enabledS′(c) = enabledA′(s) by Def. 4. Also,
enabledS(c) = enabledA(s) by Def. 4, and enabledŜ(c) =
ampleS(c) = ampleA(s) by definition of ampleS . This
implies that enabledŜ(c) = enabledS′(c) for each configu-
ration c ∈ C. Since the set of enabled activities is the same,
the set of configurations and transitions in both Ŝ and S ′ is
also the same. Also Act′ = Âct = Act, M ′ = M̂ = M , and
w′i = ŵi = wi for i ∈ {1, 2}. This proves that Ŝ = S ′.

To preserve latency and throughput properties, we
impose the following ample conditions on a reduction
function of a (max,+) automaton.

Definition 32 (Ample conditions (max,+) automaton).
Let ample be a reduction function on a (max,+) automaton
that satisfies the following conditions:
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(A1) Non-emptyness condition: if enabled(s) 6= ∅,
then ample(s) 6= ∅.

(A2) Dependency condition: For any state s0 ∈ S′ and
run s0A1s1A2 . . . Amsm with m ≥ 1 in A, if activity
Am and some activity in ample(s0) are resource
dependent in s0, then there is an index i with 1 ≤ i ≤ m
with Ai ∈ ample(s0).

Example 33. Consider state s1 in the (max,+) automaton
shown in Fig. 1c. Activities A and B are resource dependent
in s1 and resource independent with activity C. Ample sets
{A,B} and {C} both satisfy conditions (A1) and (A2).

Lemma 34. If ample reduction ampleA on A satisfies
conditions (A1) and (A2), then the corresponding ample
reduction ampleS on the corresponding state space S
satisfies (R1) and (R2).

Proof. Condition (R1) follows directly from (A1). By
Lemma 29, if activities are resource (in)dependent in s, then
they are also ratio-(in)dependent in any c with c = 〈s, γ〉.
Combined with the definition of ampleS , (R2) now also
follows from (A2).

An ample reduction on a (max,+) automaton preserves
the minimum throughput and maximum latency values.

Theorem 35. Let A be any (max,+) automaton with cor-
responding state space S. Let ample be an ample reduction
on A satisfying conditions (A1) and (A2) that yields A′
with corresponding state space S ′. Then τmin(S) = τmin(S ′)
and λmax(S) = λmax(S ′).

Proof. Let ampleS be the corresponding ample reduction
on S that yields state space Ŝ. By Lemma 31, Ŝ = S ′.
Since ampleA satisfies conditions (A1) and (A2), by
Lemma 34, ampleS satisfies conditions (R1) and (R2). By
Corollary 23, this implies that τmin(S) = τmin(S ′) and
λmax(S) = λmax(S ′). Therefore, if ampleA satisfies (A1)
and (A2), then the minimum throughput and maximum
latency values are preserved in the reduced state space
S ′.

IV. On-The-Fly Reduction
The previous section gives sufficient conditions for a

reduction function on a (max,+) automaton to preserve
performance properties in the corresponding (max,+) state
space. For an efficient reduction, we avoid first computing
the full composition of the (max,+) automata. Rather, we
use sufficient local conditions on the network of (max,+)
automata to compute a reduced composition on-the-fly.
The traditional on-the-fly method of Peled [19] selects

the enabled activities enabledi(s) = enabled(s) ∩ Acti
of some automaton Ai as ample set, while exploring a
state s = 〈s1, s2, . . . , sn〉. The ample condition requires
that all locally enabled activities in enabled(si) of this
automaton Ai are resource-independent with all activities
in the other automata. Otherwise, all enabled activities
in s are selected. In an experimental evaluation, we found
that this approach did not yield any reduction on the

models described in Section V. Therefore, we consider
a generalization of the approach to clusters, as in [20].
The cluster-inspired ample reduction selects a safe cluster
in each state in the composition. Given max-plus timed
systemM = A1 ‖ · · · ‖ An and A = {Ai | 1 ≤ i ≤ n}, we
define a cluster C ⊆ A. Let Act(C) =

⋃
Ai∈C Acti denote

the set of activities that occur in C. The set of enabled
activities that is selected in state s induced by a cluster C is
enabledC(s) = enabled(s)∩Act(C). We define a projection
to consider the local state πC(s) in a cluster C ⊆ A in the
following way:

πAi
(s) = si

πC(s) = 〈πAc1
(s), . . . , πAck

(s)〉 where C = {Ac1 , ...,Ack
},

and for all 1 ≤ j < k, cj < cj+1.

Given local state πC(s), enabled(πC(s)) denotes the
set of activities that are enabled in the composition of
precisely the automata in C. Note that enabledC(s) ⊆
enabled(πC(s)), since the latter might contain activi-
ties that are enabled in the local state of the cluster-
composition, but disabled in the global composition due
to an automaton outside the cluster that disables the
activity. We only consider independence of activities among
automata, and not within the same automaton. The former
can be checked locally, whereas the latter requires an
exploration on the internal transition structure. We treat
activities inside the same automaton as resource dependent.

Definition 36 (Cluster safety). Let C ⊆ A be any cluster,
and s be a state in the composition. Cluster C is safe in s
if the following conditions are satisfied.

(C1) if enabled(s) 6= ∅, then enabledC(s) 6= ∅;
(C2.1) for any A ∈ enabledC(s) and B ∈ Act(A)\Act(C),

R(A) ∩R(B) = ∅;
(C2.2) for any A ∈ enabled(πC(s)), if A ∈ Acti then
Ai ∈ C.

Condition (C2.1) requires that each enabled activity
in enabledC(s) does not share resources with any activity
outside Act(C). Condition (C2.2) requires that each activity
in enabled(πC(s)) does not occur outside of the cluster.
Together, these two conditions ensure that no activity
A ∈ Act(A) \ enabledC(s), dependent on some activity in
enabledC(s), becomes enabled by executing only activities
outside the cluster. We define a cluster-inspired ample
reduction through a safety condition M on a max-plus
timed system in the following way.

Definition 37 (Cluster-inspired ample reduction). A
cluster-inspired ample reduction function ample for a max-
plus timed systemM = A1 ‖ · · · ‖ An is a mapping from
S = S1× . . .×Sn to 2Act such that ample(s) = enabledC(s)
for some cluster C ⊆ A, and satisfies the following
condition:

(M) Cluster-safety condition: for any state s,
ample(s) = enabledC(s) where C is safe in s.

The reduction ofM is defined using Def. 30.
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Theorem 38. Let ample be a cluster-inspired ample
reduction on M = A1 ‖ · · · ‖ An. Then ample satisfies
conditions (A1) and (A2).

Proof. Consider any state s in the composition of A1 ‖
· · · ‖ An. First consider the case where enabled(s) = ∅.
Then by Def. 37 ample(s) = ∅, and conditions (A1) and
(A2) are satisfied. Now assume that enabled(s) 6= ∅, and
let ample(s) = enabledC(s), where C is any safe cluster in
s. Since cluster C is safe, by Def. 36 it satisfies conditions
(C1), (C2.1) and (C2.2). We need to show that enabledC(s)
satisfies conditions (A1) and (A2).
Condition (A1) follows directly from the definition.

We prove condition (A2) by contraposition. Assume that
condition (A2) does not hold. This means that there exists a
finite run fragment ρ = s

A1→ s1
A2→ s2

A3→ . . . sn−1
An→, where

A1 . . . An−1 are resource-independent with ample(s) =
enabledC(s), and An is resource-dependent with some
activity in enabledC(s).
Since An is resource-dependent with some activity in

enabledC(s), by condition (C2.1), An ∈ Act(C). Moreover,
we have An /∈ enabledC(s). Since activities A1 . . . An−1
are resource-independent with ampleC(s), A1 . . . An−1 ∈
Act(A)\Act(C) and they do not affect the state of C, which
means that πC(s) does not change in the first n−1 steps. As
An ∈ enabled(sn−1), An ∈ enabled(πC(s)). We also have
that An /∈ enabledC(s), since otherwise An ∈ enabledC(s),
contradicting our assumption. This means that An becomes
enabled in πC(s) by executing one of the activities in set
A1, . . . , An−1. Since A1, . . . , An−1 are activities outside of
C, there must be some Ai with 1 ≤ i ≤ n− 1 that enabled
An, which can only happen if An occurs outside of cluster C
by definition of synchronous composition. This contradicts
condition (C2.2).

In each state in the composition, there possibly exist
multiple safe clusters that can be chosen. Heuristics can
be used to select a cluster that likely leads to a large
reduction. In our experiments, we use a heuristic that
chooses a smallest safe cluster in each state. This heuristic
often performs well [27], because it allows to prune most
enabled transitions. Starting from each enabled activity
in s as a candidate, we construct a safe cluster. After
trying all candidates, we select a cluster C with the smallest
enabledC(s) set. This approach is best suited when the
enabled sets are small. If there are many states with large
enabled sets, then a heuristic could be used to compute
only one safe cluster starting from activities that occur in
only few automata.
Algorithm 1 shows the algorithm to compute a safe

cluster in a state. The algorithm checks for each activity
enabled in the current cluster C whether condition (C2.1)
or (C2.2) is violated. The algorithm starts with initial
candidate activity A. If A is enabled in the composition,
we add all automata that contain A and add an automaton
for each dependent activity outside the current cluster.
This ensures that condition (C2.1) is satisfied for activity
A and the cluster obtained after executing lines 5-9. If A
is enabled in the composition of automata in the cluster,

Algorithm 1. Algorithm to compute a safe cluster.
1: proc ComputeCluster(s, candidate)
2: A← candidate; C ← ∅; processed← ∅
3: while A 6= ⊥ do
4: processed← processed ∪ {A}
5: if A ∈ enabled(s) then
6: C ← C ∪ {Ai | A ∈ Acti}
7: for B ∈ {D ∈ Act | R(D) ∩R(A) 6= ∅} do
8: if B /∈ Act(C) then
9: C ← C ∪ [Ai | B ∈ Acti].first()
10: if A /∈ enabled(s) ∧A ∈ enabled(πC(s)) then
11: for Ai ∈ A do
12: if A ∈ Acti ∧ Ai /∈ C ∧A /∈ enabled(si) then
13: C ← C ∪ {Ai}
14: break;
15: if

∣∣enabled(πC(s)) \ processed
∣∣ > 0 then

16: A← [enabled(πC(s)) \ processed].first()
17: else
18: A← ⊥
19: return C

but not in the full composition, then we add an automaton
that causes A to be disabled in the full composition. This
ensures that condition (C2.2) is satisfied for A for the
cluster obtained after executing lines 10-14. We use the
notation [Ai | B ∈ Acti] to denote a list comprehension,
and function first() picks the first element from a list.
After handling the activity, we check whether there are
other activities that are locally enabled in the new cluster
and not yet processed (line 15-18). We continue until all
locally enabled activities are processed. The algorithm
is repeatedly called for each activity in enabled(s) as a
candidate, and afterwards the cluster with the smallest set
of enabled activities is chosen.

Theorem 39. Let s be a state in the composition, and A
be the candidate activity. ComputeCluster(s,A) returns
a cluster that is safe in s.

Proof. Consider activity A and let Ck denote the value of
C at line 6, and Ck+1 the new cluster after executing lines
4-18. We show that conditions (C2.1) and (C2.2) hold for
A in Ck+1 and any superset of Ck+1. We consider two cases:
• case A ∈ enabled(s): Ck+1 contains all automata Ai
with A ∈ Acti (added at line 6), which means that
condition (C2.2) is satisfied for A. Since there are no
automata outside Ai with A, condition (C2.2) holds
also for any superset of Ck+1. After executing lines 7-9,
there is no resource-dependent activity outside cluster
Ck+1, which means that condition (C2.1) is satisfied.
It suffices to add only one automaton with such an
activity to the cluster to satisfy condition (A2.1), since
then this resource-dependent activity becomes part of
the cluster. Condition (C2.1) is also satisfied in any
superset of Ck+1.

• case A /∈ enabled(s) ∧ A ∈ enabled(πC(s)): after
executing lines 11-14, condition (C2.1) trivially holds
since A /∈ enabled(s). Since A /∈ enabled(s) and
A ∈ enabled(πC(s)), there exists at least one au-
tomaton Ai /∈ Ck where A /∈ enabled(πi(s)). Let
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automata composition normalized (max,+) state space

full reduced full reduced

|S| |T | |S| |T | |C| |∆| |C| |∆|

TW1 1280 2170 1260 2130 3585 6120 3555 0.8% 6060 1.0%
TW2 63 128 34 44 379 756 149 60.7% 207 72.6%
TW3 343 759 151 209 4949 10655 1507 69.5% 2261 78.8%
TW4 318 768 139 202 18792 40957 5280 71.9% 7785 81.0%

TABLE I
Reductions achieved on the Twilight system models.

Ck+1 = Ck ∪ {Ai}, obtained at line 13. Then A /∈
enabled(πCk+1(s)), which means that condition (C2.2)
holds. Since Ai ∈ Ck+1, A will remain disabled in any
superset of Ck+1.

After executing lines 4-14 for activity A, conditions
(C2.1) and (C2.2) hold for A and keep holding for any
extension to the cluster. Upon termination of the algorithm,
we obtain some cluster Cl where conditions (C2.1) and
(C2.2) hold for each activity in enabled(πCl

(s)). From this
it follows that Cl is safe in s.

Example 40. Consider the initial state s1 in the com-
position A1 ‖ A2 ‖ A3 shown in Fig. 1b. We show how
Algorithm 1 computes a valid ample set for s1. Assume that
A is the candidate activity. Since A is enabled, we add all
automata with A (line 6) to cluster C, i.e. A1. Since activity
B is resource-dependent with A in s1 and B is not yet in
the cluster alphabet, we add the first automaton with B,
i.e. A2, to C (line 9). There are no other activities enabled
within the local state πC(s1) of the cluster, so we skip lines
11-14. Since we processed all activities and A = ⊥, cluster
C is returned. This yields ample(s1) = enabledC(s1) =
enabled(s1) ∩Act(C) = {A,B,C} ∩ {A,B,D} = {A,B}.
Using a similar reasoning, one can validate that C2 =

{A3} (with enabledC2(s1) = {C}) is also a safe cluster in
s1. A reduced composition obtained with an ample reduction
is shown in Fig. 1c. Since activity C is resource-independent
with activities A and B, only one interleaving of C with A
and B is explored. Both interleavings of A and B are still
present, since activities A and B are resource-dependent.
Fig. 4 shows the (max,+) state space after reduction.

V. Experimental Evaluation
In the previous section, we described an on-the-fly

reduction on the level of (max,+) automata to compute
a reduced composition that preserves throughput and
latency values. To test the effectiveness of the partial-order
reduction on models of manufacturing systems, we created
a number of variants of the Twilight system [15] model.
The Twilight system, shown in Fig. 6, processes balls

that need to be drilled. First, a ball is picked up by the
load robot (LR) from the input buffer (IN). Then, the ball
is put on the conditioner (COND), to heat the ball to a
desired temperature. The conditioner has a heater action
(H) to heat a ball. Once heated, the ball is transported to
the (DRILL) by the load robot or unload robot (UR) to

LR

IN OUTCOND DRILL

UR

R R

Z
Z

Z

CL

CL
CL

CL

R

H

Fig. 6. Twilight manufacturing system [15] with two robots and two
production stages.

drill a hole in the ball. The drill has an R-motor (R) to
rotate the drill bit, and a Z-motor (Z) to move the drill
bit up and down. After drilling, the unload robot puts the
finished ball in the output buffer (OUT). Both robots have
a clamp (CL) to pick up and hold a ball, an R-motor (R)
to move along the rail, and a Z-motor (Z) to move the
clamp up and down. Both processing stations have a clamp
(CL) to ensure that the ball stays positioned correctly.

The system specification contains activities that describe
the conditioning and drilling step, as well as activities that
describe how a robot transports a product. In order to
ensure safe movements, we model collision areas above
the conditioner and the drill as virtual resources. The
(max,+) automata describe constraints on valid activity
orderings. The best-case and worst-case throughput and
latency values are analyzed on the (max,+) state space of
the composition of these automata.
We examine four variants of the Twilight system. The

first variant (TW1) is the model described above, of which
the full model is given in [15]. The life cycle and location
of each product is explicitly modeled. In TW2, we remove
these product-location and life-cycle automata, and instead
use a set of automata that ensure that products are always
moved forward in the production process. The TW2 model
is more compact, leads to faster analysis, and is still correct.
In TW3, we extend TW2 with a polish station, where each
product undergoes the polish step and drill step after the
condition step but not in a fixed order. In TW4 we fix the
order so that a product is always first conditioned, then
drilled, and then polished.

Table I shows that a reduction is achieved in all models.
The reduction for TW1 is very small (0.8%) compared
to the reductions of the other models (60.7%, 69.5&,
and 71.9% for TW2, TW3, and TW4). The reduction
for model TW1 is very small, because there is a lot of
event synchronization by the product-location and life-
cycle automata. Recall condition (C2.2), that requires that
each enabled activity in the local state of a safe cluster must
be independent with activities outside the cluster. During
state-space exploration of model TW1, the algorithm often
needs to add product-location or life-cycle automata to the
cluster to satisfy this condition (C2.2); this limits reduction
possibilities. The reduction for TW2, TW3, and TW4 is
much larger, since we do not explicitly model the product-
location and life-cycle automata. Note that the TW2 state



15

space also before reduction is already much smaller than
the TW1 state space. The TW2 model is therefore arguably
a model better suitable for performance analysis than the
original TW1 model.

VI. Conclusion
In this paper, we presented a new partial-order reduction

technique to speed up performance analysis of max-plus
timed systems. The technique is inspired by existing
cluster-based ample set reduction for non-timed systems.
It tries to compute a smaller state space by exploiting
the structure of the concurrent (max,+) automata, and
information about resource sharing. We derived conditions
to compute a reduced composition, from which a reduced
state space can be calculated. In this reduced state space,
performance properties (throughput and latency) of the
system model are preserved. The experimental evaluation
shows that the partial-order reduction technique can be
successfully used to reduce the size of the state space for
a set of example models of manufacturing systems. The
reductions that can be achieved are highly dependent on the
structure of the input model, the amount of synchronization
on activities among automata, and the extent to which
activities use the same resources. In our models, the partial-
order reduction technique successfully exploits redundant
interleaving related to processing stations that can perform
operations on products in parallel, and movements of the
robots that can be executed simultaneously.
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